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Introduction

Cryptococcus neoformans and C. gattii form two species 
complexes that are etiological agents of cryptococcosis, a 
systemic disease acquired through the inhalation of the fun-
gal cells – desiccated blastoconidia or basidiospores – dis-
persed in the environment [1]. After inhalation, the infection 
develops into an initial dormant state and may further prog-
ress into the most common symptom, meningoencephalitis, 
with other manifestations such as pneumonia and lesions in 
different tissues due to its systemic nature [2–4].

The infection with C. neoformans has major significance 
for causing cryptococcosis in immunosuppressed indi-
viduals, with estimates of 152,000 cases of cryptococcal 
meningitis and 112,000 worldwide annual deaths in 2020, 
responsible for 19% of death in patients with HIV/AIDS 
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Abstract
Cryptococcosis is one of the major life-threatening opportunistic/systemic fungal diseases of worldwide occurrence, which 
can be asymptomatic or establish pneumonia and meningoencephalitis mainly in immunosuppressed patients, caused by 
the Cryptococcus neoformans and C. gattii species complexes. Acquisition is by inhaling fungal propagules from avian 
droppings, tree hollows and decaying wood, and the association of the molecular types with geographic origin, virulence 
and antifungal resistance have epidemiological importance. Since data on cryptococcosis in Alagoas are limited, we sought 
to determine the molecular types of etiological agents collected from clinical and environmental sources. We evaluated 21 
isolates previously collected from cerebrospinal fluid and from environment sources (pigeon droppings and tree hollows) 
in Maceió-Alagoas (Brazil). Restriction fragment length polymorphism of URA5 gene was performed to characterize 
among the eight standard molecular types (VNI-VNIV and VGI-VGIV). Among isolates, 66.67% (14) were assigned to 
C. neoformans VNI – 12 of them (12/14) recovered from liquor and 2 from a tree hollow (2/14). One isolate from pigeon 
droppings (4.76%) corresponded to C. neoformans VNIV, while five strains from tree hollows and one from pigeon drop-
pings (6, 28.57%) to C. gattii VGII. VNI-type was present in clinical and environmental samples and most C. neoformans 
infections were observed in HIV-positive patients, while types VNIV and VGII were prevalent in environmental sources 
in Alagoas. This is the first molecular characterization of Cryptococcus spp. in Alagoas, our study provides additional 
information on the ecoepidemiology of Cryptococcus spp. in Brazil, contributing to a closer view of the endemic species.
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[5], while infections caused by C. gattii affect immunocom-
petent patients [6], primarily children and the elderly, show-
ing a primary infection trait and pathogenic aptitude [1, 7]. 
Recently, the World Health Organization (WHO) (2022) 
included C. neoformans in the critical group and C. gattii in 
the medium group of the Fungal Priority Pathogens List [8], 
to direct research and raise awareness of this fungal disease, 
strengthening new actions to control these pathogens.

The two species complexes are subdivided into eight 
major molecular types, proposed in 2009 by the Interna-
tional Society for Human and Animal Mycology (ISHAM) 
working group [9], recognizable by different molecular 
techniques, such as PCR-fingerprinting, restriction fragment 
length polymorphism (RFLP) of the URA5 gene, ampli-
fied fragment length polymorphism (AFLP), multi-locus 
sequence typing (MLST) and whole genome sequencing 
(WGS), subdividing C. neoformans in VNI, VNII, VNIII 
and VNIV and C. gattii in VGI, VGII, VGIII and VGIV [9–
11]. One of the most applied techniques is the PCR-RFLP 
of URA5, a low-cost methodology which benefits from the 
nucleotide sequence of URA5 in C. neoformans and in C. 
gattii differing in only about 8%, showing identical size and 
introns position, and having the product (orotidine mono-
phosphate pyrophosphorylase) structure with homology in 
98% of the amino acids, demonstrating a recent phyloge-
netic relation between these species [12, 13].

Recently, 3 other molecular types have been identified 
(VNB, VGV and VGVI) [14–18], however these demon-
strate low distribution and a smaller frequency compared 
to the 8 stablished genotypes [11]. Additionally, a nomen-
clature change has been proposed by Hagen et al. (2015) 
[17], moving the molecular types into species level: C. neo-
formans (VNI, VNII), C. neoformans X C. deneoformans 
hybrid (VNIII), C. deneoformans (VNIV), C. gattii (VGI), 
C. deuterogattii (VGII), C. bacillisporus (VGIII), C. tetra-
gattii (VGIV) and C. decagattii (VGIV/VGIIIc). In face of 
this proposal, Kwon-Chung et al. (2017) [19] suggested the 
use of “species complexes”, reasoned by the new molecu-
lar types being discovered and the lack of biological differ-
ences among the clades, and later Hagen et al. (2017) [20] 
defended their perspective, however there is still no consen-
sus among researchers about this matter, thus we decided 
to use “species complexes” in this study following recent 
literature [11, 21].

C. neoformans sensu lato occurs in all continents and is 
the most common pathogen of cryptococcosis in all regions 
of Brazil [22, 23]. It is usually found on avian droppings 
(mainly pigeon) and decaying organic material [1, 24]. On 
the other hand, C. gattii sensu lato occurs mainly in tropical 
and subtropical regions of the world [1], it is endemic in 
the northern and northeastern regions of Brazil [22], usu-
ally colonizing decaying wood material and tree hollows 

from different species [4]. Limited data on cryptococcosis 
is still a reality in Latin America [11, 24] and the ecoepi-
demiological data in Brazil are restricted to a few regions, 
lacking information on the correlation of the environmental 
and clinical isolates, with some states without any molecu-
lar characterization to date [22, 24–26]. Our purpose was to 
determine for the first time the molecular types of clinical 
and environmental isolates collected in Maceió (Alagoas, 
Brazil) by URA5-RFLP, aiming to update the ecoepidemio-
logical distribution of C. neoformans/C. gattii species com-
plexes in Brazil.

Materials and methods

Fungal isolates

This study evaluated 21 isolates collected from 2013 to 
2016, previously identified by the Clinical Microbiology 
Laboratory (LMC), Federal University of Alagoas (UFAL), 
as Cryptococcus sp. through phenotypic methods (india 
ink staining followed by urease and phenoloxidase tests), 
these isolates were stocked at the mycological collection of 
the LMC (SisGen access no. A180447/A329989). Fourteen 
clinical isolates were collected from the cerebrospinal fluid 
(CSF) of patients with suspected cryptococcal meningoen-
cephalitis assisted at Hospital Escola Doutor Hélvio Auto 
(HEHA), besides seven environmental isolates collected 
from decaying material in a tree hollow and pigeon drop-
pings located in public squares from Maceió (Alagoas, 
Brazil).

Standard strains of each molecular type provided by Insti-
tuto Nacional de Infectologia Evandro Chagas – Fundação 
Oswaldo Cruz (INI-Fiocruz) were utilized: C. neoformans 
WM 148 (VNI), WM 626 (VNII), WM 628 (VNIII), WM 
629 (VNIV) and C. gattii WM 179 (VGI), WM 178 (VGII), 
WM 175 (VGIII), WM 779 (VGIV).

Isolate preparation

Collection of the isolates were maintained stocked at -20ºC 
after saturated cultures were grown in Sabouraud dextrose 
broth, with new stock cultures made every 6 months. For 
the use, isolates were inoculated in Sabouraud dextrose agar 
(SDA) for the period of 48 h at 30ºC, then approximately 10 
µL aliquot of cells were harvested by an inoculation loop 
and inserted in 1.5 mL sterilized microtubes, this material 
was incubated overnight at -20ºC for mechanical breaking 
of the yeast capsule. Alternatively, the isolates were inocu-
lated in 1 mL of YEPD broth (yeast 1%, peptone 2% and 
dextrose 1%) with 0.5 M of NaCl, to avoid capsule forma-
tion, in 1.5 mL sterilized microtubes and incubated for 48 h 
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at 30ºC in a shaker at 150 rpm until cultures were saturated. 
Then, the samples were pelleted by centrifuging in 17,000 x 
g for 2 min to collect the cells.

DNA extraction

Genomic DNA was extracted and purified using Wizard® 
Genomic DNA Purification Kit (Cat. A1120; Promega, 
Madison, USA) or following the methodology described 
by Ferrer et al. (2001) [27] and Rede de Criptococose 
Brasileira (RCB) [28], with some modifications: 10 µL ali-
quot of cells was suspended in 500 µL of lysis buffer (0.5% 
sodium dodecyl sulfate, 1.4% NaCl, 0.73% dihydrate EDTA 
and Tris-HCl 0.2 M, pH = 8.0) and 5 µL of 2-mercapetha-
nol, followed by incubation at 65ºC for 1 h. Then, 500 µL 
of phenol: chloroform: isoamyl alcohol (25:24:1) was added 
into the tubes and mixed thoroughly for 2 min, followed by 
centrifugation for 15 min at 32,000 x g. The supernatant was 
transferred to new tubes and mixed with an equal volume of 
isopropanol for incubation at -20ºC overnight, aiming the 
precipitation of nucleic material. Following, the tubes were 
centrifuged at 32,000 x g (15 min) for pellet formation and 
removal of the supernatant. The pellet was suspended in 200 
µL of 70% ethanol for cleaning and centrifuged at 32,000 x 
g (15 min), removing the supernatant. The DNA pellet was 
air dried, resuspended in 100 µL of sterile ultrapure water 
for treatment with RNase A (Cat. A7973; Promega, Madi-
son, USA) (1 h at 37ºC) and the material was stocked at 4ºC.

Molecular typing by URA5-RFLP

URA5 PCR was performed individually as described by 
Meyer et al. 2003 [29], in a final volume of 50 µL with an 
aliquot of genomic DNA, 1X PCR buffer (5X Colorless 
GoTaq® Flexi Buffer, Promega; Cat. M890A), 0.2 mmol 
of each dNTP (Cat. DNTP100; Sigma-Aldrich, Burlington, 
USA), 3 mmol of magnesium chloride (Cat. A351B; Pro-
mega, Madison, USA), 1.5 U of GoTaq® Flexi DNA poly-
merase (Cat. M829A; Promega, Madison, USA), 50ng of 
primers URA5 (5’- A T G T C C T C C C A A G C C C T C G A C T C C 
G-3’) and SJ01 (5’- T T A A G A C C T C T G A A C A C C G T A C T 
C-3’). The thermocycler (Bio-Rad®, Hercules, USA) was 
configured to the following cycles: 2 min at 94 °C for initial 
denaturation, followed by 35 cycles of 45 s at 94 °C for 
denaturation, 1 min at 61 °C for annealing, 2 min at 72 °C 
for extension and a final cycle at 72 °C for 10 min for final 
extension.

The amplified product was stocked at 4 °C for further 
procedures. Products were visualized on a 1.4% agarose gel 
with 1X TBE and Nancy-520 (Cat. 01494; Sigma-Aldrich, 
Burlington, USA) after electrophoresis with a 100 bp DNA 
ladder (Cat. 15,628,019; Invitrogen, Waltham, USA).

According to Meyer et al. (2003) [29], the URA5 ampli-
fied products were double digested by restriction enzymes 
Sau96I (5 U/µL; Cat. R0165S; New England Biolabs, Mas-
sachusetts, USA) and HhaI (10 U/µL; Cat. R0139S; New 
England Biolabs, Massachusetts, USA) in a final volume of 
30 µL with 1X NEBuffer (Cat. B7202; New England Bio-
labs, Massachusetts, USA) for incubation at 37ºC for 3 h. 
For evaluation, electrophoresis with an agarose gel (3%) 
stained with Nancy-520 was performed and the genotypes 
were assigned by comparison with their respective refer-
ence strain.

Brazilian ecoepidemiological map

Articles reporting different molecular types of Cryptococ-
cus neoformans/C. gattii species complexes in Brazil were 
selected from PubMed and Scielo databases, using the pri-
mary descriptors “molecular type” OR “genotype” AND 
“cryptococcus” AND “Brazil” to select articles published 
from 2008 to 2024 with information about place, description 
of sample and molecular type. After data compilation, we 
constructed a Brazilian map using the QGIS v.3.34.3 soft-
ware and the Instituto Brasileiro de Geografia e Estatística 
(IBGE) database, separating Cryptococcus molecular types 
by states and including the types described in Alagoas.

Results

The clinical isolates (n = 12) were collected from cerebro-
spinal fluid of 9 patients that underwent CSF recollection to 
monitor the effectiveness of the treatment and remission of 
the yeast. Out of the 9 patients with cryptococcal meningo-
encephalitis, 4 were HIV-positive (44.44%), 2 HIV-negative 
(22.22%) and 3 had no information about seropositivity in 
their medical records (33.34%). The mortality rate was 75% 
(3/4) among the HIV positive individuals and 50% (1/2) in 
the HIV negative. One HIV-negative patient was released 
from medical assistance and 4 patients had no clinical evo-
lution information registered. The environmental strains 
(n = 9) were isolated from a tree hollow and from pigeon 
droppings (Table 1).

DNA extraction was performed by two methodologies, 
the method described by Ferrer et al. (2001) [27] was effec-
tive and allowed the recovery of large amounts of fungal 
genomic material. However, the usage of the Wizard Kit 
allowed faster and more purified acquisition of the DNA, 
being used in most of the samples. URA5 PCR-RFLP of the 
21 Cryptococcus spp. clinical and environmental isolates 
compared with the 8 molecular reference strains revealed 
71.43% (15/21) as C. neoformans sensu lato, whereas 
28.57% (6/21) were C. gattii sensu lato. The molecular 
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types characterized in Maceió (Alagoas, Brazil) were VNI 
(66.67% − 14/21), VGII (28.57% − 6/21) and VNIV (4.76% 
− 1/21) (Fig. 1). All clinical isolates (12) corresponded to 
genotype VNI, in both HIV-positive and HIV-negative 
patients, while the most common molecular type in the 9 
environmental isolates were VGII (6/9), followed by VNI 
(2/9) and VNIV (1/9). It was possible to identify 2 molecular 
types (VNI and VGII) collected from the same tree hollow, 
whereas in the pigeon droppings the genotypes identified 
were VNIV and VGII.

After compiling the public molecular epidemiological 
data of Cryptococcus spp. in Brazil, it was possible to con-
struct an ecoepidemiological map to assess the distribution 
of the molecular types in different regions (Fig. 2; Table S1). 
The genotypes VNI and VGII are the most commomly iden-
tified among the studies, distributed in all regions of Brazil 
including the present record in the state of Alagoas, while 
VNIV is rarely identified.

Discussion

Cryptococci eradication requires a rapid identification and 
effective treatment for the host survival, but in several coun-
tries these measures are not available for the population, 
making cryptococcal infection one of the most important 
life-threatening opportunistic diseases for AIDS patients [5]. 
The molecular types of Cryptococcus neoformans and C. 
gattii species complexes differ in their ecology, geographi-
cal distribution, pathogenicity and antifungal susceptibility, 
even with the phylogenetic proximity and morphological 
similarities among the groups [20].

In this study, the isolates had origin in clinical and envi-
ronmental samples from Maceió, Alagoas (northeastern 
Brazil), indicating the presence of molecular types VNI, 
VNIV and VGII. Studies about the ecoepidemiology of 
Cryptococcus spp. should take into account both clinical 
and environmental samples for a better understanding of its 
geographical distribution, as the infection is disseminated 
through borne fungal propagules from the environment and 
is also considered as a zoonosis, indicating that molecular 
types collected from clinical samples were disseminated in 
certain regions [26, 30].

The mortality rate observed in our study was 44.44% 
(4/9). However, the rate was higher among HIV-positive 
patients (75%; 3/4). Several factors are involved in the 
disease mortality, such as delay in diagnosis, the lack of 
effective treatment, virulence of the strains and level of 
immunosuppression of the patient. In the world, the mortal-
ity rate in individuals with cryptococcosis is high, even in 
places with first-line treatment availability, reaching 40% in 
developed countries and up to 70% in low-income countries 
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possibly occur due to virulence and pathogeny differences 
among strains of C. neoformans, expressing genes that 
guarantee the ability to cause infections in immunocompe-
tent individuals [1]. Recently, there are also reports of VNI 
causing infections in HIV-uninfected patients in Brazil [25, 
36, 38–40], this evidence demonstrates the ability of the 
molecular type VNI in causing infections to HIV-negative 
individuals, as well as in 2 patients from Alagoas.

Considering the environmental samples, the predomi-
nance of each type may vary according to the niche with 
which the sampling is made, due to better adaptation that 
each genotype has to specific habitats [3, 41]. Tree hollows 
are considered to be predominantly colonized by C. gattii 
[42], but likewise, this niche is supportive for C. neoformans 
to grow [3]. According to Trilles et al. (2003) [43], different 
molecular types of Cryptococci can inhabit a common tree, 
as observed in a study carried out in Teresina (Piauí, Brazil) 
and also found in Italy by Cogliati et al. (2020) [4], when 
they observed the types VNI and VNIV sharing the same 
tree, but with different populational density in different parts 
of it. Barbosa et al. (2013) [44] identified VGI and VNI iso-
lates in tree hollows in Rio de Janeiro, while Costa et al. 
(2009) [45] reported VGII and VNI associated with decay-
ing material from a tree hollow in Belém (Pará, Brazil). This 

[31]. In Brazil, mortality rate may vary from 26 to 70%, 
depending on the evaluated place, treatment availability and 
patient immunosuppression [32, 33]. Current data show a 
decrease of 28% of deaths related to AIDS in the world from 
2014 to 2020 [5], in accordance with the Brazilian Ministry 
of Health [34], which has suggested a decrease in individu-
als living with HIV in Brazil, although an increase occurred 
in the northern and northeastern regions, where the crypto-
coccal surveillance is at most scarcity.

Even though clinical isolates were from HIV-infected and 
HIV-uninfected patients, all of them were characterized as 
VNI in our study. This molecular type is characterized as the 
primary infecting agent of cryptococcal meningoencephali-
tis in individuals with advanced immunosuppression stage 
due to AIDS [1]. This is observed by Tsujisaki et al. (2013) 
[35], Favalessa et al. (2014) [36], Aguiar et al. (2017) [32] 
and da Silva et al. (2020) [33] that also identified VNI as the 
predominant molecular type in infections of HIV-positive 
individuals in Mato Grosso do Sul, Mato Grosso, Minas 
Gerais and São Paulo (Brazil), respectively.

In immunocompetent patients, the infections are usually 
associated with VGII. Despite that, there are evidences of 
VNI also infecting these individuals as observed in China, 
where VNI is frequently associated [37]. These distinctions 

Fig. 1 Characterization of clinical and environmental isolates of Cryp-
tococcus sp. by URA5 PCR-RFLP. Restriction fragment length poly-
morphism (RFLP) profile of URA5 gene double-digested with restric-

tion enzymes Sau96I and HhaI. M: 100 bp DNA ladder (molecular 
weight); lanes VNI-VGIV: reference strains; lanes 1–12: clinical iso-
lates; lanes 13–21: environmental isolates; bp: base pairs
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There is a possibility that the pigeon droppings that were 
positive for VGII in our study were contaminated with the 
strains inhabiting a neighboring tree, approximately 3 m 
away – from which we also identified the same molecular 
type. This may be considered due to the fact that Crypto-
coccus spp. has already demonstrated great achievement to 
disperse to and colonize new habitats [48]. As an example, 
there is the report of type VGII described as the infecting 
agent in a cryptococcosis outbreak in Vancouver, Canada 
[49], demonstrating its ability to adapt to new locations and 
be dispersed through different means, such as wood export, 
air and water currents, as well as biological sources (as 
birds and insects), allowing colonization in areas far from 
its endemic region [4, 22, 25, 50].

The molecular type VNI occurs worldwide and is the 
most prevalent in clinical and environmental samples 
[51], with less frequency only in samples collected from 

pattern was also observed in our study, with five VGII iso-
lates and two VNI identified inhabiting a single tree hollow. 
An interesting observation is that different molecular types 
of C. gattii have not been detected in association in the same 
location, such as a tree, which may suggest a stronger com-
petition among VG types.

C. neoformans tends to be the dominant species in pigeon 
droppings, once it utilizes urea and creatinine from the sub-
strate as nitrogen source [41, 46]. The molecular type VNI 
is the most common type in pigeon droppings in Brazil [22, 
23]. However, in the present study we did not recover any 
strain from this type in pigeon droppings, only 1 VNIV and 
1 VGII isolates. C. gattii is unusual in this environment and 
can grow without adequate adaptation to inhabit this niche 
for long periods [41]. Despite that, Teodoro et al. (2013) 
[47] have reported about the recovery of C. gattii in 5.2% 
of the identified species from bird droppings in São Paulo.

Fig. 2 Map showing the molecular types distribution of Cryptococcus 
neoformans and C. gattii species complexes in Brazil. Data described 
in the literature between 2008 and 2024, with the inclusion of molecu-
lar types described for the first time in Alagoas. Molecular types were 
indicated by triangle and circle shapes with different colors for each 

type. The QGIS v.3.34.3 software and the Instituto Brasileiro de Geo-
grafia e Estatística (IBGE) database were used to construct the map. 
Abbreviations correspond to each Brazilian state. Reference list: [15, 
22, 25, 32, 33, 35, 36, 38–40, 44, 45, 50, 56, 57, 59, 69, 71–116]
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epidemiological control. However, the brand-new fungal 
priority pathogens list released by WHO (2022) [8] dem-
onstrates an increased concern about this infection, thus a 
gradual expansion in epidemiological information related 
to infections by Cryptococcus spp. is expected, with better 
surveillance around the world.

Ecological and clinical studies can provide informa-
tion on the epidemiology of these pathogens and charac-
terization of niches favorable for the colonization of these 
microorganisms, which represent a risk to the population 
when exposed to propagules [30]. Prevention of infection 
is hampered by the invasive and disseminative capacity of 
these organisms [62], but the chances of exposure can be 
minimized through the use of personal protective equipment 
(PPE) for respiratory protection in places with high concen-
tration of avian excreta or wood cutting. In cases of cleaning 
of contaminated areas, the decontamination and spraying 
with water or oil of the material should be previously made 
to avoid aerobic propagules [63].

Here we report VNI, VNIV and VGII as prevalent molec-
ular types in Maceió (Alagoas, Brazil), with VNI identified 
in clinical and environmental samples, which highlights 
dissemination points of this genotype in our area. Although 
VNIV and VGII have not been identified in clinical sam-
ples, their presence in the environment is already a determi-
nant for the possibility of infection, since the dispersion of 
any genotype occurs from environmental sources and dis-
semination from human to human has not yet been reported 
[4, 64]. Despite the fact that transmission by organ dona-
tion [65] and direct contamination of wounds [66] is rarely 
reported in humans, there are reports of maternal-fetal trans-
mission in cetaceans [67], demonstrating the great dissemi-
native capacity of these microorganisms, in addition to the 
fact that Cryptococcus sp. manages to infect a wide range of 
wild and domestic animals, from terrestrial to marine envi-
ronments [68], making constant exposure to contaminated 
excreta of avian pets an important mean of zoonotic trans-
mission [69, 70]. Such information leads us to take more 
cautious measures regarding the possibility of contamina-
tion in these situations.

The importance of determining molecular types of the 
C. neoformans and C. gattii species complexes goes behind 
ecoepidemiology, since there are clinically important differ-
ences between each evaluated types, and until our research 
there was no information available about the molecular 
types of Cryptococcus spp. prevalent in the state of Alagoas.

tree hollows [41], and predominant in cryptococcal infec-
tions in Brazil [22–24, 44]. Considering the environmental 
samples from our study, the VNI prevalence was lower than 
expected, once this type was not identified on its preferen-
tial niche – pigeon droppings.

The molecular type VGII is the most identified group 
in C. gattii infections, distributed primarily in the Ameri-
cas [23, 52] and considered endemic from the northern 
and northeastern regions of Brazil [24, 53]. It is collected 
mainly from decaying organic matter and is associated with 
primary infections [3]. In our study, VGII was the predomi-
nant type among the environmental isolates, identified in 
a tree hollow and in pigeon droppings, but not on clinical 
samples. As this type is endemic to the northern and north-
eastern regions, its prevalence is usually high, as shown by 
Trilles et al. (2008) [22]. VGII was the most prevalent type 
(63.3%) in clinical and environmental isolates (n = 107) col-
lected from the states of Roraima, Amazonas, Piauí, Per-
nambuco and Bahia [22].

Molecular type VNIV exhibited low prevalence in our 
study, as only one isolate was identified from pigeon drop-
pings, similar to what is described in Brazil [24]. It is dis-
tributed primarily in the European countries, probably due 
to its better adaptation to temperate weather [4], and iden-
tified from the environment commonly from pigeon drop-
pings or associated with different tree species [52]. It shows 
scarce clinical association, being cutaneous cryptococcosis 
one of the few clinical manifestations related [54]. There 
are reports of this type in tree hollows from Rio Grande do 
Sul [55], São Paulo [56], and in a patient from Minas Gerais 
[57]. Firacative et al. (2021) [23] reported type VNIV in 
6.32% of isolates from Latin America and Trilles et al. 
(2008) [22] in 4.7% of the isolates from the northern and 
northeastern regions of Brazil.

The most prevalent genotypes demonstrated in this study 
are the main agents of opportunistic infections in immu-
nosuppressed individuals (VNI) and primary infections in 
healthy people (VGII) [1]. It has been shown that VGII is 
more resistant to azoles, as fluconazole and itraconazole, 
regardless of the original geographic area of the isolate 
[58, 59]. According to Trilles et al. (2012) [58], VGII was 
more resistant than VNI to fluconazole, albaconazole, vori-
conazole, itraconazole, ravuconazole and 5-flucytosine, 
being amphotericin B the only antifungal that did not show 
response variation from different molecular types.

In Brazil, cryptococcosis is still a disease that does not 
require compulsory notification [60], even though there are 
reports of mortality rate reaching 10.96/million inhabitants 
in Mato Grosso, in direct cause of death, or 70.41/million 
inhabitants in Santa Catarina, in associated cause of death 
[61]. Only a few Brazilian states have measures forcing 
the inclusion of cryptococcosis among the diseases with 
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