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in pulmonary exacerbations and irreversible lung damage in 
patients with cystic fibrosis (CF) [1].

CF is a multisystemic, autosomal recessive disease 
caused by cystic fibrosis transmembrane conductance reg-
ulator (CFTR) gene mutations located on the long arm of 
chromosome 7, involving mucus and sweat producer cells. 
The lungs are the most severely affected, increasing mucus 
viscosity and inability to clear bacteria, resulting in chronic 
airway inflammation. Airway damage mainly occurs due 
to bacterial infections caused by typical microorgan-
isms, which can lead to reduced lung function, leading to 
decreased quality of life in patients with CF [2–4].

P. aeruginosa possesses a diverse pool of resistance 
mechanisms, such as porins, efflux pumps and enzymes, 
affecting its susceptibility to several antimicrobial classes, 
such as β-lactams, carbapenems, aminoglycosides, 

Introduction

Pseudomonas aeruginosa is a ubiquitous microorganism 
capable of adapting to several environments. It is an oppor-
tunistic pathogen associated with airway infections, which, 
when well established, is practically impossible to eradi-
cate, especially the chronicity. This morbidity can culminate 
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Abstract
Pseudomonas aeruginosa is the main pathogen associated with pulmonary exacerbation in patients with cystic fibrosis 
(CF). CF is a multisystemic genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regula-
tor gene, which mainly affects pulmonary function. P. aeruginosa isolated from individuals with CF in Brazil is not com-
monly associated with multidrug resistance (MDR), especially when compared to global occurrence, where the presence 
of epidemic clones, capable of expressing resistance to several drugs, is often reported. Due to the recent observations 
of MDR isolates of P. aeruginosa in our centers, combined with these characteristics, whole-genome sequencing was 
employed for analyses related to antimicrobial resistance, plasmid identification, search for phages, and characterization 
of CF clones. All isolates in this study were polymyxin B resistant, exhibiting diverse mutations and reduced susceptibil-
ity to carbapenems. Alterations in mexZ can result in the overexpression of the MexXY efflux pump. Mutations in oprD, 
pmrB, parS, gyrA and parC may confer reduced susceptibility to antimicrobials by affecting permeability, as observed 
in phenotypic tests. The phage findings led to the assumption of horizontal genetic transfer, implicating dissemination 
between P. aeruginosa isolates. New sequence types were described, and none of the isolates showed an association with 
epidemic CF clones. Analysis of the genetic context of P. aeruginosa resistance to polymyxin B allowed us to understand 
the different mechanisms of resistance to antimicrobials, in addition to subsidizing the understanding of possible relation-
ships with epidemic strains that circulate among individuals with CF observed in other countries.
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fluoroquinolones and polymyxins [5, 6]. Resistance to 
carbapenems, mediated by permeability alterations and 
carbapenemases, is a significant concern as carbapenems 
are considered first-line drugs in the treatment of airway 
infections caused by P. aeruginosa in CF [5, 7, 8]. Simi-
larly, resistance to polymyxins, facilitated by alterations in 
two-component system (TCS) and acquisition of exogenous 
DNA (plasmid mcr gene) is also a cause for concern since 
polymyxins are often considered a last resort treatment for 
MDR P. aeruginosa [9–11].

One of the challenges encountered in P. aeruginosa 
infection is the existence of multidrug-resistant strains and 
their spread among patients with CF [12], such as the Liver-
pool, Manchester, Midlands, Australia, Denmark, and Can-
ada strains [13, 14]. Phylogenetic analysis aims to identify 
common bacterial clones that can be used as strains with 
important resistance profiles against CF [3, 15].

Whole-genome sequencing (WGS) is a standard tech-
nique for investigating outbreaks and bacterial typing. 
In addition to the rapid identification of agents that cause 
infections with high accuracy, it allows the detection of 
genes associated with antimicrobial resistance and relevant 
virulence factors. Despite the high cost and requirement 
for specialized professionals, it has been adopted by sev-
eral laboratories and hospital institutions. In silico analysis 
of bacterial data obtained from WGS guarantees speed in 
the characterization and management of outbreaks, person-
alized therapy, and facilitates approaches in the control of 
nosocomial infections [16].

In recent years, an increase in P. aeruginosa isolates 
obtained from individuals with CF, followed up in two cen-
ters in Rio de Janeiro, showed decreased susceptibility to 
carbapenems, polymyxin B, and other antimicrobials [17]. 
This results in difficulties in the treatment and eradication 
of the pulmonary environment; therefore, it is necessary 
to analyze the phenotypic and genotypic characteristics 
of these isolates. The aim of this study was to perform a 
genetic analysis of P. aeruginosa resistance to polymyxin B, 
which may contribute to understanding the mechanisms of 

antimicrobial resistance, its phylogeny, and other important 
genomic aspects.

Materials and methods

Clinical specimens

Isolation and identification

We selected ten P. aeruginosa isolates from microbiological 
cultures of the respiratory secretions of five patients with 
CF (1 to 4 isolates per individual), obtained between 2010 
and 2014 (Table 1), and stored in the bacteriological col-
lection at the State University of Rio de Janeiro. Isolates 
from archived strains were used and no patient data were 
consulted for this study, therefore, informed consent was 
not obtained. All procedures performed in this study were 
in accordance with the ethical standards of the institutional 
research committee (CAAE: 79547616.1.0000.5259), and 
the approval was waived by the local Ethics Committee of 
Universidade do Estado do Rio de Janeiro.

Biochemistry test evaluations of the oxidative metabo-
lism of glucose (non-fermentative), oxidase production 
(positive), arginine decarboxylation (positive), and physi-
ological tests, such as motility and growth at 42ºC were 
conducted as previously described [18]. The sample inclu-
sion criteria was a non-susceptibility profile to polymyxin B 
using the supplemental colistin agar test [19].

Antimicrobial susceptibility test (AST)

Disk-diffusion test (DDT) was performed for the follow-
ing antimicrobials: piperacillin-tazobactam (PPT) (100/10 
µg), ceftazidime (CAZ) (30 µg), cefepime (FEP) (30 µg), 
meropenem (MER) (10  µg), imipenem (IMP) (10  µg), 
doripenem (DOR) (10 µg), aztreonam (ATM) (30 µg), cip-
rofloxacin (CIP) (5 µg), amikacin (AMI) (30 µg) and tobra-
mycin (TOB) (10  µg) (Becton, Dickinson and Company, 
BD, Sparks, NV, USA) as described in Clinical and Labo-
ratory Standards Institute (CLSI) [19]. The P. aeruginosa 
ATCC 27,853 strain was used as a quality control.

Minimum inhibitory concentration

Minimum inhibitory concentration (MIC) was determined 
by broth microdilution technique [20] only to polymyxin B 
(10.000 µg/mL, Sigma, St. Louis, USA) using the quality 
control strain P. aeruginosa ATCC 27,853, and the break-
points of ≤ 2 µg/mL as intermediate and ≥ 4 µg/mL as resis-
tant [19].

Table 1  Distribution of patients, isolates and colonial morphology of 
Pseudomonas aeruginosa strains from cystic fibrosis patients
Patient Number of isolates Isolate number Isolation date
1 1 9876NM 01/27/2010
2 4 10,705NM 08/16/2010

17,138M 11/12/2013
17,749NM 03/31/2014
17,801NM 04/07/2014

3 3 11,227NM 12/03/2010
14,297NM 02/23/2012
17,973M 05/21/2014

4 1 14,339NM 03/01/2012
5 1 17,828NM 04/24/2014
M: mucoid; NM: non-mucoid
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Bacterial resistance to multiple antimicrobial agents

P. aeruginosa isolates were classified as multidrug-resistant 
(MDR) when they were resistant to ≥ 1 agent in ≥ 3 antimi-
crobial categories tested; and as extensively drug-resistant 
(XDR) when they were resistant to ≥ 1 agent in all but ≤ 2 
categories tested as it was described by Magiorakos and col-
laborators [21].

Genomic analysis and bioinformatic tools (in silico 
analysis)

Bacterial DNA were extracted and purified from recent bac-
terial cultures using a QIAmp DNA Mini Kit (QIAGEN, 
Hilden, Germany). DNA was quantified by the Quanti-
Fluor® (Promega, Madison, Wisconsin, USA) system, 
genomic libraries were created using Nextera XT DNA 
Library Preparation (Illumina Inc, California, USA) kit, and 
then sequenced on the Illumina MiSeq System (Illumina 
Inc, California, USA).

Reads quality control were carried out in FastQC v.0.11.9 
(usergalaxy.org.au) program and then assembled in contigs 
using Unicycler v.0.4.8 [22] in Bacterial and Viral Bioinfor-
matics Resource Center (BV-BRC) (bv-brc.org) platform. 
Annotations were performed using Rapid Annotation Sub-
system Technology (rast.nmpdr.org/rast.cgi) and BV-BRC 
(bv-brc.org). The Basic Local Alignment Search Tool (blast.
ncbi.nlm.nih.gov/Blast.cgi) database was used to ensure the 
integrity of the sequences using BLASTn and BLASTp 
tools. Extrinsic resistance genes were identified using the 
Center for Genomic Epidemiology tool, ResFinder (cge. 

food. dtu. dk/services/Resfinder/), and intrinsic resistance 
genes were identified using the BV-BRC databases. The 
sequences were aligned using the P. aeruginosa PAO1 refer-
ence strain in Bioedit (bioedit.software.informer.com/7.2/). 
Plasmids were assembled and annotated using Galaxy Aus-
tralia (usergalaxy.org.au) tools, plasmidSPAdes v.3.9.0 [23] 
and Bakta v.1.5.0 [24]. The online tool PHAge Search Tool 
Enhanced Release was used for phages [25]. Molecular typ-
ing was performed using the Public Database for Molecular 
Typing and Microbial Genome Diversity (pubmlst. org/), 
and the ST relation of the samples was compared with epi-
demic CF clones using the Grapetree tool [26].

The WGS Shotgun projects have been deposited 
at the National Center for Biotechnology Information 
(NCBI) under the following accession numbers: JAP-
THH000000000 (9876, BioProject PRJNA890687), 
JAOYMC000000000 (10,705, BioProject PRJNA890688), 
JAOYMD000000000 (11,227, BioProject PRJNA890692), 
JAOYME000000000 (14,297, BioProject PRJNA890694), 
JAOYMF000000000 (14,339, BioProject PRJNA890695), 
JAOYMG000000000 (17,138, BioProject PRJNA890696), 
JAOYMG000000000 (17,749, BioProject PRJNA890697), 
JAOYMI000000000 (17,801, BioProject PRJNA890698), 
JAOYMJ000000000 (17,828, BioProject PRJNA890700) 
and JAOYMK000000000 (17,973, BioProject 
PRJNA890701).

Results

The 10 P. aeruginosa isolates were resistant to polymyxin, 
as noticed by screening tests, with MIC ranging from 4 to 
8 µg/mL, highlighting that almost all had an MIC of 4 µg/
mL. All isolates were tested against 10 different antibiotics 
using DDT. Full or intermediate resistance was observed for 
all antimicrobials evaluated, with the highest marker resis-
tance observed for carbapenems (IMP and MER) and the 
lowest for CAZ. Five isolates were categorized as MDR, 
and four as XDR (Table 2).

After annotation of the genomes, the contigs per isolate 
ranged from to 45–120 with an average genome size of 
6.434.232 kpb (6.250.921–6.738.939 kpb) and 72–58 RNA 
genes (Table 3).

According to molecular typing, the isolates were classified 
as ST252 (isolate 9876), ST865 (10,705), ST871 (14,297), 
ST2211 (17,138 and 17,749) and ST1560 (17,801). The 
three new STs were identified as ST4051 (11,227), ST4052 
(14,339), and ST4053 (17,828 and 17,973) (Table  4). 
Using a phylogenetic tree, the following CF-transmissible 
strains of P. aeruginosa were compared with clinical iso-
lates: Liverpool, Manchester, Midlands, Praire, Australian 
1, 2, and 3, Denmark, Clone C, and Dutch strains. Through 

Table 2  Antimicrobial susceptibility in Pseudomonas aeruginosa iso-
lates
Isolate Patient Antimicrobial resistance profile Poly-

myxin B
(µg/mL)

9876MDR 1 MER-IMP-CIP 4
10,705 2 IMP 4
11,227MDR 3 MER-IMP-TOB-AMI 4
14,297XDR 3 PPT-CAZ-FEP-MER-IMP-ATM-

CIP-AMI
4

14,339MDR 4 IMP-TOB-AMI 8
17,138XDR 2 PPT-CAZ-FEP-MER-IMP-DOR-

TOB-ATM-CIP-AMI
4

17,749XDR 2 PPT-CAZ-FEP-MER-IMP-DOR-
TOB-ATM-CIP-AMI

4

17,801XDR 2 PPT-FEP-MER-IMP-DOR-TOB-
ATM-CIP-AMI

4

17,828MDR 5 PPT-FEP-MER-DOR 4
17,973MDR 3 PPT-CAZ-FEP-MER-IMP-DOR-

ATM
4

Table  2: PPT: piperacillin-tazobactam; ATM: aztreonam; CAZ: 
ceftazidime; FEP: cefepime; MER: meropenem; IMP: imipenem; 
DOR: doripenem; AMI: amikacin; CIP: ciprofloxacin; TOB: tobra-
mycin; MDR: multidrug-resistant; XDR: extensively drug-resistant.
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codon (sc) was detected in the mexZ amino acid chain at 
position 134 (Supplementary Material 1).

Each isolate exhibited substitutions in at least one of 
the studied porin genes, with isolate 11,227 displaying the 
highest number of alterations in oprD. When compared 
with other porin genes, oprD showed the greatest number 
of modifications (deletions “Δ”, insertions “ins” and sub-
stitutions) among the isolates, being the only gene among 
porins that showed deletions (Table  5). In oprD, isolates 
9876, 10,705, 11,227 and 14,339 presented a frameshift 
deletion in codons 372, 373 and 383; 17,138, 17,749 and 
17,801, exhibited a premature stop codon in the codon 277. 
Additionally, 9876, 10,705, 11,227, and 14,339 exhibited a 

phylogenetic analysis based on the distances calculated 
from the known STs and the strains included in this study, 
it was not possible to establish phylogenetic correlation 
between the described isolates and the typical transmissible 
strains observed around the world (Fig. 1).

The genes associated with intrinsic antimicrobial resis-
tance were also investigated. Isolates 17,138 and 17,749, 
both ST2211 strains, exhibited the highest number of muta-
tions (substitutions, “s”) in the efflux pump regulators mexR 
(5 s), nalC (17 s), nalD (4 s), nfxB (26 s), mexS (6 s), and 
mexZ (18  s). The remaining isolates showed variations of 
1–3 s for the same genes. In isolate 14,339, a premature stop 

Table 3  Genomic composition data of Pseudomonas aeruginosa isolates
Isolates

9876 10,705 11,227 14,297 14,339 17,138 17,749 17,801 17,828 17,973
Access 
number

NA890687 NA890688 NA890692 NA890694 NA890695 NA890696 NA890697 NA890698 NA890700 NA890701

Genome 
size (bp)

6,303kpb 6,339kpb 6,476kpb 6,421kpb 6,250kpb 6,447kpb 6,439kpb 6,738kpb 6,476kpb 6,448kpb

GC content 
(%)

66.46 66.46 66.29 66.41 66.57 66.52 66.52 66.13 66.34 66.35

Contigs 
number

77 65 72 75 45 72 88 120 70 81

Reads 990,698 1,058,748 1,201,396 1,464,916 1,178,615 1,288,790 1,075,183 815,261 1,011,630 1,278,221
CDS 5,970 5,997 6,145 6,110 5,944 6,142 6,143 6,566 6,150 6,138
RNAs 61 62 63 72 64 62 58 62 64 62
Table 3: GC: guanine and cytosine; bp: base pairs; CDS: coding sequences; kpb: kilobase pairs.

Table 4  Sequence type identification and allele profile of Pseudomonas aeruginosa isolates from this study and from cystic fibrosis epidemic 
clones
Identification ST acsA aroE guaA mutL nuoD ppsA trpE
9876 252 6 28 4 3 3 4 7
10,705 865 15 5 83 11 4 4 7
11,227 4051* 16 3 20 71 4 7 1
14,297 871 16 3 1 5 1 55 61
14,339 4052* 125 5 5 11 4 15 19
17,138 2211 87 34 114 37 86 100 170
17,749 2211 87 34 114 37 86 100 170
17,801 1560 9 8 5 67 95 20 9
17,828 4053* 142 152 65 165 16 16 198
17,973 4053* 142 152 65 165 16 16 198
LES 146 6 5 11 3 4 23 1
MES 217 28 5 11 18 4 13 3
Midlands-1 148 17 5 1 3 13 6 7
PES 192 1 5 7 5 4 4 2
AES-01 649 11 84 11 3 4 4 7
AES-02 775 28 5 11 5 4 4 7
AES-03 242 28 5 5 11 3 15 44
DK-1 387 28 5 11 11 4 12 3
DK-2 386 17 5 11 18 4 10 3
Clone C 17 11 5 1 7 9 4 7
DES 406 40 5 11 3 4 13 7
Table 4: LES: Liverpool epidemic strain; MES: Manchester epidemic strain; PES: Praire epidemic strain; AES: Australian epidemic strain; DK: 
Denmark strain; DES: Dutch epidemic strain; *: New STs described.
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Similar to that observed for TSC, four genes (gyrA, gyrB, 
parC, and parE) related to the DNA gyrase and Topoisom-
erase IV subunits showed the same mutations in 17,138 and 
1749 isolates (Table 5).

Among the extrinsic resistance genes, oxacillinases 
OXA-4 (17,828 and 17,973), OXA-50 (14,339), OXA-395 
(14,297, 17,801, 17,828 and 17,973), and OXA-486 (9876, 
10,705, 11,227 and 14,297) were found (Table 6).

The aph(3’)-llb and aadA24 genes, related to amino-
glycoside resistance, were exclusively detected in isolates 
17,828 and 17,973, both ST4053. crpP, which is associated 
with CIP resistance, was detected in isolates 17,138, 17,749, 
and 17,801. The sul1 gene, associated with sulfamethoxa-
zole resistance, was only detected in isolate 17,801. catB7 

sequence of mutations ranging from codon 375 to 382 (Sup-
plementary Material 1).

Regarding TCS genes, in connection with their capacity 
to induce polymyxin resistance through genetic mutations, 
isolates 17,138 and 17,749 displayed the highest number 
of substitutions among all isolates. This emphasizes the 
involvement of pmrB (28 s and 1sc), parS (32 s), and cprS 
(25 s) genes. Furthermore, both isolates exhibited identical 
alterations and were the only isolates that manifested muta-
tions in all TCS genes. Mutations in colR were unique to 
these two isolates (3 s). The other isolates displayed a vari-
able range of alterations, ranging from one to five substitu-
tions (Table 5).

Fig. 1  – Spanning tree of Pseudomonas aeruginosa isolates from this 
study and from cystic fibrosis epidemic clones. (Figure 1: Spanning 
tree of Pseudomonas aeruginosa isolates comparing isolates in this 
study and cystic fibrosis epidemic clones; Figure was generated in 
Public Database for Molecular Typing and Microbial Genome Diver-

sity (pubmlst. org/) platform with Grapetree [26] tool in 2023; ST: 
sequence type; MLST: Multi-locus Sequence Typing; LES: Liverpool 
epidemic strain; MES: Manchester epidemic strain; PES: Praire epi-
demic strain; AES: Australian epidemic strain; DK: Denmark strain; 
DES: Dutch epidemic strain)
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the Bakta database, each isolate carried one plasmid. Resis-
tance genes were identified in the plasmid of isolates 17138 
(crpP), 17801 (OXA-395), 17828, and 17973 (OXA-1like and 
aaC(6’)lb).

Intact phages found were Pseudo_YMC11/02/R656 
(9876 and 10,705 isolates), Pseudo_H66 (11,227 iso-
late), Pseudo_JD024 (14,297 isolate), Escher_vB_EcoM_
ECO1230_10 (17,749 isolate), Pseudo_Dobby (17,828 and 
17,973 isolates), Pseudo_ F10 (17,828 and 17,973 isolates).

and fosA, related to chloramphenicol and fosfomycin resis-
tance respectively, were present in all isolates, except for 
17,138 and 17,749 (ST2211). Notably, isolates 17,828 and 
17,973 (ST4053) had the highest number of extrinsic resis-
tance genes (Table 6).

Broad variations were observed in the size and presence 
of genes in the annotated plasmids. The smallest plasmid 
(15,805  bp) was found in isolate 9876, whereas the larg-
est (414,162 bp) was found in isolate 17801. According to 

Table 5  Alterations in the genes of interest in Pseudomonas aeruginosa isolates
Isolates
Gene 9876 10,705 11,227 14,297 14,339 17,138 17,749 17,801 17,828 17,973

Efflux pump mexR – – 1s – – 5s 5s 1s 1s 1s
nalC 1s – 2s 1s 2s 17s 17s 2s 3s 3s
nalD – – – – – 4s 4s – – –
nfxB – – – – 1s 26s 26s – 2s 2s
mexS 1s 1s 1s 1s 1s 6s 6s 1s 1s 1s
mexZ – – – – 1sc 18s 18s 2s 2s 2s

Porins oprD 21s, 3Δ 21s, 3Δ 26s, 3Δ 9s 21s, 3Δ 11s, 1sc 11s, 1sc 4s, 1sc 7s 7s
opdP 16s 16s 16s 16s 16s – – 16s 16s 16s
opdH – – 1s – 1s 16s 16s – – –
opdD 6s 6s 4s 5s 5s X X 2s 6s 6s
oprE – – – – – 9s 9s 5s, 3ins, 1sc 17s, 4ins 17s, 4ins
oprF – – 1s – – – – – – –
oprH – – – – – 4s 4s – – –

Two component system phoP – – – – – 4s 4s – – –
phoQ – – – – – 14s 14s – 1s 1s
pmrA 1s 1s 1s 1s 1s 4s 4s – 1s 1s
pmrB 1s 1s 5s 1s 1s 28s, 1sc 28s, 1sc 5s 3s 3s
parR – – 2s – 1s 13s 13s 2s 2s 2s
parS 1s 1s 1s 1s 1s 32s 32s 1s 1s 1s
colR – – – – – 3s 3s – – –
colS – – – – – 8s 8s – 1s 1s
cprR – – – – – 4s 4s – – –
cprS – – 5s – 1s 25s 25s – 5s 5s

DNA gyrase subunits gyrA 2Δ – – – – 6s, 2Δ 6s, 2Δ 1s 2Δ 2Δ
gyrB – – – – – 7s 7s – – –

Topoisome-rase IV 
subunits

parC 1s 1s – 1s 1s 7s 7s 1s – –
parE – – – – 1s 3s 3s 1s 1s 1s

Table 5: s: substitution; ins: insertion; Δ: deletion; sc: stop codon; X: gene absent in annotation; –: no mutation found.

Table 6  Analysis of extrinsic resistance genes found in the investigated samples of Pseudomonas aeruginosa using Resfinder
Genes 9876 10,705 11,227 14,297 14,339 17,138 17,749 17,801 17,828 17,973

β-lactamases OXA-4 A A A A A A A A P P
OXA-50 A A A A P A A A A A
OXA-395 A A A P A A A P P P
OXA-486 P P P P A A A A A A

Aminoglycosides aph(3’)-llb A A A A A A A A P P
aadA24 A A A A A A A A P P

Ciprofloxacin crpP A A A A A P P P A A
Sulfonamides sul1 A A A A A A A P A A
Chloramphenicol catB7 P P P P P A A P P P
Fosfomycin fosA P P P P P A A P P P
Table 6: P: present; A: absent.
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isolate 10,705 was not classified as MDR or XDR despite 
exhibiting resistance to IMP and polymyxin B. This still 
draws our attention as isolate 10,705 exhibited mutations 
in mexS, oprD, opdP, opdD, pmrA, pmrB, parS and parC 
genes. All these genes, except for parC, can mediate resis-
tance to carbapenems or polymyxins through mechanisms 
such as efflux pumps (overexpression of MexEF), porins 
(OprD, OpdP and OpdD) and lipid A modification (PmrAB 
and ParRS). In the case of parC, which can confer resis-
tance to fluoroquinolones through change in the target site 
[52], our study only tested ciprofloxacin. This may present a 
methodology gap, as we cannot conclusively determine the 
isolate’s resistance to other fluoroquinolones, which could 
classify this isolate as MDR. Nevertheless, numerous defi-
nitions outlining the phenomenon of MDR in Gram-nega-
tive organisms are prevalent worldwide. These definitions 
exhibit variations contingent on their intended applications 
and originating country or institution. The choice of specific 
definitions of MDR should facilitate uniformity in epide-
miological surveillance practices [53–55].

Through molecular typing, the isolates were categorized 
into eight ST, among which three new STs were identi-
fied. Notably, among the 10 isolates analyzed, 17,138 and 
17,749, both recovered from the same individual with a one-
year interval between isolations, shared the same ST (2211), 
and exhibited resistance to all tested antimicrobials. This 
is an important issue because multidrug resistance is often 
induced by the exposure of individuals with CF to multiple 
antimicrobials, thereby reducing therapeutic options and 
life expectancy [56].

Using a comparative analysis to assess the relation-
ship between these STs and ST related to CF-transmissible 
strains, no similarity was observed, similar to previous stud-
ies conducted by our group [34, 57]. The existence of these 
transmissible strains has initiated debates concerning infec-
tion control protocols and the management of patients with 
CF. Continuous surveillance is imperative due to their con-
siderable potential for global dissemination and their ability 
to harbor multiple resistance and virulence genes.

Genes associated with intrinsic and extrinsic antimi-
crobial resistance were investigated by WGS. Notably, 
isolates 17,138 and 17,749, which were observed in the 
same patient, exhibited the highest number of mutations 
in the same gene (Supplementary Material 1). The muta-
tions observed in these isolates, such as the efflux pump 
regulators MexAB (mexR, nalC and nalD), MexCD (nfxB), 
MexEF (mexS), porins (opdP, opdD, opdH, and oprE), TCS 
(phoP, phoQ, pmrA, parR, cprR, cprS, colR, and colS), and 
the enzymatic DNA gyrase and Topoisomerase IV subunits 
(gyrB and parE), did not correlate with previously described 
mutations in MDR strains.

Discussion

Pseudomonas aeruginosa is one of the main pathogens asso-
ciated with CF, severely affecting the lungs and contributing 
to the worsening of disease prognosis through inflammation 
and airway damage. It is difficult to eradicate due to its abil-
ity to withstand antimicrobial agents and establish chronic-
ity [27]. Several mechanisms of antimicrobial resistance, 
biofilm formation, and persistence of multidrug-tolerant 
cells are strongly associated with chronic infections [8, 28].

In the present study, P. aeruginosa polymyxin-resistant 
isolates demonstrated reduced susceptibility to at least 
one carbapenem, a concern in patients with CF, owing to 
the use of these first-line drugs in the treatment of chroni-
cally infected patients. This makes it even more difficult to 
achieve a positive therapy response and eradicate pulmo-
nary infection [29].

Studies have highlighted the emergence of carbapenem-
resistant P. aeruginosa in CF in several regions of the world 
[29–32]. However, in Brazil, carbapenem-resistant P. aeru-
ginosa reports on CF remain scarce [17, 33, 34].

One treatment option for carbapenem-resistant P. aerugi-
nosa in CF is the use of polymyxins; however, monotherapy 
may lead to resistance [35, 36]. Variations in polymyxin sus-
ceptibility among patients with CF have also been observed 
in Europe. A study conducted in Italy reported an increase 
in polymyxin susceptibility, from 93 to 98% [37]. However, 
an investigation in Denmark from 2008 to 2016 identified 
an increase in polymyxin resistance from 7 to 13% among 
individuals with CF colonized with P. aeruginosa [38]. In 
Brazil, data on P. aeruginosa polymyxin resistance in indi-
viduals with CF are limited. In a recent study of 179 isolates 
from individuals with CF, 7.2% exhibited polymyxin resis-
tance [17].

The detection of P. aeruginosa polymyxin resistance in 
individuals with CF is uncommon; however, resistance to 
polymyxins has been increasingly reported in non-CF cases 
[39–42]. This could be related to mutations in the TCS 
genes or the presence of plasmid genes that alter the polarity 
of lipid A, such as mcr [43–46]. To date, P. aeruginosa poly-
myxin resistance harboring mcr has not yet been described 
in individuals with CF, including those in our study.

The emergence of MDR P. aeruginosa isolates from 
patients with CF has been described for more than two 
decades [47–50]. Nevertheless, cases of MDR isolates from 
CF centers in Brazil have been reported over the last decade 
[17, 33, 34, 51].

In the present study, most isolates were classified as 
either MDR or XDR strains. This result was expected 
because of the study’s inclusion criteria, which required the 
isolates to exhibit resistance to polymyxin B. Based on the 
criteria established by Magiorakos and collaborators [21], 
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Corroborating the findings of the authors, two isolates 
were resistant to CIP, but did not have crpP, which can be 
explained by another mechanism of resistance, such as the 
overexpression of efflux pumps [71].

A correlation between the results of phenotypic resistance 
obtained in the AST and the presence of OXA-4, OXA-50, 
OXA-486, and crpP was observed. However, for OXA-
395, aph(3’)-llb, aadA24 it was not possible to establish 
the same association, possibly due to not being expressed, 
expressed at a very low level, or another mechanism [72]. 
Sulfamethoxazole, chloramphenicol, and fosfomycin were 
not tested in this study; therefore, the relationship between 
sul1, catB7, and fosA cannot be reported.

In Brazil, the presence of carbapenemases in P. aeru-
ginosa strains isolated from patients with CF is rare. This 
was highlighted in a report of a single isolate carrying the 
blaSPM−1 gene [33]. Furthermore, the presence of blaKPC has 
been documented in Klebsiella pneumoniae and Enterobac-
ter cloacae among individuals with CF under surveillance 
in facilities within the same city. This observation has raised 
concerns regarding the potential transmission of these 
genes, including those within P. aeruginosa [73, 74].

In the plasmid analysis, the presence of mcr was not 
observed in any of the isolates, which may suggest a dif-
ferent origin of resistance to polymyxin B. Nonetheless, the 
crpP, OXA-395, and aaC(6’)lb plasmid genes were identi-
fied in different isolates of P. aeruginosa polymyxin resis-
tance in CF; to our knowledge, this study is the first time 
this has been described in Brazil.

Most isolates showed at least one intact phage. Nota-
bly, YMC11/02/R656 was present in two isolates (9876 
and 10,705) from individuals with CF treated at the same 
follow-up center. The same phage was described in a study 
by our group with Achromobacter ruhlandii in a different 
CF center [75]. This is concerning since lung infections via 
CF are polymicrobial, and the potential of P. aeruginosa to 
acquire transmissible genetic information allows the dis-
semination of resistance factors, including those from dif-
ferent bacterial species [76, 77].

Conclusion

Among the isolates, a high resistance rate was observed, 
with many multi-resistance profiles. WGS is fundamental 
for the identification of mutations related to permeability 
and alterations in the outer membrane and target site, which 
could influence the resistance of the isolates. Additionally, 
it allows the localization of plasmid resistance genes and 
bacteriophages, which may spread and perform horizontal 
gene transfer between other bacteria in the same center. 

The oprH porin gene, involved in polymyxin resistance 
[8], was searched in all isolates in this study. The gene 
sequences were aligned with the reference strain P. aeru-
ginosa PAO1, revealing that, with exception of isolates 
17,138 and 17,749, all isolates exhibited 100% similarity 
with the oprH from P. aeruginosa PAO1. Blast comparison 
showed that oprH from isolates 17,138 and 17,749, shared 
96.52% similarity with the oprH from P. aeruginosa PAO1, 
indicating the presence of the same protein function, with 
only allele variations.

mexZ, a MexXY efflux pump regulator, displayed a pre-
mature stop codon at codon 134 in isolate 14,339. Although 
alterations at this position have not been published, loss of 
protein function and impairment of repressor function have 
been reported when mutations occur at other positions in the 
amino acid chain [58, 59]. This may be related to the over-
expression of the efflux pump, a determinant of resistance to 
aminoglycosides in the CF P. aeruginosa [60], similar to the 
resistance profile observed in AST.

Analyses of oprD, related to carbapenem resistance in 
P. aeruginosa, showed frameshift deletions and premature 
stop codons, previously reported as modifications promot-
ing resistance to these antimicrobials and porin suppressors 
[61, 62].

In previous studies, defective or absent oprD was 
reported in non-CF P. aeruginosa, and some of these altera-
tions were similar to those observed in the present study 
[63, 64]. Isolates 9876, 10,705, 11,227, and 14,339 showed 
a sequence of mutations (372  M-382Y) with alternating 
deletions and substitutions, and some similar previously 
described cases demonstrated that changes in these amino 
acids were associated with increased susceptibility to MER 
[62, 65]. Notably, this was true for two isolates (10,705 and 
14,339) in this study.

Substitutions in pmrB (15  V-I, 68G-S, and 343T-A), 
observed in isolates 11,227, 17,138, 17,749, and 17,801, 
were thought to be associated with colistin non-susceptibil-
ity in non-CF P. aeruginosa, as these are common mutations 
described solely in non-susceptible isolates [66]. Addition-
ally, a substitution in parS (398 H-R), detected in all iso-
lates in this study, has been linked to colistin resistance, as 
it occurs under external stress conditions, thereby affect-
ing colistin resistance [67]. Both genes are known to be 
involved in lipid A polarity modifications which can cause 
polymyxin resistance.

Substitutions in gyrA (83T-I) and parC (87  S-L) were 
identified in isolate 17,801, resistant to CIP, already well 
established as causing high-level resistance to fluoroquino-
lones in non-CF P. aeruginosa [52, 68, 69].

crpP, which encodes extrinsic resistance to CIP, was 
identified in three phenotypically resistant isolates (17,138, 
17,749, and 17,801), which are not always correlated [70]. 
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