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Abstract  
Organic agriculture is a farming method that provides healthy food and is friendly to the environment, and it is developing 
rapidly worldwide. This study compared microbial communities in organic farming (Or) paddy fields to those in nonorganic 
farming (Nr) paddy fields based on 16S rDNA sequencing and analysis. The predominant microorganisms in both soils were 
Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, and Nitrospirota. The alpha diversity of the paddy soil micro-
bial communities was not different between the nonorganic and organic farming systems. The beta diversity of nonmetric 
multidimensional scaling (NMDS) revealed that the two groups were significantly separated. Distance-based redundancy 
analysis (db-RDA) suggested that soil pH and electrical conductivity (EC) had a positive relationship with the microbes in 
organic paddy soils. There were 23 amplicon sequence variants (ASVs) that showed differential abundance. Among them, 
g_B1-7BS (Proteobacteria), s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 (p_GAL15), c_Thermodesulfovibrionia 
(Nitrospirota), two of f_Anaerolineaceae (Chloroflexi), and two of g_S085 (Chloroflexi) showed that they were more abun-
dant in organic soils, whereas g_11-24 (Acidobacteriota), g__Subgroup_7 (Acidobacteriota), and g_Bacillus (Firmicutes) 
showed differential abundance in nonorganic paddy soils. Functional prediction of microbial communities in paddy soils 
showed that functions related to carbohydrate metabolism could be the major metabolic activities. Our work indicates that 
organic farming differs from nonorganic farming in terms of microbial composition in paddy soils and provides specific 
microbes that might be helpful for understanding soil fertility.
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Introduction

At present, there are an increasing number of trends in the 
analysis of soil microbiota by overall genomics or overall 
transcriptomics, such as the application of soil microbiota 
in Arctic peat [1], grassland soil microbiota [2], dry soil 
microbiota in Antarctica, and changes in water and organic 
matter microbiota [3]. The study of the bacterial flora of 
wetland sedimentary soil shows that Proteobacteria is the 
main bacterial phylum, and the next most prominent phyla 
are Acidobacteria, Bacteroidetes, Actinobacteria, and Ver-
rucomicrobia. In Proteobacteria, Gamma-, Delta-, and 
Betaproteobacteria are the representative classes [4]. Com-
paring different soil management practices, such as forest 
and agricultural soil, the results show that the bacteria in for-
est soil are more abundant than those in agricultural soil [5]. 
It is possible that land preparation, fertilization, and spraying 
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of pesticides in agricultural management may cause the bac-
terial phase of the soil to tend to be monotonous.

The addition of organic fertilizers (alfalfa straw, glucose, 
compost manure, and wood biochar) helps to promote the 
growth of Acidobacteria and Gemmatimonadetes bacteria, 
whereas synthetic fertilizers may promote an increase in Act-
inobacteria and Proteobacteria bacteria in rocket (Eruca 
sativa) cultivation [6]. In paddy soil, the application of inor-
ganic fertilizers increased the abundance of bacteria Bacte-
roidetes and Acidobacteria, but the application of organic 
fertilizers (composted pig manure and rice straw) increased 
the abundance of eutrophic bacteria (such as Proteobacteria) 
[7]. Moreover, studies on the long-term effects of organic 
and inorganic fertilizers on the functioning of soil microbial 
communities have shown that the application of nitrogen 
fertilizer alone reduces microbial diversity, while farmyard 
manure application alone or in combination with chemical 
fertilizers improves soil fertility [8]. However, farmyard 
manure application might not be the major cause, but bal-
anced fertilizer containing nitrogen, phosphorus, and potas-
sium would result in the highest microbial diversity in paddy 
soil [9]. Indeed, paddy soil fertility is affected by micro-
bial communities, and high-yield soil microbes are likely 
more active in modulating soil fertility for rice production 
[10]. The positive correlation of specific soil bacteria with 
grape-growing regions in the United States shows that the 
identification of specific microbes is helpful for understand-
ing viticulture and flavor [11]. Overall, it is not yet clear 
the microbial communities between organic and nonorganic 
farming that certain bacteria could be applied as indicators 
to distinguish organic paddy soil.

In this study, we collected soils from organic and non-
organic farming of paddy fields in Changhua County, Tai-
wan. Soil microbial DNA was prepared, and 16S rDNA 
was sequenced, followed by microbe comparison and bio-
diversity analysis. This study aims to use next-generation 
sequencing to comprehensively compare microbial com-
munities between organic and nonorganic paddy fields and 
further apply bioinformatics tools for functional analysis.

Material and methods

Soil sample collection

The soils used in this study were collected from six paddy 
fields with organic farming (Or1-5, Or6-8, Or9-11, and 
Or12-14) and nonorganic farming (Nr1-5, and Nr6-8) in 
Changhua County, Taiwan (Fig. 1). The soil collection peri-
ods for Or1-5 and Nr1-5 samples were during Oct. 2018, 
and for Or1-5, Or6-8, Or9-11, and Nr6-8 samples were dur-
ing Oct. 2019. Five or three soil samples collected from 
each paddy field were applied as the replicates. The soil was 

collected with a soil sampler at a depth of 10–20 cm. After 
collection, samples were placed in labeled sterile polyethyl-
ene centrifuge tubes, brought to the laboratory, and stored 
at − 20 °C. The study information includes samples, farming 
types, collection date, collection location, soil pH, and elec-
trical conductivity (EC), which are listed in Table 1.

Soil pH and EC analysis

For soil pH analysis, 5 g of air-dried soil was put into a 
15 mL sterile polyethylene centrifuge tube, followed by the 
addition of 5 mL deionized water (sample: water = 1:1), and 
placed on a reciprocal shaker for 30 min at 140 rpm [12]. For 
soil EC analysis, 5 g of air-dried soil was put into a 50 mL 
sterile polyethylene centrifuge tube, mixed with 25 mL of 
deionized water (sample: water = 1:5), and placed on a recip-
rocal shaker for 60 min at 140 rpm, followed by standing for 
30 min [13]. The solution or supernatant was recorded for 
the soil pH or EC, respectively, on a multifunctional water 
detector meter, WA-2017SD (LUTRON ELECTRONIC 
ENTERPRISE CO., LTD., Taipei, Taiwan).

DNA extraction, polymerase chain reaction (PCR), 
and sequencing

Bacterial genomic DNA (gDNA) was extracted from 0.5 g of 
soil by using a NucleoSpin Soil DNA isolation kit (MACH-
EREY–NAGEL, Dueren Germany) according to the manu-
facturer’s instructions, and DNA sequencing was performed 

Fig. 1   Location and overview map of the researched area. Nr indi-
cates nonorganic farming. Or indicates organic farming
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at BIOTOOLS Co., Ltd. (New Taipei, Taiwan). For 16S 
rRNA gene sequencing, the V3-V4 region was amplified by 
a specific primer set (319F: 5′ CCT​ACG​GGNGGC​WGC​AG 
3′, 806R: 5′ GAC​TAC​HVGGG​TAT​CTA​ATC​C 3′—accord-
ing to the 16S Metagenomic Sequencing Library prepara-
tion procedure (Illumina, San Diego, CA, USA)). PCR and 
sequencing were performed as described [14]. Nucleotide 
sequences determined in the study have been deposited into 
the NCBI Sequence Read Archive database, and the BioPro-
ject accession number is PRJNA997222.

Processing and analysis of sequence data

The demultiplexed 16S rDNA sequences were primers 
removed and denoised with DADA2 [15] to obtain the 
amplicon sequence variants (ASVs), and the derived table 
indicated the number of times each ASV was observed in 
each sample by QIIME 2 [16]. For DADA2 denoising steps, 
the qiime dada2 denoise-paired command was applied, and 
the parameters were –p-trim-left-f 10, –p-trim-left-r 10, 
–p-trunc-len-f 240, and –p-trunc-len-r 200 based on the 
quality profile and amplicon length. The quick phylogeny 
with fast tree, rarefaction curve generation, and taxonomy 
assignment were performed with QIIME 2 [16]. The Silva 
138 ribosomal RNA database was assigned for taxonomy 
[17]. The phyloseq project was built for microbial commu-
nity analysis [18] as described [19] in R version 4.3.0 [20].

Hierarchical clustering was calculated using the Microbi-
otaProcess package [21] with the get_clust function in meth-
ods, Jaccard (distance method for dissimilarity), Hellinger 
(distance method with standardization) and average (average 
distance between two clusters), and plotted with the ggclust 
function. Alpha diversity was generated with the plot_rich-
ness function, and beta diversity of nonmetric multidimen-
sional scaling (NMDS) was calculated with Jaccard distance, 
followed by the analysis of similarities (ANOSIM) test, and 
generated with the plot_ordination function [19]. Distance-
based redundancy analysis (db-RDA) was performed using 
the Microeco package [22] in the Jaccard method with cal_
ordination, trans_ordination, and plot_ordination functions.

Functional prediction of microbial communities was per-
formed with the Functional Annotation of Prokaryotic Taxa 
(FAPROTAX) [23], Phylogenetic Investigation of Commu-
nities by Reconstruction of Unobserved States (PICRUSt2) 
[24], and Tax4Fun2 [25] as described previously [26].

Statistical analysis

The statistical analysis of metagenomic profiles (STAMP) 
was applied to compare the nonorganic and organic fram-
ing groups (Table 1) using White’s nonparametric t test 
(p < 0.05) with difference between proportions parameter 
(0.1) for FAPROTAX and Tax4Fun2 analyses and differ-
ence between proportion (0.05) for PICRUSt2 [27]. For ASV 

Table 1   Metadata. Study 
information includes samples, 
farming types, collecting date, 
collecting location, soil pH, 
and EC

Sample Farming Date Location pH EC (mS/m)

Nr1 Nonorganic Oct. 2018 23°58′47.8″N, 120°35′09.0″E 6.11 134.3
Nr2 Nonorganic Oct. 2018 23°58′48.0″N, 120°35′09.7″E 6.39 81.1
Nr3 Nonorganic Oct. 2018 23°58′48.5″N, 120°35′09.7″E 6.56 86.1
Nr4 Nonorganic Oct. 2018 23°58′48.4″N, 120°35′08.9″E 6.48 98.7
Nr5 Nonorganic Oct. 2018 23°58′49.3″N, 120°35′09.8″E 5.81 324
Or1 Organic Oct. 2018 23°47′52.8″N, 120°39′12.2″E 7.11 135.4
Or2 Organic Oct. 2018 23°47′51.8″N, 120°39′12.6″E 6.88 234
Or3 Organic Oct. 2018 23°47′52.1″N, 120°39′14.3″E 6.6 173.1
Or4 Organic Oct. 2018 23°47′52.8″N, 120°39′14.3″E 6.6 173.1
Or5 Organic Oct. 2018 23°47′53.7″N, 120°39′16.6″E 6.6 173.1
Nr6 Nonorganic Oct. 2019 24°05′00.1644″N, 120°30′05.9076″E 6.5 124.3
Nr7 Nonorganic Oct. 2019 24°05′00.1644″N, 120°30′05.9076″E 6.52 116.5
Nr8 Nonorganic Oct. 2019 24°05′00.1644″N, 120°30′05.9076″E 6.51 112.7
Or6 Organic Oct. 2019 23°59′52.3068″N, 120°32′28.914″E 6.88 194.2
Or7 Organic Oct. 2019 23°59′52.3068″N, 120°32′28.914″E 7.07 170
Or8 Organic Oct. 2019 23°59′52.3068″N, 120°32′28.914″E 7.14 186
Or9 Organic Oct. 2019 24°01′38.352″N, 120°34′12.4356″E 6.42 275
Or10 Organic Oct. 2019 24°01′38.352″N, 120°34′12.4356″E 6.6 149
Or11 Organic Oct. 2019 24°01′38.352″N, 120°34′12.4356″E 6.33 163.2
Or12 Organic Oct. 2019 24°04′57.756″N, 120°30′9.23″E 6 247
Or13 Organic Oct. 2019 24°04′57.756″N, 120°30′9.23″E 6.49 197.7
Or14 Organic Oct. 2019 24°04′57.756″N, 120°30′9.23″E 6.52 184
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analysis, Storey false discovery rate (FDR) correction was 
applied with a q-value < 0.05, implying that the false-posi-
tive rate was 5% and that the difference between proportions 
was 0.2%. The White’s nonparametric t test is a permuta-
tion method for non-normal distributions. For features with 
statistical significance, we further applied the difference 
between proportions filter to present widely differing fea-
tures for comparison. The selection of parameters will vary 
according to different methods and is subjective.

Results

Phylogenetic and diversity analysis

All organic rice fields were certified by the agency, and 
mixed organic fertilizer containing peanut meal, rapeseed 
meal, castor meal, sesame meal, corn meal, red bran, palm 
ash, soybean meal, rice bran, fish meal, bone powder, plant 
ash, and weathered lignite was applied (personal communi-
cation). We collected soils from paddy fields of organic (Or) 
and nonorganic (Nr) farming, and the microbial communi-
ties were examined. Figure 2 compares two different farms 
based on the percent composition of different bacterial varie-
ties. Both Or and Nr soils showed the same top five domi-
nant microorganisms, but the order of relative abundance 
was different, which were Proteobacteria (22.5%), Chloro-
flexi (14.8%), Acidobacteria (12.8%), Nitrospirota (4.7%), 
and Actinobacteria (4.5%) in Or soils and Proteobacteria 
(19.8%), Acidobacteria (17.6%), Chloroflexi (15.2%), Actin-
obacteria (5.6%), and Nitrospirota (4.6%) in Nr soils. After 
comparing the community richness (Chao1 and Observed_
features) and diversity (Shannon and Simpson), we found 
that there was no significant difference between Or and Nr 
soils (Fig. 3).

Microbial community analysis

NMDS, a nonparametric ordination analysis based on Jac-
card distance, revealed two separated groups of micro-
bial communities from Or and Nr soils (Fig. 4A), and the 
ANOSIM test showed a statistically significant difference 
(p < 0.001), suggesting that both microbial communities of 
paddy fields were distinct after organic and nonoganic farm-
ing. Hierarchical clustering of the soil microbial communi-
ties showed that the microbial communities in Or12, Or13, 
and Or14 soils were grouped together with the microbial 
communities in Nr6, Nr7, and Nr8 soils (Fig. 4B). The pos-
sible reason is that these soils were collected in proximity. 
However, the microbial communities in organic farming 
soils were different from those in nonorganic farming soils.

We applied db-RDA to test the relationship between the 
environmental factors (pH and EC) and microbial com-
munity structures, and the results showed that the angle 
between the pH and EC variables was smaller than 90°, sug-
gesting that both are positively correlated (Fig. 5A). Most 
nonorganic soils were located in the opposite direction of 
the EC arrow, suggesting a negative relationship between 
the EC variable and the microbes, and the EC of organic 
paddy soils appeared to be higher than that of nonorganic 
paddy soils (Fig. 5B). The microbes of organic paddy fields 
had a positive relationship with the pH variable, and the pH 
of organic paddy soils was higher than the pH of nonorganic 
paddy soils (Fig. 5B). The results highly suggested that the 
microbial community composition in organic paddy soil was 
associated with higher pH and EC environment compared 
to the microbial community in nonorganic paddy soil. The 
RDA at the phylum level showed that Acidobacteria bacte-
ria were positively correlated with pH, and Proteobacteria, 
Chloroflexi, Actinobacteria, Nitrospirota, and Firmicutes 
bacteria were negatively correlated with pH. For EC, bac-
teria Chloroflexi, Actinobacteria, and Firmicutes showed a 

Fig. 2   The relative abundance of phyla of the microbial communities in paddy soils. A Individual soil sample comparison. B Nonorganic and 
organic group comparison. Nr indicates nonorganic farming. Or indicates organic farming
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Fig. 3   Observed_features, 
Chao1, Shannon, and Simpson 
diversity indices of the soil 
microbial community in nonor-
ganic and organic paddy soils
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Fig. 4   A Nonparametric multidimensional scaling (NMDS) analysis 
with Jaccard distance on bacterial communities of paddy soil. Each 
point represents the bacterial community of a given sample. B Hier-

archical cluster analysis of the soil microbial communities by the Jac-
card, Hellinger, and average methods. Nr indicates nonorganic farm-
ing. Or indicates organic farming
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positive correlation, and bacteria Acidobacteria showed a 
negative correlation (Fig. S1).

In order to analyze the significant ASVs in different 
soils, a differential abundance test of ASVs was applied 
by the STAMP software with White’s nonparametric t 
test to organic and nonorganic farming groups, followed 
by the Story FDR correction with the parameters of 
q-value < 0.05 and the difference between proportions of 

0.2%. Twenty-three of 23937 ASVs showed differential 
abundance with statistical significance (Fig. 6A). There were 
13 ASVs from Or soils that showed higher abundance than 
the ASVs in Nr soils. Among them, 5 ASVs were assigned 
to Chloroflexi bacteria, and 4 were assigned to Proteobac-
teria bacteria. The other 10 ASVs showed a higher abun-
dance in Nr soils, 3 were Acidobacteria bacteria, and 3 were 
Nitrospirota bacteria (Fig. 6B). In the heatmap (Fig. S2) and 

Fig. 5   A Distance-based redundancy analysis (db-RDA) of pH and 
electrical conductivity (EC) on microbial composition with the Jac-
card method. B Effects of nonorganic and organic farming on paddy 

soil pH and EC. Different letters indicate significant differences by 
ANOVA with the cal_diff function in R

Fig. 6   Differential abundance analysis of amplicon sequence variants 
(ASVs) in paddy soils. A Significant ASVs in organic and nonorganic 
farming groups were calculated by the statistical analysis of metagen-
omic profiles (STAMP) software with White’s nonparametric t test, 

followed by the Storey false discovery rate (FDR) correction with the 
parameters of q-value < 0.05 and the difference between proportions 
of 0.2%. The ASVs are shown in the assigned taxon. B The numbers 
of ASVs assigned to phyla
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bar plot (Fig. S3) analyses, the differential abundances of 
ASVs were used to create a graphical representation for 
individual soil samples. If the uniformity of ASV abun-
dance differences is considered, rather than being limited 
to only a few samples, these ASVs, g_B1-7BS (Proteobac-
teria), s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 
(p_GAL15), c_Thermodesulfovibrionia (Nitrospirota), two 
of f_Anaerolineaceae (Chloroflexi), and two of g_S085 
(Chloroflexi), show that they are indeed more abundant 
in organic soils (Fig. S3A), whereas these ASVs, g_11-24 
(Acidobacteriota), g__Subgroup_7 (Acidobacteriota), and 
g_Bacillus (Firmicutes), show differential abundance in non-
organic paddy soils (Fig. S3B). These significant ASVs can 
be used as the potential quality parameters to differentiate 
the two systems.

Functional feature prediction

There were 3, 17, and 17 functional features shown to be 
statistically significant from the programs FAPROTAX, 
PICRUSt2, and Tax4Fun2, respectively, and the differential 
abundance of the functional features is shown in Fig. 7A, 
B, C. According to functional characteristics, we referred to 
the KEGG pathway maps to classify manually and compare 
these functional features (Table S1). Among these features, 
functions related to carbohydrate metabolism were the only 
functions included in all three calculated programs, and 
the sum of the percentage was 62.8%. Subsequently, the 
functions of energy metabolism were included in the two 
programs, and the sum percentages were 72.6% (Fig. 7D). 

Cellulolysis, bifidobacterium shunt, and pyruvate fermen-
tation to isobutanol (engineered) of the functions relative 
to carbohydrate metabolism were upregulated in nonor-
ganic paddy soils, whereas glycolysis II (from fructose 
6-phosphate), butanoate metabolism, and amino sugar and 
nucleotide sugar metabolism were upregulated in organic 
paddy soils, suggesting carbon nutrient levels in both soils 
(Fig. 7A, B, C). Again, methanol_oxidation, nitrite_respira-
tion and oxidative phosphorylation of the functions relative 
to energy metabolism were upregulated in organic soils, sug-
gesting that the bacteria involved in these metabolic path-
ways are differentially abundant in organic soils (Fig. 7A, 
C). Among the metabolic pathways of the functional fea-
tures, 8 pathway categories showed a higher differential 
abundance in Or soils, and 5 pathway categories showed a 
higher differential abundance in Nr soils (Table S1).

Discussion

Bacteria Proteobacteria (33.0%), Acidobacteria (12.0%), 
Actinobacteria (5.8%), Bacteroidetes (5.4%), Firmicutes 
(3.9%), and Verrucomicrobia (3.6%) have been shown to be 
the dominant phyla in paddy soils [28]. The relative abun-
dances of bacterial phyla in a 47-year-old long-term ferti-
lizer experiment under a rice‒rice cropping system were 
Proteobacteria (43.3%), Acidobacteria (18.8%), Actino-
bacteria (7.9%), Chloroflexi (6.3%), and Firmicutes (3.9%) 
in nitrogen (N) + phosphorus (P) + potassium (K) fertilizer, 
whereas in farmyard manure, as the organic fertilizer, they 

Fig. 7   Differential abundance analyses of functional features calcu-
lated by A FAPROTAX, B PICRUSt2, and C Tax4Fun2 in nonor-
ganic and organic paddy soils. Statistical analyses were performed 
with STAMP using White’s nonparametric t test (p < 0.05) with a 

difference between proportions parameter (0.1) for FAPROTAX and 
Tax4Fun2 analyses and a difference between proportion (0.05) for 
PICRUSt2 without correction
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were Proteobacteria (36.4%), Acidobacteria (24.5%), Act-
inobacteria (7.6%), Chloroflexi (9.9%), and Firmicutes (3%) 
[8]. Furthermore, with the addition of composted pig manure 
and rice straw, the bacteria Acidobacteria, Verrucomicro-
bia, and Latescibacteria were significantly decreased, but 
Actinobacteria and Firmicutes were significantly increased 
in paddy soils [29]. Nitrospira bacteria have been shown 
to increase in nitrogen fertilizer application alone over 
47 years [8], suggesting that the presence of Nitrospira is 
related to nitrogen nutrients in soils. Biochar application in 
paddy soils significantly reduced Nitrospirae bacteria by 
25%, thus depressing nitrification [30]. Our results showed 
the top five microorganisms were Proteobacteria (22.5%), 
Chloroflexi (14.8%), Acidobacteria (12.8%), Nitrospirota 
(4.7%), and Actinobacteria (4.5%) in Or soils and Pro-
teobacteria (19.8%), Acidobacteria (17.6%), Chloroflexi 
(15.2%), Actinobacteria (5.6%), and Nitrospirota (4.6%) in 
Nr soils. Therefore, our results are consistent with previous 
studies, that is, the dominant bacterial phyla in rice fields 
are Proteobacteria, Acidobacteria, and Actinobacteria, and 
the distribution of Nitrospirota could be related to nitrogen 
fertilizer in the soil. Interestingly, a study on soil bacterial 
communities in paddy fields under organic and conventional 
farming conditions reported similar results: Proteobacteria 
(25–30%), Chloroflexi (20%), Acidobacteria (15%), and 
Actinobacteria (10%) were the predominant bacteria in all 
treatments, and rice bran and rapeseed oil cake were used 
as the organic fertilizers [31]. Because different organic 
fertilizers were applied, such as farmyard manure, compost 
pig manure, green manure, rice straw, rice bran, rapeseed 
oil cake, biochar, and mixed organic fertilizer, the different 
nutrients drove soil microbes toward diverted adaptation.

The promising results have been shown to improve wild-
life diversity in organic farming. Research on the impact 
of organic farming on wildlife in rice fields has shown that 
the number and richness of wildlife have increased, and the 
number and richness of waterbird have a positive correla-
tion with organic farming [32]. Moreover, organic farming 
in paddy fields can improve terrestrial arthropod diversity 
but not underground soil eukaryotic diversity [33]. However, 
there were no consistent results for microbial diversity in 
paddy soil under organic farming. For example, organic fer-
tilizers could increase bacterial alpha diversity [6, 8], while 
no significant differences were observed [7, 29, 31]. For beta 
diversity, organic fertilizers seem to produce distinct clusters 
separated from the microbial communities with chemical 
fertilizers [7, 29]. Therefore, organic fertilizer application 
should provide different nutrients to influence the growth 
of certain microbes. Furthermore, cultivation periods, such 
as elongation, booting, grain filling, or ripening stages, also 
affect soil microbial community composition [31, 34].

Our db-RDA showed that the microbial community com-
position in organic paddy soil was positively correlated with 

higher pH and EC compared to the microbial community in 
nonorganic paddy soil (Fig. 5A, B). Organic amendments, 
such as alfalfa straw, compost manure, or wood biochar, sig-
nificantly increase soil pH and decrease soil EC compared 
to mineral applications [6]. A similar result was presented 
in which biochar application could elevate soil pH in paddy 
soil, and Nitrospirae bacteria were also found to decrease pH 
by 25% [30]. A previous study showed that the relative abun-
dances of the Proteobacteria and Bacteroidetes phyla were 
positively correlated with soil pH, while the abundances of 
Actinobacteria, Firmicutes, and Chloroflexi were negatively 
correlated with soil pH [35]. Cesarano et al. [6] also reported 
that Actinobacteria bacteria were significantly negatively 
correlated with soil pH, whereas Acidobacteria bacteria 
were negatively correlated, and Actinobacteria bacteria were 
significantly positively correlated with soil EC. The soil pH 
indeed affects the composition and diversity of soil bacteria 
[8]. Furthermore, soil EC plays roles in the changes in soil 
texture, cation exchange capacity, and percentage of humic 
matter, presenting the specific relationships between EC and 
nutrient concentrations [36]. Further studies are needed to 
clarify the relationships between certain bacteria and soil 
pH and EC and the relationships between certain organic 
fertilizer applications and soil pH and EC.

The ASVs assigned to g_B1-7BS (Proteobacteria), 
s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 (p_
GAL15), c_Thermodesulfovibrionia (Nitrospirota), two of 
f_Anaerolineaceae (Chloroflexi), and two of g_S085 (Chlor-
oflexi) are specifically present in organic soils (Fig. 6A, 
S3A). B1-7BS showed a relatively higher dispersion degree 
among the anaerobic, anoxic, and oxic zone in a carrousel 
oxidization ditch system for domestic wastewater treatment 
[37]. In a study of Deoxynivalenol (DON) degradation by 
microbes, B1-7BS was also reported to be abundant in wheat 
fields [38]. Sulfuricaulis limicola could oxidize thiosulfate, 
tetrathionate, and elemental sulfur as electron donors to 
support autotrophic growth [39]. Phylum GAL15 has been 
shown to increase in abundance with increasing soil depth 
[40–42] and might be related to wetlands, such as riparian 
soils [42] and floodplain soils [41]. The genus Thermodes-
ulfovibrio, a thermophilic, gram-negative bacterium, can 
reduce sulfate, thiosulfate, and sulfite as electron acceptors 
for growth [43]. Thermodesulfovibrio was found to be fre-
quently present in environments with sulfur, nitrogen, and 
methane cycling [44], suggesting that its abundance in soil 
is related to soil fertility, responsible for the energy metabo-
lism pathway. Interestingly, we found one ASV assigned to 
c_Thermodesulfovibrionia specific to organic paddy soil and 
two ASVs specific to nonorganic paddy soil (Fig. 6A). The 
genus Anaerolinea contains gram-negative, nonmotile, and 
filamentous bacteria that strictly grow in anaerobic condi-
tions [45]. Anaerolineaceae could syntrophically cooperate 
with Methanosaeta archaea in the process of methanogenic 
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degradation of alkanes [45, 46]. Furthermore, Thermodesul-
fovibrio spp. have been shown to be associated with Anaero-
lineaceae and Methanoculleus spp., and Anaerolineaceae 
initiates the activation of long-chain n-alkane biodegrada-
tion, followed by Thermodesulfovibrio metabolizing the 
intermidiates [47], implying in Or soils the potential coop-
eration between Anaerolineaceae and Thermodesulfovi-
brio. Genus S085 belongs to class Dehalococcoidia, which 
reduces dechlorinates tetrachloroethene to ethene [48]. S085 
has also been shown to be present significantly in paddy 
soils with high arsenic levels compared to soils with low 
arsenic levels [49]. It is difficult to rationalize the bioreme-
diation of S085 bacteria in Or soils.

The ASVs assigned to g_11-24 (Acidobacteriota), g__
Subgroup_7 (Acidobacteriota), and g_Bacillus (Firmicutes) 
showed differential abundances in nonorganic paddy soils 
(Fig. 6A, S3B). Genus 11–24 belongs to class Blastocatellia. 
Blastocatellia, a gram-negative, spherical to rod-shaped and 
nonmotile bacterium, shows a broad tolerance range of pH 
for growth and is usually isolated from the soil environment 
[50]. A study on the prokaryotic communities from a lava 
tube cave on La Palma Island (Spain) reported 11–24 bac-
teria in the ochre stalactite [51]. In addition, 11–24 bacteria 
have also been shown to be the key player in the biofilm 
community regarding biological waste and wastewater treat-
ment [52]. Genus Subgroup_7 belongs to class Holophaga. 
Holophaga, a gram-negative, nonspore-forming, obligate 
anaerobe, can ferment several aromatic compounds to ace-
tate [53]. Subgroup_7 bacteria have a positive correlation 
with soil pH (p < 0.05), and the average abundance is 2% 
among 26 subgroups in 87 soils examined [54]. Subgroup_7 
bacteria have also been shown to have a positive correlation 
with nutrient availability and a negative correlation with soil 
acidity [55]. Bacillus spp. isolated from the rice rhizosphere 
could promote plant traits and protect rice from bacterial 
blight disease [56].

These specific ASV sequences originate from the V3-V4 
segment of the 16S rRNA gene. After taxonomy assignment, 
the taxonomic annotation cannot fully match to the species 
level; therefore, their metabolic functions in soil can only be 
inferred and discussed based on closely related microbes. 
The ASVs showed differential abundance with statistical 
significance (Fig. 6A), suggesting different agricultural 
farming, such as fertilizers, pesticides, or herbicides cause 
the differences. With the development of metagenomics, the 
taxonomic annotation of these ASVs might be clarified to 
better explain their potential roles in Or and Nr soils, and 
thus would aid in the evaluation and modulation of soil fer-
tility in paddy fields.

We used FAPROTAX, PICRUSt2, and Tax4Fun2 tools to 
predict the functions of microbial communities based on 16S 
rDNA sequences. The carbohydrate metabolism features are 
the only function included in all three calculated programs. 

They are cellulolysis (FAPROTAX, Fig. 7A), bifidobacte-
rium shunt, glycolysis II (from fructose 6-phosphate), pyru-
vate fermentation to isobutanol (engineered) (PICRUSt2, 
Fig.  7B), butanoate metabolism, and amino sugar and 
nucleotide sugar metabolism (Tax4Fun2, Fig. 7C), suggest-
ing that the carbon nutrients in both soils might be abundant. 
Interestingly, degradation of aromatic compounds, benzoate 
degradation, and aminobenzoate degradation, metabolisms 
related to aromatic compound degradation, showed differ-
ential abundance in nonorganic paddy soils from Tax4Fun2 
analysis (Fig. 7C). The benzoate degradation pathway is 
related to folate synthesis, tyrosine metabolism, phenyla-
lanine metabolism, aminobenzoate degradation, and chlo-
robenzene degradation [57, 58], suggesting that bacteria that 
degrade aromatic compounds might be capable of metabo-
lizing aromatic pollutants [59]. At present, we do not have 
results to show that aromatic pollutants are present in non-
organic soils.

For functional prediction, the major concern is the limited 
reference databases for soil 16S rDNA, resulting in the low 
number of taxa assigned. The second problem is the differ-
ent tools that would perform and derive different functional 
features [60]. We found that 79.63% of the ASVs were not 
assigned to any group in FAPROTAX. In PICRUSt2, the 
weighted nearest-sequenced taxon index (weighted NSTI) 
was used to evaluate the average distance for the ASVs in a 
given sample to a reference bacterial genome [24], and the 
weighted NSTI scores of this study were between 0.21 and 
0.35 (> 0.15), suggesting few related references with low 
prediction quality (Table S2). Tax4Fun2 provides the frac-
tion of taxonomic units that were unused (FTU) and the frac-
tion of sequences unused (FSU) indices as quality indicators 
[25]. In this study, the FTU scores of all samples were larger 
than 0.90, whereas the FSU scores of 17 samples, among 22 
samples, were larger than 0.90 (Table S2). Thus, although 
we used three tools to compromise the bias, the functional 
predictions were based on few sequences.

In conclusion, the beta diversity of NMDS revealed that 
microbial communities in organic and nonorganic paddy 
soils were significantly separated. The db-RDA analysis 
showed the microbial community composition in organic 
paddy soil was associated with higher pH and EC environ-
ment compared to the microbial community in nonorganic 
paddy soil. There were 23 of 23937 ASVs that showed dif-
ferential abundance. Among them, g_B1-7BS (Proteobac-
teria), s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 
(p_GAL15), c_Thermodesulfovibrionia (Nitrospirota), two 
of f_Anaerolineaceae (Chloroflexi), and two of g_S085 
(Chloroflexi) show that they are more abundant in organic 
soils, whereas g_11-24 (Acidobacteriota), g__Subgroup_7 
(Acidobacteriota), and g_Bacillus (Firmicutes) show differ-
ential abundance in nonorganic paddy soils. These specific 
microbes are likely associated with soil nutrition, plants, 
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and environmental factors. Therefore, understanding the 
metabolic physiology of these microbes will contribute to 
assessing the impact of organic farming on the microbial 
community in paddy soil. The existence of these microbes 
may also aid in the evaluation and modulation of soil fertility 
in paddy fields.
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