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Abstract
A new Lysinibacillus fusiformis strain with abundant laccase activity was isolated from soil under forest rotted leaf and 
identified as L. fusiformis W11 based on its 16S rRNA gene sequence and physiological characteristics. The laccase LfuLac 
was purified and characterized. The optimum temperature and pH of LfuLac on guaiacol were 45 °C and pH 9, respectively. 
LfuLac kept 78%, 88%, 92%, 74%, and 47% of activity at pH 7-11, respectively, suggesting the alkali resistance of the 
enzyme. The effects of various metal ions on LfuLac showed that  Cu2+,  Mg2+, and  Na+ were beneficial to laccase activity 
and 10 mM  Cu2+ increased the activity of LfuLac to 216%. LfuLac showed about 90% activity at 5% organic solvents and 
more than 60% activity at 20%, indicating its resistance to organic solvents. In addition, LfuLac decolorized different kinds 
of dyes. This study enriched our knowledge about laccase from L. fusiformis W11 and its potential industrial applications.
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Introduction

Laccase (benzenediol: oxygen oxidoreductase; EC 1.10.3.2) 
is a copper-containing polyphenol oxidase that is widely 
distributed in plants, insects, fungi, and bacteria [1]. Lac-
cases are applied in food, pharmaceutical, and environmen-
tal industries because they can oxidize a wide variety of 
compounds and reduce oxygen into water without produc-
ing harmful by-products [2–4]. During the biotechnologi-
cal applications of laccases, reactions are often carried out 
under extreme conditions, such as extremely acidic and alka-
line pH and high concentration of organic solvents [5, 6]. 
Thus, searching for robust laccases that can tolerate harsh 
conditions is an ongoing effort to date.

Compared with plant and animal laccases, microbial lac-
cases are abundant and classified into fungal and bacterial 

laccases [7]. Fungal laccases have been found in many spe-
cies, such as Trametes trogii, Coriolopsis caperata, and 
Trametes versicolor [8–10]. Fungal laccases have been 
studied in a variety of biotechnological applications, but 
their applications are usually hampered due to long fermen-
tation periods, narrow pH range, and intolerance to extreme 
conditions [11]. Many bacterial laccases are available under 
extreme conditions and expected to replace fungal laccases 
for application to bioremediation, industrial wastewater 
treatment, and dye decolorization [1, 7, 12]. Laccases are 
discovered in a number of bacteria, including Bacillus 
subtilis, Escherichia coli, Streptomyces coelicolor, Steno-
trophomonas maltophilia, and Thermus thermophilus [13, 
14]. More bacterial laccases need to be found to meet the 
biotechnological applications.

Lysinibacillus fusiformis is a Gram-positive and rod-
shaped bacterium, which has been isolated from multiple 
environments [15]. L. fusiformis has been reported for its 
capability for azo dye decolorization, petroleum degradation, 
and deproteinization [16, 17]. Meanwhile, some extracellu-
lar enzymes of L. fusiformis, such as L-asparaginase and 
protease, have been reported, suggesting L. fusiformis was a 
multifunctional bacterium. The laccase of L. fusiformis has 
also been reported with ability of removal sulfonamides and 
tetracyclines residues, but other characteristics of the laccase 
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need to be further studied [18]. In this study, a new strain of 
L. fusiformis W11 was isolated from soil under forest rotted 
leaf in Wuling Mountain, Chongqing, China, and showed 
significant laccase activity. This study purified the laccase 
LfuLac and investigated its characteristics.

Materials and methods

Isolation and identification

Sample was collected from soil under forest rotted leaf in Wul-
ing Mountain, Chongqing, China. Ten grams of soil sample 
were properly mixed with 90 mL of distilled water in a 250-mL 
flask and serially diluted up to  10−6. A 0.1-mL sample diluent 
was spread over solid lysogeny broth (LB) medium (10-g/L tryp-
tone, 5-g/L yeast extract, 10 g/L NaCl, 10 g/L agar) containing 
0.04% (v/w) guaiacol, which is a typical substrate of laccase 
[19]. The plates were incubated at 30 °C for 1–5 d. The colo-
nies that showed red–brown circle on the plates were repeatedly 
transferred on LB solid plates until pure cultures were obtained.

Molecular characterization of the pure bacterial colony 
was conducted using 16S rRNA gene sequencing [20]. 
Genomic DNA was isolated with the TIANamp bacteria 
DNA Kit (Tiangen, Beijing, China). The 16S bacterial rRNA 
gene sequence was amplified by 27F with sequence 5′-AGA 
GTT TGA TCA TGG CTC AG-3′ and 1492R with sequence 
5′-CTA CGG TTA CCT TGT TAC  GAC-3′. The gene sequence 
of 16S rRNA was verified by sequencing. A phylogenetic 
tree was constructed using neighbor-joining and maximum 
likelihood methods with MEGA 7 software, and bootstrap 
values were calculated from 1000 replications [21].

Purification of enzyme

LB medium was used for the production of laccase. Lac-
case was purified using the method described by Liu et al. 
[22]. The culture was centrifuged at 5000 rpm for 10 min. 
The supernatant was precipitated by ammonium sulfate, dia-
lyzed in 0.1 M citrate-phosphate buffer (pH 7.0) for 48 h at 4 
°C to remove ammonium sulfate and lyophilized. Then, the 
sample was loaded onto a DEAE-cellulose anion exchange 
column which was previously equilibrated with 0.1 M citrate-
phosphate buffer (pH 7.0). After the unadsorbed proteins had 
been eluted, the adsorbed proteins were eluted with linear 
gradient concentration of NaCl from 0 to 1.0 M. All obtained 
fractions were monitored for laccase activity and the fractions 
containing laccase activity were pooled, concentrated, and 
dialyzed overnight. The sample was loaded onto a Sephadex 
G-100 column which was previously equilibrated with 0.1 M 
citrate-phosphate buffer (pH 7.0). Elution was collected with 
citrate-phosphate buffer and the eluted fractions with laccase 
activity were pooled and dialyzed. Protein content was then 

determined by SDS-PAGE, and protein concentration was 
determined by Nanovue Plus (GE).

Biochemical characterization

The activity of LfuLac was determined using guaiacol as substrate 
[23, 24]. The reaction mixture containing 1 μM LfuLac, 3 mM 
guaiacol, and 10 mM  Cu2+ was incubated at set temperatures 
for 30 min. Absorbance of the reaction mixture at 465 nm was 
recorded to represent the production of tetraguaiacol. The optimum 
temperature was the temperature with the highest activity on guai-
acol at the optimum pH during a 30-min reaction period. Optimum 
pH was determined by measuring the activity on guaiacol at 45 
°C at different pH levels. Relative laccase activity was measured 
by setting the activity at the optimal temperature and pH as 100%. 
LfuLac was incubated at different temperatures at pH 9.0 for 0.5, 
1.0, 2.0, 4.0, 8.0, and 16.0 h to determine its thermostability. Lfu-
Lac was incubated at different pH levels at room temperature for 
0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 h to determine pH stability. The 
amount of activity retained was detected. The activity of LfuLac 
without incubation was set as 100%.  Cu2+  (CuCl2),  Mg2+  (MgCl2), 
 Zn2+  (ZnCl2),  Ni2+  (NiCl2),  Mn2+  (MnCl2),  Co2+  (CoCl2),  Na+ 
(NaCl), and  K+ (KCl) were used to study the effects of metal ions 
on LfuLac. Five concentrations of metal ions (1, 2, 5, 10, and 20 
mM) were tested. Five organic solvents (ethanol, acetone, metha-
nol, chloroform, and DMSO) were tested at concentrations of 5%, 
10%, and 20% (v/v) to study their effects on laccase activity.

Dye decolorization assays

Dye decolorization assays were performed as previously described 
[25, 26]. The reaction mixture of 1 μM LfuLac, 15 mg/L dyes, 
and 10 mM  Cu2+ was incubated at 30 °C for 1 h. Dye decoloriza-
tion was determined by recording changes in absorbance at the 
following wavelengths for different dyes: crystal violet (590 nm), 
malachite green (624 nm), Coomassie brilliant blue R-250 (556 
nm), Congo red (497 nm), Acid red 27 (520 nm), methyl orange 
(465 nm), Acid blue 25 (595 nm), and Disperse blue 60 (670 nm). 
Samples without the enzyme were used as control. Dye decoloriza-
tion was calculated using the following equation:

Results

Screening and identification of laccase‑positive 
strain

The soil sample was cultured in LB–guaiacol medium to 
screen for laccase-positive strains. Eight strains showed a 
red–brown oxidized zone on the plates, indicating that they 

%Decolorization =
Initial absorbance − Final absorbance

Initial absorbance
× 100.
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were laccase active. Strain W11 was screened as the best 
laccase-secreting strain because of the biggest red–brown 
oxidized zone on the LB–guaiacol plate (Fig. S1). The 
colony of W11 was irregular, moist, flat, and slightly con-
vex (Fig. 1a). The strain was Gram-positive and had rod-
shaped cells (Fig. 1b).

The 16S rRNA gene sequence (1403 nt) of the strain 
was amplified, purified, and sequenced to identify 
W11. The 16S rRNA sequence of W11 (accession no: 
OQ418029) showed the 99.67% similarity to the sequences 
of L. fusiformis DSM2898. A phylogenetic tree was con-
structed by neighbor-joining and maximum likelihood 
methods, and the results revealed that W11 clustered with 
the members of L. fusiformis (Fig. 1c). According to the 
analysis of 16S rRNA sequence and morphological char-
acteristics, strain L-11 was identified as L. fusiformis and 
designated as L. fusiformis W11. The laccase secreted by 
L. fusiformis W11 was labeled as LfuLac.

Purification of LfuLac from L. fusiformis W11

The laccase activities in the liquid medium were 0.11, 
0.35, 0.87, and 1.01 U/mL in 1 to 4 days, respectively, 
and it reached the maximum level of 1.28 U/mL on the 
5th day. The extracellular laccase from L. fusiformis W11 
was purified, and a summary of purification data is shown 
in Table 1. LfuLac was purified by ammonium sulfate pre-
cipitation, DEAE-cellulose anion exchange, and Sephadex 
G-100 gel filtration chromatography, generating a 19.11-
fold increase in purity and 44.31% yield. The purified Lfu-
Lac was examined by SDS-PAGE (Fig. 2).

Effect of pH and temperature on the activity 
and stability of LfuLac

Assays were performed using guaiacol as substrate to 
determine the laccase activity of LfuLac. As shown in 

Fig. 1  Characterization of strain 
W11. a Colony characteristic of 
W11, b gram staining of W11, 
and c phylogenetic analysis of 
the 16S rRNA gene sequence of 
strain W11 Bar, 0.005 substitu-
tions per nucleotide position



1938 Brazilian Journal of Microbiology (2023) 54:1935–1942

1 3

Fig. 3a, the laccase activity of LfuLac increased gradually 
from 25 °C to 45 °C. LfuLac reached its maximum activity 
of 76 U/mL at 45 °C and decreased at higher temperatures. 
The effect of pH on the laccase activity of LfuLac was 

examined at 45 °C. LfuLac kept more than 70% activity 
over a wide range of pH 7.0–11.0 and reached its highest 
activity at pH 9.0 (optimum pH) (Fig. 3b).

Temperature and pH stability were examined. The 
activity of LfuLac remained almost 100% after incubation 
at 10 °C and 0 °C for 1 h and then decreased gradually 
with increasing incubation temperatures (Fig. 3c). LfuLac 
retained about 74% and 40% of its activity after incubation 
at 30 °C and 40 °C for 1 h, respectively. The activity of 
LfuLac almost reduced to 0 after incubation at 60 °C for 1 
h. As shown in Fig. 3d, LfuLac kept 78%, 88%, 92%, 74%, 
and 47% of its activity at pH 7–11, suggesting the alkali 
resistance of the enzyme under these conditions. However, 
the activity of LfuLac decreased to 50% at pH 5 and was 
9% at pH 4, indicating that it was unstable against strong 
acid conditions.

Effect of metal ions on the activity of LfuLac

The reaction mixtures were added with  Cu2+,  Mg2+,  Zn2+, 
 Ni2+,  Mn2+,  Co2+,  Na+, and  K+ to study the effects of 
metal ions on LfuLac. Five concentrations of metal ions 
(1, 2, 5, 10, and 20 mM) were tested. As shown in Fig. 4, 
 Cu2+,  Mg2+, and  Na+ were beneficial to laccase activity. 
To be specific, 10 mM  Cu2+ increased the activity of Lfu-
Lac to 216%, suggesting that LfuLac was a  Cu2+-activated 
laccase. Moreover, 2 mM  Mg2+ and  Na+ 10 mM increased 
the laccase activity to 152% and 125%, respectively. The 
addition of  K+,  Mn2+, and  Co2+ did not show obvious 
effects on LfuLac.  Zn2+ and  Ni2+ suppressed the activity 
of LfuLac and exhibited dose-dependent inhibition effects 
at high concentrations.

Effects of organic solvents on the activity of LfuLac

Five organic solvents (ethanol, acetone, methanol, chloroform, 
and DMSO) were tested at concentrations of 5%, 10%, and 
20% (v/v). The laccase activity without any chemicals of 76 U/
mL was set as 100%. As shown in Fig. 5, LfuLac showed more 
than 90% activity at 5% organic solvents and more than 60% 
activity at 20%, indicating that the enzyme displayed decent 
resistance to the tested chemicals. In 10% ethanol, acetone, 

Table 1  Summary of 
purification steps of laccase 
LfuLac from L. fusiformis W11

Purification step Total activity 
(U/mL)

Total protein 
(mg/mL)

Purification fold Yield(%)

Crude extract 1.28 1.212 1 100
Salt precipitation 1.09 0.78 1.43 85.11
DEAE-cellulose anionexchange 0.76 0.28 2.71 60.23
Sephadex G-100 gel filtration chro-

matography
0.61 0.03 19.11 44.31

Fig. 2  SDS-PAGE analysis of purified LfuLac. Purified LfuLac (lane 
1 and lane 2) and protein molecular mass markers (kDa) (lane M)
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methanol, chloroform, and DMSO, LfuLac exhibited 87.13%, 
80.32%, 82.19%, 80.19%, 76.87%, 92.52%, and 89.89% activ-
ity, respectively. Compared with other organic solvents, LfuLac 
displayed stronger resistance to ethanol with more than 65% 
activity at 20% concentrations. Hence, LfuLac remained active 
at high concentrations of the chemicals and might have poten-
tial for industrial applications.

Dye decolorization capacity of LfuLac

As shown in Table 2, nine dyes from three categories were 
used to test the dye decolorization capacity of LfuLac. The 
results showed that LfuLac partly decolorized all the tested 
dyes. LfuLac showed the strongest decolorization capacity to 
azo dye than the two other dyes and the least decolorization 
rate to anthraquinone. The decolorization capacities of LfuLac 
to Congo red, Acid Red 27, and methyl orange were 45.18%, 
45.11%, and 36.53%, respectively.

Discussion

L. fusiformis is one of the most recognized species in the 
genus Lysinibacillus. It was first isolated in 1901 from the 
surface of Beta vulgaris [15]. Since then, many strains of L. 
fusiformis have been isolated from various environmental 
samples, such as soil, wastewater, and potato phyllosphere 
[27, 28]. In this study, a new strain was isolated from soil 
under forest rotted leaf, which is habitable and rich in ligno-
cellulose, and was identified as L. fusiformis W11 by its 16S 

rRNA sequence and morphological characteristics. Laccase 
was able to oxidize non-phenolic lignin, which might make 
L. fusiformis W11 secrete laccase to adapt to its habitat. The 
laccase activity of LfuLac was 44 U/mL when incubation 
with guaiacol as the substrate under the optimal reaction 
conditions. The value is higher than that of laccase from 
Agaricus blazei U2-4 (25.4 U/mL) and Colletotrichum gloe-
osporioides (38 U/mL) [29, 30]. Hence, L. fusiformis W11 
could be a laccase-secreting microorganism. However, the 
activity is lower than that of laccase from Bacillus subtilis 
MTCC 2414 (100 U/mL), suggesting that the conditions 
need to be further optimized to increase the production of 
LfuLac.

Several extracellular laccases were purified with the 
three consecutive procedures, such as laccase from Maras-
mius scorodonius, laccase from Marasmius sp. BBKAV79, 
and ThLacc-S from Trametes hirsute [31, 32]. Compared 
with laccase activities of 432.8 U/mg from Marasmius 
scorodonius and 0.226 U/mg laccase from Marasmius sp. 
BBKAV79, the laccase activity of LfuLac was moderate 
20 U/mg. The molecular weight of LfuLac was about 31 
kDa, which was consistent with SLAC (PDB ID: 3CG8) 
from Streptomyces coelicolor, suggesting LfuLac might be 
a small bacterial laccase [13].

Alkali-stable laccases have been studied in many 
reports. ThLacc-S from Trametes hirsuta retained about 
70% of its activity after incubation at pH 10 for 72 h, but 
the activity decreased to about 10% at pH 11 [24]. Laccase 
from Bacillus tequilensis SN4 kept more than 75% activity 
at pH 9.0 for 24 h, but higher pH was not tested [33]. The 

Fig. 3  Biochemical charac-
terization of LfuLac. a and b 
Optimum temperature and pH 
of LfuLac determined with guai-
acol as the substrate. Relative 
laccase activity was measured 
by setting the activity at the 
optimal temperature and pH as 
100%. c and d Thermostabil-
ity and pH stability of LfuLac. 
The activity of PthLac without 
incubation was set as 100%. The 
error bars represent the standard 
error of the mean of triplicate 
measurements
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Fig. 4  Activity of LfuLac in the presence of different metal ions at the concentrations of 1–20 mM. The enzymatic activity in the absence of 
each metal ion was set as 100%. The error bars represent the standard error of the mean of triplicate measurements

Fig. 5  Inhibitory effect of different organic solvents on LfuLac activ-
ity. The laccase activity without any chemicals was set as 100%

Table 2  Ability of PthLac to decolorize different dyes

Dyes %Decolorization

Crystal violet 32.67
Malachite green 25.76
Coomassie brilliant blue R-250 31.35
Congo red 45.18
Acid red 27 45.11
Methyl orange 36.53
Acid blue 25 15.51
Disperse blue 60 16.45
Reactive brilliant blue KN-R610 nm 19.21
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purified LfuLac protein kept more than 70% of its activ-
ity at pH 7–10, which was not prominent compared with 
other reported alkali-stable laccases. However, LfuLac 
retained 47% of its activity at pH11, suggesting its strong 
alkali resistance. Most of the known laccases are unstable 
at concentrations above 10% of organic solvents [34, 35] . 
However, LfuLac was stable and retained more than 80% 
of its activity in the presence of 10% ethanol, acetone, 
methanol, and chloroform. LfuLac kept about 60% activity 
in 20% organic solvents, indicating that it was an organic 
solvent-stable enzyme. Moreover, LfuLac decolorized tri-
arylmethane, azo, and anthraquinone dyes. Therefore, Lfu-
Lac might have potential to industrial applications, such 
as pulp biobleaching and textile dye decolorization, due 
to its remarkable tolerance to alkali-organic solvents and 
decolorizing ability.

In conclusion, this study reported the laccase LfuLac 
obtained from L. fusiformis W11. Alkali tolerance, stabil-
ity in organic solvents, and decolorizing ability were the 
important features of LfuLac. Overall, LfuLac could be a 
promising enzyme for biotechnological applications.
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