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Abstract
The disposal of industrial effluents strongly influences low-order streams, which makes them fragile ecosystems that can be 
impacted by contamination. In central Brazil, the Extrema River spring targets the dumping of pharmaceutical products from 
the surrounding industries. So, this work aimed to investigate the presence of antibiotics in Extrema River spring samples 
and the isolation of Staphylococcus aureus, a potential multidrug-resistant bacteria, verifying the antimicrobial resistance 
profile of these isolates. Three campaigns were carried out in different locals (P1–P3) between October and December 2021, 
in the dry and rainy seasons. The high-performance liquid chromatography-tandem mass spectrometry (LCMS) approach 
indicated the presence of sulfamethoxazole (≥ 1 ng/L), metronidazole (< 0.5 ng/L), and chloramphenicol (< 5 ng/L) in 
the water samples in November (rainy season). S. aureus was isolated in P1 (n = 128), P2 (n = 168), and P3 (n = 36), with 
greater resistance to trimethoprim-sulfamethoxazole (90%), clindamycin (70%), and gentamicin (60%). The presence of 
antibiotics in the Extrema River spring may cause S. aureus antibiotic resistance development. The presence of antibiotics 
and the high percentage of isolated multidrug-resistant S. aureus in the Extrema River spring cause concern and indicate the 
clandestine dumping of effluents from nearby pharmaceutical industries. Since preserving the springs of low-order streams 
is important for the environment and public health, we encourage monitoring the wastewater from Extrema River’s nearby 
pharmaceutical industries and preserving the spring of this river.
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Introduction

The Cerrado biome is the second most extensive vegetation 
formation on the South American continent. Its area repre-
sents one-fourth of Brazil’s entire land surface [1]. It has 
been considered one of the most important savannas in the 
world due to the richness of plant and animal species and 
water resources [2]. The Cerrado’s biodiversity has suffered 
with the expansion of Brazilian agriculture in the last 50 
years, which has caused changes in its soil areas and water 
bodies [3, 4]. In this anthropization process, industrial activ-
ity intensified and guaranteed market in different sectors 
[5]. As a result, industries have discharged effluents directly 
into aquatic ecosystems, which alters the runoff volume and 
water temperature, impairing its integrity and future sus-
tainability [6]. Water pollution has been a global concern, 
caused by industry and agriculture due to the significant 
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growth of emerging pollutants predicted to increase not less 
than double until 2035 [7].

The city of Anápolis has 396,526 inhabitants and is 
located in central Brazil (Goiás State). The city’s economy 
revolves around the pharmaceutical, transformation, and 
automobile industries concentrated in the Agroindustrial 
District of Anápolis (DAIA). DAIA was created in 1976 and 
produces various types of waste [8]. Part of this industrial 
waste is disposed of in the Extrema River, which belongs 
to the Antas River watershed, and its spring is close to the 
DAIA. Values above the allowed for Fe and Cr and the geno-
toxic potential of water samples from the Extrema River 
have already been demonstrated [9]. Low-order rivers, like 
the Extrema River, are vulnerable to deforestation, agricul-
ture, and urbanization, leading to eutrophication and hypoxia 
of ecosystems downstream [10, 11]. Springs are ecotones 
between groundwater, surface water, and the adjacent soil 
ecosystem, fed by a continuous flow of groundwater with 
a thermally stable habitat with diverse biota [12]. Springs 
and their terrestrial surroundings are considered hotspots 
for the biodiversity of the regions [13]. They are threatened 
by multiple anthropogenic stressors, such as capture, habitat 
degradation, and aquatic contaminants [14].

Antibiotics are part of persistent contaminants in aquatic 
environments through industrial, domestic, or veterinary dis-
posal, whose most prolonged half-life reaches 1800 days [15, 
16]. Antibiotic classes have already been recorded in rivers 
in China [17, 18], Canada [19], the USA [20], and Brazil 
[21, 22]. The indiscriminate and excessive use of antibiot-
ics has caused an increase in multidrug-resistant bacteria 
[23]. The relationship between bacterial resistance and the 
occurrence of antibiotics in surface waters has been reported 
as harmful to public health, compromising the effectiveness 
of antimicrobial therapy, as pathogenic microorganisms are 
becoming resistant to most antibiotics [24]. The spread of 
antibiotic-resistant bacteria has been classified as one of the 
three threats to public health in the twenty-first century by 
the World Health Organization (WHO) [25].

Staphylococcus aureus is a highly resistant Gram-positive 
coccus to broad-spectrum antimicrobials. S. aureus has been 
reported to be resistant to methicillin, penicillins, cephalo-
sporins, and carbapenems and tends to develop resistance 
to quinolones, aminoglycosides, and macrolides [26, 27]. S. 
aureus is an opportunistic pathogen that causes infections 
and intoxications in humans and animals, mainly in noso-
comial environments [28]. However, staphylococcal infec-
tions could evolve to serious systemic infections and death, 
especially when associated with antimicrobial resistance 
(AMR) [29]. Initially, outbreaks of antimicrobial-resistant 
S. aureus infections were associated mainly with compro-
mised patients exposed to hospital environments. However, 
since the late 90s, with the emergence of new more aggres-
sive community-associated isolates, these infections are no 

longer limited to these settings. Nowadays, it is common 
to observe outbreaks of S. aureus infections among young 
healthy individuals with close contact and sharing common 
facilities [30].

S. aureus waterborne transmission routes have not been 
traditionally associated with infections. However, the poten-
tial for S. aureus to be spread via aquatic environments is 
continually evaluated. This microorganism has been identi-
fied in freshwater [31, 32], seawater [30, 33–36], sub-catch-
ment water system [37], drinking water [38, 39], and waste-
water [40–45]. Additionally, it has been demonstrated that 
people shed their colonizing organisms into seawater and, 
therefore, can be sources of potentially pathogenic S. aureus 
in recreational marine waters [30]. These observations sug-
gest the persistence of S. aureus in the aquatic environment 
and the water as a possible route for S. aureus transmission.

In addition to the risk of transmission of S. aureus by 
water, the ESKAPE pathogens (Enterococcus faecium, S. 
aureus, Klebsiella pneumoniae, Acinetobacter bau-mannii, 
Pseudomonas aeruginosa, and Enterobacter), that cause 
AMR crisis faced by hospitals globally, can accumulate 
AMR genes primarily due to horizontal gene transfer (HGT) 
aided by plasmids and mobile genetic elements [46, 47]. 
The origins of the AMR genes are environmental bacteria, 
mainly soil ones, which have co-evolved with antimicrobial-
producing organisms for millennia [48]. There is a temporal 
lag between the clinical use of a drug and the arrival of 
relevant mobile AMR genes in human pathogen populations 
[49]. So, identifying environmental reservoirs of multidrug-
resistant bacteria alert to the urgent need for environmental 
monitoring policies [47]. Thus, the objective of this study 
was to investigate the presence of antibiotics in the Extrema 
River’s spring, due to its close proximity to many pharma-
ceutical industries, and to isolate S. aureus, verifying the 
AMR profile of these isolates.

Methods

Sampling points

The samples were collected in surface water from the 
Extrema River spring in Anápolis, central Brazil (Goiás 
State). Three collection points near the spring were sampled 
(P1, P2, and P3), as follows: (P1) 16°23'8”S 48°56'38”W, 
(P2) 16°23'8”S 48°56'37”W, and (P3) 16°23'8”S 
48°56'36”W (Fig. 1). The collection area has gallery for-
est phytophysiognomy, forest vegetation accompanying 
streams, and small river courses forming closed corridors 
over water courses, typical of the Brazilian Cerrado. In this 
region, two other phytophysiognomies are predominant, 
savanna stricto sensu, and dry forest [50]. Many pharmaceu-
tical industries near the spring area (~ 5 km) have potential 
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clandestine wastewater runoff. The region’s climate is Cwb 
(tropical altitude, with dry winters and hot, humid summers), 
according to the Köppen classification [51]. The samples 
were collected between October (dry season), November, 
and December (rainy season) in 2021. A monthly collection 
was carried out. The water quality parameters of the Extrema 
River are shown in Supplementary Information (Supp. Table 
S1). The water (2 liters at each point) was collected in sterile 
amber glass bottles, sealed with a stopper and lid to transport 
the material at 4 °C. In the laboratory, samples were imme-
diately filtered for S. aureus isolation. The samples intended 
for high-performance liquid chromatography coupled with 
mass spectrometry (LCMS) were immediately stored in an 
ultra-freezer at −80 °C (ColdLab®, Piracicaba, SP, Brazil).

Sample preparation for antibiotic identification

Before analyzing the samples by LCMS, the samples were pre-
treated as follows: samples were filtered through Millex® 0.45 
μm polyvinylidene fluoride (PVDF) membrane filters (Merck 
KGaA, Darmstadt, Germany). A total of 10 mL of each sample 
were first lyophilized. The powder residue was resolubilized in 
methanol three times at 0.5 mL with homogenization, totaling 
1.5 mL. This suspension was transferred to a clean microtube 
and vacuum dried in the SpeedVac. After drying, it was resus-
pended in 100 μL of mobile phase, followed by vortexing for 
5 min, centrifuging at 14000 rpm for 10 min at 8 °C. Finally, 
60 μL of the supernatant was transferred to the insert and taken 
to the chromatographic system for injection.

Fig. 1   Localization and images of the three points sampled (P1, P2, and P3) of the Extrema River in the city of Anápolis, Goiás, Central Brazil
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High‑performance liquid chromatography‑tandem 
mass spectrometry (LCMS) conditions

Chromatographic separations were carried out using an 
ExionLCTM chromatographic system (Sciex, Singapore) 
composed of a pump with a quaternary solvent manager 
(AC Pump), an automatic injector (AC Autosampler), and a 
chromatographic column oven (AC column oven). A Kinetex 
C8 (150 × 4.6 mm, 5 μm particle size) column with phenom-
enex guard cartridges (4 × 3 mm) at 35 °C was utilized as a 
stationary phase. The mobile phase was a mixture of acetoni-
trile, methanol, and ammonium formate 10 mM containing 
formic acid 0.2% (5:15:80, v/v/v) on isocratic elution mode 
at a flow rate of 0.8 mL.min−1, being 20 min of the total 
chromatographic run. In the injection, the samples were kept 
at 15 °C, and 20 μL were injected. The tandem mass analy-
sis was performed by a 4500 QTRAP hybrid triple quadru-
pole linear ion trap mass spectrometer (Sciex, Singapore) 
equipped with a turbo Ion Spray source. The temperature of 
the electrospray source was 650 °C. Mass spectrometry (MS) 
analysis was performed in positive and negative ion modes, 
4500 V or −4500 V, respectively. Curtain gas (CUR) was 10 
psi, and ion source gas pressures (GS1 and GS2) were 50 psi. 
MS parameters dependent on compounds include ionization 
mode, declustering potential (DP), collision energy (CE), 
and monitored ions (Table 1). These parameters were opti-
mized by infusion of individual standard solutions of each 

compound at concentrations of 500 μg/L. The software used 
to control the system functions was Analyst® 1.7.2 (Sciex, 
Singapore). Only semi-quantitative identification of antibiot-
ics was carried out in this work, that is, the presence above 
the limit of detection (LoD, Supp. Fig. S1). The LoD was 
obtained through the lowest analyte concentration that could 
be determined. To reach this parameter, injections of increas-
ingly lower antibiotic concentrations were performed until a 
signal/noise ratio of at least 3:1 was obtained. Considering 
that the samples were concentrated at 100× before injection 
in the LCMS, the concentration of the antibiotics in the river 
would be 100× lower than the LoD.

Isolation of Staphylococcus aureus from surface 
water

Membrane filtration was used to recover S. aureus from sur-
face water samples from the Extrema River, following the 
methodology of Goldstein et al. (2012) [44] with modifica-
tions. Briefly, 10 mL of each triplicate sample was vacuum 
filtered through a cellulose nitrate filter membrane, with a 
pore size of 0.45 μm and a diameter of 47 mm (GVS North 
America, Sanford, USA). The membranes were placed on 
Baird Parker agar base (KASVI®, São José dos Pinhais, PR, 
Brazil) and incubated at 37 °C for 24 h. After this period, 
the amounts of black colonies with presumptive halos of 
S. aureus were counted. Then, confirmatory catalase, 

Table 1   Mass spectrometry 
(MS) parameters for antibiotic 
analysis

Compound Structure Mode
Precursor 

ion

(m/z)

Product 
ion

(m/z)

DP

(V)

CE

(V)

Amoxicillin 

(AMX)
[M+H] 366 114 59 23

Metronidazole 

(MTZ)
[M+H] 172 128 51 19

Cefazolin (CFZ) [M+H] 455 323 56 17

Sulfamethoxazole 

(SX)
[M+H] 254 156 58 23

Chloramphenicol 

(CHL)
[M-H] 321 157 -66 -21
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coagulase, and gram stain tests were performed (phenotypic 
confirmation).

Phenotypic confirmation of Staphylococcus aureus 
isolates

S. aureus isolates were phenotypically confirmed by cat-
alase- [52] and coagulase-positive (Staphclin latex kit, 
Laborclin®, Pinhais, PR, Brazil) [53] reactions and Gram-
positive staining [54].

Selection of multidrug‑resistant Staphyloccocus 
aureus isolates and antibiotic resistance profile

Colonies of S. aureus were selected from each sampling 
point and streaked on MRSA Chromogenic agar (Laborclin®, 
Pinhais, PR, Brazil) and incubated at 37 °C for 24 h [55]. 
Blue-green colonies were presumptive of MRSA (n = 20 
from the three sampled points). These colonies were stored 
in brain heart infusion (BHI) broth (KASVI®, São José 
dos Pinhais, PR, Brazil) and added with 15% glycerol at 
−80 °C in an ultra-freezer (ColdLab®, Piracicaba, SP, Bra-
zil). S. aureus ATCC 25923 and phosphate-buffered saline 
were used as positive and negative controls, respectively, 
for quality control and isolation process assurance. Antibi-
otic susceptibility tests were performed by the disk diffu-
sion method, according to Tsai et al. (2020) [56] and CLSI 
M100 [57], testing nine different antibiotics (Laborclin®, 
Pinhais, PR, Brazil) (Supp. Table S2). Multidrug resistance 
was defined by an S. aureus isolate that grew in the presence 
of at least three different classes of antibiotics [58]. Cultures 
of these isolates were deposited in the Elisa F. L. C. Bailão 
(EFLCB) working collection (collection of microorganism 
cultures of the State University of Goiás [CCM-UEG], Cen-
tral Campus) at the Biotechnology Laboratory (LaBiotec).

Genotypic confirmation of Staphylococcus aureus 
isolates by polymerase chain reaction (PCR)

DNA extraction was performed according to the manufac-
turer’s protocol (Zymo, CA, USA). The extracted nucleic 
acid was stored at −80 °C until further analysis. S. aureus 
nuc gene was used as a specific target using the following 
primers: forward 5’-GCG​ATT​GAT​GGT​GAT​ACG​GTT-3’ 
and reverse 5’-AGC​CAA​GCC​TTG​ACG​AAC​TAA​AGC​-3’ 
(amplicon = 279 bp) [59]. The following cycle conditions 
were used: 1× cycle for the initial denaturation step at 94 
°C for 5 min; 40× cycles for the denaturation step at 94 °C 
for 1 min; annealing step at 54 °C for 30 s; extension step at 
72 °C for 30 s; 1× cycle for final extension step at 72 °C for 
10 min. The nuc amplicon was visualized in a 1.5% agarose 
gel. A 100 bp ladder (invitrogen by ThermoFisher Scientific, 

Waltham, Massachusetts, EUA) was added to compare the 
fragment amplified in the gel.

Statistical analysis

For the antibiotic resistance parameters of S. aureus, the 
mean ± standard deviation was calculated for each group 
using BioEstat 5.3 software [60]. For Pearson correlations 
between dissolved oxygen (DO) and the number of S. aureus 
isolates, pH and the number of S. aureus isolates, and DO 
and pH were used in past software 4.06b version [61].

Results

Antibiotic detection in Extrema River spring

It was possible to confirm the presence of sulfamethoxazole 
(≥ 1 ng/L) at P3 in the November campaign (Supp. Fig. S2). 
Some antibiotics are suggested to be present also in P3 in 
the November campaign but appear below the established 
LoD, metronidazole (< 0.5 ng/L), and chloramphenicol (< 
5 ng/L) (Supp. Fig. S3).

Multidrug‑resistant Staphylococcus aureus detection 
in Extrema River spring

From P1, P2, and P3 samples, 128, 168, and 36 S. aureus 
colonies were isolated, respectively (Fig. 2). The smaller 
number of S. aureus isolates in P3 in the three campaigns 
could be correlated with the lower dissolved oxygen (DO) 
quantified in P3 (r = 0.870, p = 0.002) in the three cam-
paigns. Moreover, DO and pH were positively correlated 
in this study (r = 0.780, p = 0.013). The isolates EFLCB 
010-029 were genotypically confirmed as S. aureus since 
the nuc gene was amplified in all samples (Supp. Fig. S4). 
Of the S. aureus colonies isolated, there was a large number 
of multidrug-resistance to antibiotics (P1 n = 88.8%, P2 n 
= 33.3%, P3 = 66.6%) (Fig. 2). In the evaluation of the 
AMR profile, 90% of S. aureus isolates showed resistance 
to trimethoprim-sulfamethoxazole, 70% to clindamycin, 
and 60% to gentamicin. The isolates from P1 showed a high 
AMR profile (Table 2).

Discussion

Low-order streams (1st to 3rd order) dominate a riverside 
landscape for the function and health of the river network, 
being fragile ecosystems that are impacted by the discharge 
of effluents [62]. Improper disposal of effluents brings nega-
tive impacts to One Health. Brazil is the only country in 
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South America with specific legislation on the ecotoxico-
logical assessment of effluents, resolutions n° 357/2005 and 
n° 430/2011 of the National Council for the Environment 

(CONAMA) [63]. However, many Brazilian states, such as 
Goiás, do not have their own legislation that would comple-
ment federal legislation. In this sense, much still needs to 

Fig. 2   The number of Staphylo-
coccus aureus colonies isolated 
by sampling point from the 
Extrema River spring, central 
Brazil. The number above the 
bars considers the percentage of 
multidrug-resistant S. aureus in 
each collection point. Multid-
rug resistance was defined by 
S. aureus isolate that grew in 
the presence of at least three 
different classes of antibiot-
ics: chloramphenicol 30 μg, 
ciprofloxacin 5 μg, clindamycin 
2 μg, erythromycin 15 μg, gen-
tamicin 10 μg, rifampicin 5 μg, 
trimethoprim-sulfamethoxazole 
25 μg, tetracycline 30 μg, and 
cefoxitin 30 μg

Table 2   Antibiotic resistance 
profile of Staphylococcus 
aureus isolates from the 
Extrema River surface water, 
Central Brazil

*Elisa F. L. C. Bailão (collection of cultures of microorganisms from the State University of Goiás, Central Cam-
pus). Values correspond to triplicate mean ± standard deviation of inhibition halos (mm). R, bacterial resistance; I, 
intermediate sensitivity; S, bacterial sensitivity. Antibiotics evaluated: chloramphenicol 30 μg (CHL), ciprofloxa-
cin 5 μg (CIP), clindamycin 2 μg (CLI), erythromycin 15 μg (ERY), gentamicin 10 μg (GEN), rifampicin 5 μg 
(RIF), trimethoprim-sulfamethoxazole 25 μg (SXT), tetracycline 30 μg (TET), and cefoxitin 30 μg (FOX)

S. aureus code: 
EFLCB*

CHL CIP CLI ERY GEN RIF SXT TET FOX

P1
  010 R R R R R R R R S
  011 R R R R R R R R S
  012 R R R R R R R R S
  013 S S S S S S S S S
  014 R R R R R R R R S
  015 S S S S S S S S S
P2
  016 S S R S R S R S S
  017 S S R S R S R R S
  018 S S R S S S R S S
  019 R S S S S S R S S
  020 S S R S R S R S S
  021 S S R R R S R S S
  022 S S S R S S R S S
  023 S S S S S S R S S
P3
  024 S S S S S S R S S
  025 S S R R S R R R S
  026 I R R R R R R R S
  027 S S R S R S R S S
  028 S S R R R R R R S
  029 S S R R R R R R S
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be done to control and monitor the emission of effluents in 
Brazilian water resources. In this work, we first investigated 
the presence of antibiotics in the Extrema River spring, a 
low-order stream close to pharmaceutical industries (DAIA). 
DAIA has a sewage treatment plant inaugurated in 2003 to 
treat the industrial effluents from 78 industries. However, 
nowadays, there are more than 150 industries, and not all 
pre-treat effluents, which overload the system with a large 
volume of effluents and cause recurrent leaks [8]. In the 
November campaign, antibiotics in the Extrema River spring 
at P3 were observed, namely sulfamethoxazole (≥ 1 ng/L), 
metronidazole (< 0.5 ng/L), and chloramphenicol (< 5 
ng/L). It is important to highlight that P3 is the nearest point 
from DAIA. In Cerrado, November is considered the month 
with more volume of rain after a 5-month drought. Maybe 
the pharmaceutical industries clandestinely discharge more 
effluents in November, relying on the dilutional property 
of rainfall. Additionally, the presence of antibiotics in the 
streams indicates the persistence of degradation, continuous 
discharge, input in large volumes, and incomplete removal 
during septic treatment [64, 65]. The half-life of sulfameth-
oxazole and chloramphenicol in environmental water is 
3.1–30 days and 60 days, respectively [66, 67].

Pharmaceutical contaminants have already been reported 
in low-order streams in China [68], India [69, 70], Japan 
[71], France [72], the UK [73], and the USA [74]. In interna-
tional studies, the most detected antibiotic is sulfamethoxa-
zole, appearing in 96% of the analyzes. The antibiotic with 
the highest concentration is also sulfamethoxazole (> 20,000 
ng/l), while the lowest concentration is metronidazole (1800 
ng/l). Additionally, 53% of the studies use wastewater as a 
source, while only 18% of the papers use river water as a 
source. Therefore, increasing the water analysis in rivers and 
in other aquatic matrices is very interesting for the scientific 
community [75]. In Brazil, antibiotics were detected in sur-
face water in the states of Amazonas, Maranhão (including 
sulfamethoxazole–22–120 ng/L) [76], Minas Gerais [77, 
78], Rio Grande do Sul (including sulfamethoxazole > 1.0 
ng/L [79], < 300 ng/L [22], < 200 ng/L [80]) [22, 79–81], 
and São Paulo (including sulfamethoxazole < 5 ng/L [82], 
0.78–106 ng/L [21]) [21, 82, 83]. To the best of our knowl-
edge, it is the first time that the presence of antibiotics in 
central Brazil freshwater has been described. However, 
genes encoding resistance to β-lactams, macrolides, qui-
nolones, fluoroquinolones, tetracyclines, and sulfonamides 
were recently reported in another central Brazil stream (João 
Leite River) [84].

The most recent study by Wilkinson et al. (2022) [85], 
reviewed by Bouzas-Monroy et al. (2022) [86], pointed out 
that of 1052 river sites monitored in 104 countries, 43.5% 
(461 sites) contained concentrations of active pharmaceu-
tical ingredients of concern, with approximately 34.1% of 
the 137 sampling campaigns having at least one site where 

concentrations were of ecotoxicological concern. Thus, for 
the conservation of freshwater springs, the Arthington docu-
ment (2021) [87] points out that a more strategic, integrated, 
and collaborative global effort is needed between countries 
through the following solutions: inventory, assessment, and 
research of contaminated areas; ecosystem restoration and 
rehabilitation; design and management of protected areas; 
science and sociological governance. The restoration of 
springs and biodiversity protection depends on a reliable 
scientific database that evaluates the ecological results of 
natural processes and management actions.

The occurrence of antibiotics in the aquatic environment 
poses a global threat to One Health. First of all, antibiotics 
can cause acute and chronic toxicity toward aquatic organ-
isms and affect the evolution of the bacterial community 
structure, which plays a significant role in the ecosystem 
[65]. Additionally, the presence of antibiotics in freshwa-
ter is of special concern because increasing concentrations 
of discarded antibiotics can force the appearance of some 
extremely multidrug-resistant strains, not just as the conse-
quence of mutations, but also by HGT, which poses a serious 
public health problem [88]. S. aureus was isolated from the 
three sampled points (P1, P2, and P3) in the Extrema River 
spring. The smaller number of S. aureus isolates in P3 in 
the three campaigns could be correlated with the lower DO 
quantified in P3 in the three campaigns. It has been demon-
strated that S. aureus is affected by a decrease in dissolved 
oxygen equal to or below 7 mg/L, because it utilizes a lot of 
oxygen to survive [89]. Moreover, DO and pH were posi-
tively correlated in this study. As pH decreases, hydrogen 
ions and oxygen react with water, which results in a decrease 
in the DO [90]. A total of 65% of the isolates presented 
resistance to at least three classes of antibiotics. Addition-
ally, all the S. aureus isolates are resistant to trimethoprim-
sulfamethoxazole in P2 (November) and P3 (December), 
a drug produced in DAIA and identified in the Extrema 
River spring, suggesting that the clandestine discharge of 
antibiotics from industrial effluents in the region may cause 
S. aureus AMR development. This data is worrying, as S. 
aureus is a pathogen of significant concern for hospitals and 
the community. Treating S. aureus infections is becoming 
challenging, especially considering the emergence of anti-
biotic-resistant strains [91].

The lack of estimates of human exposure to environ-
mental bacteria, generally antibiotic-resistant bacteria, is a 
gap that makes it difficult to assess the effects of exposure. 
Streams and rivers can be important routes for disseminat-
ing these antibiotic-resistant bacteria, mainly because people 
usually use freshwater for recreational activities, ingestion, 
and irrigation. People have been observed using the Extrema 
River water for recreational purposes, which could be a 
source of acquiring and disseminating multidrug-resistant 
S. aureus strains. Some studies have pointed to the presence 



1004	 Brazilian Journal of Microbiology (2023) 54:997–1007

1 3

of AMR microorganisms and AMR genes in aquatic ecosys-
tems impacted by human activities [25, 92–94]. Thus, sur-
veillance and study of microorganisms in impacted freshwa-
ter environments can provide information on how microbial 
communities change because of human activities.

Conclusions

Our data indicate that the Extrema River’s spring is receiv-
ing clandestine effluents from pharmaceutical industries. 
So, it needs restoration and intense environmental surveil-
lance for biodiversity and public health protection. Micro-
bial communities contribute significantly to the quality 
of surface waters. Moreover, the impacts of land use and 
industrial effluent disposal on bacteria promote the devel-
opment of multidrug-resistant strains. Thus, antibiotics in 
this ecosystem disrupt environmental and public health. 
This study encourages policies to monitor emerging pol-
lutants in the Extrema River’s spring, which can be helpful 
since the safe amounts of disposal of these compounds are 
not yet legally regulated.
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