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Abstract
The growth of the lactic acid bacteria (LAB), Streptococcus thermophilus and Lactobacillus bulgaricus, widely used for 
yogurt production, results in acid production and the reduction of the milk pH. Industrial processes can show temperature ( T ) 
changes due to the large scale of the equipment. As T and pH affect the LAB growth, this study aimed to model the depend-
ence of S. thermophilus and L. bulgaricus as a function of temperature and pH and to estimate and internally validate their 
growth parameters and confidence intervals with different modeling approaches. Twenty-four datasets regarding the growth 
kinetics of S. thermophilus and L. bulgaricus were used for estimating the kinetic parameters for each pure culture. The clas-
sical Baranyi and Roberts (sigmoidal) primary and Rosso and coworkers (cardinal parameter) secondary models successfully 
described the experimental data. The one-step modeling approach showed better statistical results than the two-step approach. 
The values of eight growth parameters ( μopt , Tmin , Topt , Tmax , pHmin , pHopt , pHmax , and ymax ) for each culture estimated from 
the fitting with the one-step approach and the Monte-Carlo-based approach were similar. Low averaged root-mean-squared 
errors ( RMSE ) (0.125 and 0.090 log CFU/mL) and percent discrepancy factor %Df ( 1.5% and 1.2% ) values for S. thermophilus 
and L. bulgaricus were obtained in the internal model validation, reinforcing the predictive ability of the model.

Keywords Predictive microbiology · Parameter estimation · Bacterial growth · Starter cultures

Introduction

Lactic-acid bacteria (LAB) have been used as starter cultures 
for numerous varieties of manufactured and commercialized 
fermented products, including fermented fruits, vegetables, 
cereal products, dairy products, fermented fish, and meat 
[26]. LAB can be considered a suitable starter culture in the 
production of fermented foods due to the ease of fermen-
tation, the risk of fermentation failure, and several func-
tional properties [20]. Yogurt is a fermented milk product, 
which may be manufactured from products obtained from 
milk with or without compositional modification (as limited 
by some provisions), obtained by the action of symbiotic 
cultures of Streptococcus thermophilus and Lactobacillus 
bulgaricus, resulting in the reduction of pH with or without 
coagulation [12].

The LAB growth in the fermentative process results in 
acid production and the lowering of the milk pH from ~ 6.5 
to 4.0–4.5 [18]. Industrial processes can have temperature 
( T ) changes due to the high scale of the equipment, in which 
gradients in such critical process control parameters can 
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negatively impact fermentation performance [13]. As T and 
pH are factors that affect the LAB growth, modeling the 
growth dependence of S. thermophilus and L. bulgaricus as 
a function of T and pH is essential to improve the quality of 
milk-fermented products.

In predictive microbiology, primary models measure the 
response of the microorganisms as a function of the time to 
a single set of conditions (e.g., temperature and pH). Sec-
ondary models describe the response of the primary model 
parameters (e.g., lag phase and maximum specific growth 
rate) to changes in the culture conditions [34]. The estima-
tion of the microbial growth parameters is traditionally per-
formed with the two-step modeling approach, in which the 
primary and secondary models are sequentially fitted to the 
data in two steps. On the other hand, growth curves can be 
analyzed with non-linear regression to estimate the kinetic 
parameters of primary and secondary models together in the 
so-called one-step modeling approach, in which the global 
residual sum of squares of the entire dataset is minimized 
in one step [15, 23].

The uncertainty about the estimated parameters by 
one-step or two-step approaches can be assessed by their 
95% confidence intervals computed from the model fit-
ting. Additionally, the Monte-Carlo method can be used 
to robustly quantify the expected uncertainty of the 
parameters and their confidence region. The distribu-
tion of sensitivity values can be estimated by Monte-
Carlo analysis by repeatedly sampling from an assumed 
joint-probability density function of the parameters and 
by evaluating the sensitivities for each sample [3]. The 
experimental data and the estimated kinetic parameters 
can be used as prior information for estimating the poste-
rior distribution of the kinetic parameters and the uncer-
tainty of the predictions [16]. Thus, the Monte-Carlo 
method has been applied to predict the microbial growth 
in foods [17, 21].

The reliability of the predictive models must be assessed 
with statistical indexes by comparing their predictions to 
observations, particularly in foods. Therefore, the utility 
of mathematical models to assist in food safety and quality 
decisions can be evaluated [5]. In this scope, the first stage of 
validation to propose a model is often an internal validation, 
e.g., the validation is performed on the same data used for 
building the model (te [28, 33].

A previous study modeled the growth of L. bulgaricus 
and S. thermophilus with a simple first-order kinetic model, 
in which the dependence of the maximum specific growth 
rate was described with empirical models on the carbon and 
nitrogen substrates, the temperature, the pH, and the dis-
sociated and undissociated forms of lactic acid [1]. How-
ever, the authors did not perform deeper statistical analysis 
and the model did not predict well the experimental data. 
Thus, this study aimed to model the growth dependence of S. 

thermophilus and L. bulgaricus as a function of temperature 
and pH and to estimate and internally validate their growth 
parameters and confidence intervals with different modeling 
approaches.

Material and methods

Experimental data

The experimental data of twenty-four kinetic experiments 
regarding the growth of S. thermophilus and L. bulgaricus 
in a prepared medium of whey and yeast extract at con-
stant temperature and pH were kindly provided by Marzieh 
Aghababaie (personal communication). There are twelve 
datasets of pure culture of S. thermophilus (temperatures of 
34.3 °C, 36.0 °C, 40.0 °C, 44.0 °C, and 45.6 °C; pH of 5.36, 
5.70, 6.50, 7.30, and 7.63), as well as twelve datasets of pure 
culture of L. bulgaricus (temperatures of 38.3 °C, 40.0 °C, 
44.0 °C, 48.0 °C, and 49.6 °C; pH of 4.56, 4.90, 5.70, 6.50, 
and 6.83). An experimental design diagram is shown in 
supplementary file 1. The experimental data were used in 
a previous work by Aghababaie et al. [1], in which they 
were expressed and modeled in biomass base ( X , in g/L). 
In the current study, the experimental data were expressed 
and modeled as the logarithm of the microbial concentration 
base ( logN , in log CFU/mL).

Fitting the primary and secondary models 
with the two‑step modeling approach

The growth of each culture was described by the explicit 
form of the Baranyi and Roberts [6] primary model, as 
presented in Eqs. (1) and (2), in which i represents each 
microbial species ( S for S. thermophilus and L for L. bul-
garicus,yi = logNi (log CFU/mL) is the logarithm of the 
microbial concentration of each i species at time t (h); μi

max
 

 (h−1) is the maximum specific growth rate of each i spe-
cies; yi

0
= logNi

0
 (log CFU/mL) and yi

max
= logNi

max
 (log 

CFU/mL) are the logarithm of the initial and maximum 
cell concentrations, respectively, of each i species; and hi

0
 

(dimensionless) is related to the physiological state of each 
i species.
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0
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 , yi
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the twelve experimental datasets of each pure culture. The 
fitting procedure was performed using the fit function of 
the Curve Fitting Tool of the Matlab R2020b software 
(Mathworks, Natick, USA), with the non-linear least 
squares method and the trust-region reflective Newton 
algorithm. The goodness-of-fit statistical indexes coeffi-
cient of determination ( R2 ) and root-mean-squared errors 
( RMSE ) were provided by the software. Then, the average 
of all hi

0
 values of each i species was calculated ( hi

0,avg
 ) and 

fixed in the model. Finally, the three primary model 
parameters ( μi

max
 , yi

max
 , and yi

0
 ) were estimated again for 

each pure culture.
The μi

max
 parameter of the primary model is dependent on 

extrinsic and intrinsic factors, as temperature ( T ) and pH 
( pH ) in this study. Such dependences were modeled by the 
cardinal temperature and pH secondary models proposed by 
Rosso et al. [31], as given by Eqs. (3, 4, 5). The γi

T
 and γi

pH
 

functions describe the influence of the factors on μi
max

 of i 
species, and they are composed by biological-meaning 
parameters, in which μi

opt
  (h−1) is the maximum specific 

growth rate of each i species at the optimal condition; Ti
min

 , 
Ti
opt

 , and Ti
max

 are the minimum, optimum, and maximum 
temperatures for the growth of each i species, respectively; 
and pHi

min
 , pHi

opt
 , and pHi

max
 are the minimum, optimum, and 

maximum pH’s for the growth of each i species, respectively. 
As the fermentation processes were performed at tempera-
tures and pH’s below the maximum ( T < Tmax and 
pH < pHmax ) and above the minimum ( T > Tmin and 
pH > pHmin ), μimax

 values are always higher than zero; then, 
the if conditionals of Eqs. (4) and (5) related to these growth 
limits were not needed in the model.
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The seven secondary model parameters ( μi
opt

 , Ti
min

 , Ti
opt

 , 
Ti
max

 , pHi
min

 , pHi
opt

 , and pHi
max

 ) of each i microbial species were 
estimated for each of the twelve μi

max
 values of each pure cul-

ture. The fitting procedure was also performed using the fit 
function of the Curve Fitting Tool of the Matlab R2020b soft-
ware. The average of all yi

max
 values of each i species was cal-

culated ( yi
max,avg

 ) and considered in the internal model 
validation.
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Fitting the primary and secondary models 
with the one‑step modeling approach

The growth of each i pure culture was described by the 
differential form of the Baranyi and Roberts [6] primary 
model, as shown in Eqs. (6) and (7). The initial conditions 
for the Eqs. (6) and (7) were yi(0) = yi

0
 and Qi(0) = Qi

0
 , 

respectively, in which Qi
0
 is a parameter related to the phys-

iological state of cells ( hi
0
 ) of each i species at the time 

zero, as well as can be related to the adaptation time ( λi ) 
and �i

max
 of each microbial species, as given by Eq. (8). The 

Qi
0
 values of each i species were the same of the two-step 

modeling approach.

The dependence of the μi
max

 parameter of the primary 
model on the temperature ( T ) and pH were also modeled by 
the cardinal temperature and pH secondary models proposed 
by Rosso et al. [31], as given by Eqs. (3) to (5). The seven 
secondary model parameters ( μi

opt
 , Ti

min
 , Ti

opt
 , Ti

max
 , pHi

min
 , 

pHi
opt

 , and pHi
max

 ) and one primary model parameter ( yi
max

 ) 
of each i microbial species were estimated directly from all 
the twelve sets of experimental data of each pure culture. 
The fitting procedure to estimate the model parameters (and 
the estimation of the pairwise correlation values) from the 
experimental data was performed with the AMIGO_PE task 
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of the AMIGO2 R2019b toolbox [4] in the Matlab R2020b 
software, with the lsq cost function and Q_I (no weighting) 
cost type, ode45 solver, and sensmat to compute the 
sensitivities.

Identifiability analysis with a Monte Carlo–based 
approach

Identifiability analysis was performed with the AMIGO_Rident 
task of the AMIGO2 toolbox in the Matlab software. The com-
puter used to perform the simulations was a Lenovo Thinkpad 
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model T470, equipped with Intel® Core™ i7-7600U 2.90 GHz, 
8.00 GB RAM, and HD SSD 256 GB. The initial estimate of 
each model parameter was established from the values obtained 
in the one-step modeling approach, in which minimum and 
maximum allowed values of the parameters were established 
as − 30% and + 30% of the initial estimates, respectively. The 
Monte Carlo analysis was performed with 500 runs. The 
experimental noise was assumed as homoscedastic, with 10% 
of standard deviation in relation to the experimental data val-
ues. The results were expressed as frequency distributions of 
the model parameter estimates in intervals at every 0.1 units.

Internal model validation

The estimated parameters from two-step and one-step mod-
eling approaches were replaced in the primary and secondary 
models and, then, the model predictions ( pdi ) were compared 
with the observed data ( obi ) of the twelve sets of each pure 
culture with the purpose of internal model validation. The 
RMSE (Eq. (9)), percent bias factor ( %Bf , Eq. (12)), percent 
discrepancy factor ( %Df , Eq. (14)), and mean absolute error 
( MAE , Eq. (15)) were used to assess the ability of the model 
to describe the experimental data [5]. %Bf values higher than 
0 indicate that the model overpredicts the data, while %Bf val-
ues lower than 0 indicate that the model underpredicts the 
data. The RMSE and %Df are equal or higher than 0, in which 
higher values suggest higher discrepancies of the model to the 
experimental data.
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Results and discussion

Model parameters estimated from two‑step 
and one‑step modeling approaches

The parameters estimated in the first step of the two-step 
modeling approach from the fitting of the Baranyi and Rob-
erts primary model (Eqs. (1) and (2)) to the experimental 
data of L. bulgaricus and S. thermophilus are shown in 
Table 1. The model was able to describe the experimental 
data, with R2 ≥ 0.970 and RMSE ≤ 0.112 log CFU/mL. The 
Baranyi and Roberts model has been extensively used, with 
success, in predictive microbiology studies to describe the 
bacterial growth kinetics in foods [24, 25]. Silva et al. [32] 
chose the Baranyi and Roberts model to define the growth 
parameters of three LAB (Lactobacillus plantarum, Weis-
sella viridescens, and Lactobacillus sakei) because the val-
ues of statistical indices of this model were slightly better 
than the values of the modified Gompertz model.

The results showed in Table 1 allow one to observe that 
the initial ( y

0
 ) and maximum ( ymax ) concentrations of each 

specie in the experiments were close to each other. The 
closer y

0
 values in the experiments with inoculated medium 

is a good indicator that the inoculation procedure was well 
conducted and the closer ymax values is a good indicator that 
the maximum concentration of each microbial species tends 
to an average value, in which such average values can be 
fixed in the model. The averages of all the h

0
 values (1.91, 

1.25, 1.90, 0.31, 1.26, 0.42, 0.54, 1.04, 2.10, 2.20, 1.81, and 
1.47 for S. thermophilus, and 2.23, 2.08, 2.63, 1.02, 1.94, 
0.00, 0.17, 0.85, 3.23, 3.83, 2.98, and 2.27 for L. bulgari-
cus) of each species ( h

0,av ) were higher than 0, suggesting 
that both bacteria showed adaptation phases, corresponding 
to a higher adaptation for L. bulgaricus than S. thermophi-
lus. The h

0,av estimates presented satisfactory 95% confi-
dence intervals, since the adaptation time in the bacterial 
growth (related to the physiological state of cells, as shown 
in Eq. (8)) is the most uncertain parameter [7].

The �max model parameter showed narrower 95% con-
fidence intervals and high dependences on T  and pH . One 
can see a priori that, in general, lower and higher values of 
T  in the experimental range lead to lower values of �max 
for both bacteria, while intermediate values of T  lead to 
higher values of �max . On the other hand, in general, lower 
values of pH in the experimental range lead to lower and 
higher values of �max for S. thermophilus and L. bulgaricus, 

(15)MAE =
1

n

n∑
i=1

||pdi − obi
||
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respectively, while higher values of pH lead to the opposite 
(higher and lower values of �max for S. thermophilus and L. 
bulgaricus, respectively). These dependences were quanti-
tatively described by the secondary model (by γT and γpH ), 
as follows, in which the observation of the trends indicates 
the appropriate form of the model.

In the typical production of stirred yoghurt, with incuba-
tion at 42–43 °C, about 0.02% inoculum of highly concen-
trated culture is used, in which most yoghurt has a ratio of 
cocci to bacilli between 1:1 and 2:1 (Bylund, 2015) [11]. 
This inoculum level of LAB corresponds to the decimal level 
applied in the experiments of the current study (0.02% of 
 109 CFU/mL = 2 ×  107 CFU/mL). In this context of high ini-
tial concentration of the inoculum, one important trend that 
has been experimentally observed is that high initial cell con-
centrations tend to decrease the bacterial maximum specific 
growth rates [19]. Mathematically, high initial concentration 
also affects the estimation of the maximum specific growth 
rate because the term of the stationary phase ( 1 − e(y

i−yi
max) , 

Eq. (6)) of the Baranyi and Roberts model is directly affected 
by the concentration. For example, for a maximum concen-
tration of  109 CFU/mL and initial concentrations of  105,  106, 

and  107 CFU/mL, the resultant terms of the stationary phase 
are 0.982, 0.950, and 0.864, respectively; in a scenario with 
a low initial concentration, the term tends to one. Therefore, 
the value of the maximum specific growth rate can be under-
estimated when the initial concentration is high. The fitting 
of the primary and secondary models, Eqs. (3) to (8), with 
the one-step modeling approach resulted in lower values of 
RMSE and higher values of R2 than the two-step modeling 
approach for both species, L. bulgaricus and S. thermophilus. 
Furthermore, Akkermans et al. [2] stated that the two-step 
modeling approach results in less precise and less accurate 
calculations of the 95% confidence bounds than the one-step 
method when applying the commonly used linear approxima-
tion, corroborating the results of this study. Information on 
the variability of the model parameters is lost by making the 
intermediate step in the two-step method [2].

The models were able to describe the experimental data, 
as indicated by low RMSE and high R2 values, as shown in 
Table 1. The eight model parameters estimated for each spe-
cies in the fits are shown in the same table. The estimated 
parameters indicate that minimum, optimal, and maximum 
values for each factor ( T and pH ) are different for each 

Table 1  Model parameters (± 95% confidence intervals) and statistical indexes of the fitting of the primary model, Eqs. (1) and (2), to S. thermo-
philus and L. bulgaricus growth data from the experimental data of twelve datasets of each pure culture

Microorganism Set T(°C) pH �max(1/h) y
0
(log CFU/mL) ymax(log CFU/mL) R2 RMSE(log 

CFU/mL)

S. thermophilus 1 36 5.7 0.759 (± 0.075) 7.47 (± 0.08) 9.45 (± 0.18) 0.995 0.048
h
0,av = 1.35(±0.66) 2 36 7.3 0.893 (± 0.083) 7.48 (± 0.09) 9.44 (± 0.12) 0.995 0.052

3 44 5.7 0.923 (± 0.084) 7.34 (± 0.07) 8.87 (± 0.08) 0.995 0.041
4 44 7.3 1.087 (± 0.131) 7.50 (± 0.15) 9.54 (± 0.13) 0.990 0.080
5 34.34 6.5 1.122 (± 0.052) 7.35 (± 0.05) 9.23 (± 0.04) 0.998 0.028
6 45.65 6.5 1.019 (± 0.134) 7.50 (± 0.15) 9.46 (± 0.15) 0.988 0.081
7 40 5.36 1.165 (± 0.091) 7.49 (± 0.07) 9.03 (± 0.05) 0.996 0.039
8 40 7.63 1.270 (± 0.137) 7.30 (± 0.14) 9.38 (± 0.10) 0.991 0.075
9 40 6.5 1.186 (± 0.102) 7.33 (± 0.11) 9.35 (± 0.08) 0.994 0.058
10 40 6.5 1.247 (± 0.201) 7.31 (± 0.21) 9.38 (± 0.15) 0.980 0.112
11 40 6.5 1.020 (± 0.060) 7.19 (± 0.08) 9.51 (± 0.08) 0.998 0.043
12 40 6.5 1.026 (± 0.125) 7.03 (± 0.17) 9.46 (± 0.19) 0.989 0.095

L. bulgaricus 1 40 4.9 1.208 (± 0.056) 6.65 (± 0.05) 8.30 (± 0.04) 0.998 0.029
h
0,av = 1.94(±1.20) 2 40 6.5 0.766 (± 0.031) 6.83 (± 0.02) 8.37 (± 0.07) 0.999 0.015

3 48 4.9 1.024 (± 0.131) 6.69 (± 0.12) 8.23 (± 0.13) 0.986 0.069
4 48 6.5 0.910 (± 0.088) 6.92 (± 0.06) 8.07 (± 0.08) 0.993 0.035
5 38.34 5.7 0.982 (± 0.111) 6.77 (± 0.10) 8.39 (± 0.13) 0.990 0.062
6 49.65 5.7 0.859 (± 0.173) 6.70 (± 0.12) 7.98 (± 0.21) 0.974 0.076
7 44 4.56 1.095 (± 0.209) 6.87 (± 0.18) 8.36 (± 0.17) 0.970 0.102
8 44 6.83 1.001 (± 0.102) 6.80 (± 0.08) 8.09 (± 0.09) 0.992 0.045
9 44 5.7 1.081 (± 0.113) 6.86 (± 0.10) 8.39 (± 0.10) 0.991 0.058
10 44 5.7 1.013 (± 0.130) 6.84 (± 0.12) 8.48 (± 0.15) 0.986 0.073
11 44 5.7 1.124 (± 0.095) 6.79 (± 0.09) 8.41 (± 0.08) 0.994 0.050
12 44 5.7 1.330 (± 0.092) 6.69 (± 0.08) 8.29 (± 0.05) 0.996 0.042
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species. The estimated optimum temperature for L. bulga-
ricus ( Topt = 43.5 ± 1.0 ) was slightly higher than that of S. 
thermophilus ( Topt = 41.0 ± 2.9 ), although they are statisti-
cally equivalent. On the other hand, the estimated optimum 
pH for S. thermophilus ( pHopt = 7.44 ± 0.71 ) was statisti-
cally higher than that of L. bulgaricus ( pHopt = 4.91 ± 0.24 ). 
Both estimated trends corroborate the literature [1, 9, 30], 
although the estimated values for the parameters may differ 
from the literature.

The maximum specific growth rates estimated for both 
bacteria (logarithmic base 10) at optimal conditions ( �opt ) 
were close (~ 1.24  h−1). These estimates indicate that S. 
thermophilus incubated at T  = 41.0 °C and pH = 7.44 or L. 
bulgaricus at T = 43.5 °C and pH = 4.91 may have doubling 
times as low as ~ 15 min. Beal and Corrieu [8] estimated 
maximum specific growth rates (logarithm natural base) as 
high as 3.84  h−1 for S. thermophilus 404 at pH = 6.70 and 
T  = 37.5 °C, and 3.96  h−1 for L. bulgaricus 398 at pH = 
5.20 and T  = 42.0 °C, leading to doubling times as low 
as ~ 11 min. Aghababaie et al. [1] estimated maximum spe-
cific growth rates (from biomass data, in g/L) of 1.18  h−1 for 
S. thermophilus at pH = 6.87 and T = 42.8 °C, and 1.95  h−1 
for L. bulgaricus at pH = 5.25 and T  = 44.0 °C. However, 
these estimates cannot be directly compared to the results of 
the present study because they were obtained from different 
basis (log CFU/mL and g/L). The maximum specific growth 
rate is affected by many factors related to the organism (e.g., 
serotype, physiological state of the cells) and the medium 
(e.g., composition, environment).

The parameters related to the minimum ( Tmin and pHmin ) 
and maximum ( Tmax and pHmax ) values of the factors were 
estimated with reasonable extrapolation considering the 
temperatures (34.3 o 49.6 °C) and pH (4.56 to 7.63) ranges 
applied experimentally, as shown in Table 2. Then, the esti-
mated values of these parameters did not have high accu-
racy, as can be seen by their wider 95% confidence intervals 

(Table 2). Concerning the experiment design based on the 
sensitivity functions, Bernaerts et al. (2005) [10] suggest 
selecting temperature/pH levels at/near the maxima of the 
model output sensitivities because data at these positions have 
the largest influence on the parameter values, and experimen-
tal errors at these points shall have major (adverse) effects on 
the parameter values during parameter estimation.

The pairwise correlation values (results in Table 3) 
for temperature parameters show that Tmin , Topt , and Tmax 
estimates were highly correlated (in bold), mainly Tmin 
and Tmax . Le Marc et al. [22] stated that strong linear cor-
relations were highlighted between the cardinal tempera-
ture parameters that were valid across a range of different 
bacterial species. On the other hand, for pH parameters, 
pHmin , pHopt , and pHmax estimates were less correlated. 
The μopt and ymax parameters showed a low correlation to 
the other parameters.

The γi
T
 and γi

pH
 functions aim at reducing the specific 

growth rate values as a function of the factor levels ( T and 
pH ) from the multiplication in the root equations, such as 
Eq. (3). The response of these functions should be positive 
and lower or equal to one (to the optimal condition). The 
functions γi

T
 and γi

pH
 given by Eqs. (4) and (5), respectively, 

show the expected behavior, as can be seen in Fig. 1. The 
analysis of the temperature function γi

T
 shows that L. bulga-

ricus is more sensitive to temperature variations than S. ther-
mophilus. For instance, from Eq. (4), a change of ~ 3.6 °C in 
the incubation temperature of L. bulgaricus can lead to 
a ~ 10% drop in its specific growth rate with respect to the 
optimal one, whereas a change of ~ 4.7 °C would be required 
for S. thermophilus. A similar analysis of the pH function 
γi
pH

 , Eq. (5), suggests that both bacteria, L. bulgaricus and 
S. thermophilus, have similar sensitivities to pH variations. 
For instance, a change of ~ 0.88 pH units in the incubation 
can lead to a ~ 10% drop in the maximum specific growth 
rate of each bacterium in relation to the optimal one.

Table 2  Secondary growth 
parameters (± 95% confidence 
intervals), Eqs. (3) to (5), of S. 
thermophilus and L. bulgaricus 
estimated with the two-step and 
one-step modeling approaches 
from the experimental data of 
twelve datasets of each pure 
culture

Model parameters L. bulgaricus S. thermophilus

Two-step One-step Two-step One-step

�opt

(
h1
)

1.26 (± 0.68) 1.25 (± 0.08) 1.35 (± 0.35) 1.23 (± 0.09)
Tmin(

◦C) 22.9 (± 195.3) 20.4 (± 19.4) 18.6 (± 58.3) 15.1 (± 78.8)
Topt (

◦C) 43.9 (± 10.5) 43.5 (± 1.0) 40.5 (± 5.1) 41.0 (± 2.9)
Tmax(

◦C) 54.5 (± 35.2) 53.4 (± 2.4) 47.3 (± 6.5) 55.2 (± 25.2)
pHmin 4.49 (± 2.29) 3.27 (± 2.15) 5.12 (± 1.25) 2.98 (± 2.14)
pHopt 4.84 (± 3.64) 4.91 (± 0.24) 6.17 (± 1.22) 7.44 (± 0.71)
pHmax 11.75 (± 24.21) 9.28 (± 1.56) 10.22 (± 8.31) 8.60 (± 4.63)
ymax 8.28 (± 0.16) 8.32 (± 0.04) 9.34 (± 0.20) 9.37 (± 0.06)
Goodness-of-fit indexes
R2 0.761 0.967 0.724 0.956
RMSE 0.136 0.094 0.212 0.137
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Identifiability analysis

The frequency distributions of the model parameters estimated 
from 500 runs of the Monte-Carlo identifiability analysis for 
the growth of S. thermophilus and L. bulgaricus are presented 
in Figs. 2 and 3, respectively. The time to compute the 500 runs 
in Matlab with the AMIGO2 toolbox was about 36 h for each 
microorganism. Some model parameters, especially the opti-
mal ones ( μopt , Topt , and pHopt ), showed frequency distributions 

which can be interpreted as normal distributions, with one peak 
with higher frequency around the mean value and narrow 95% 
confidence intervals. Poschet et al. [29] stated that, for a high 
number of data points, all the Baranyi and Roberts model 
parameter distributions tend to normality. On the other hand, 
the parameters related to minimum and maximum values of the 
T and pH factors ( Tmin , Tmax , pHmin , and pHmax ) showed irregu-
lar frequency distributions, with high frequencies in the boards 
of the parameter intervals (± 30% of the parameter values). The 

Table 3  Correlation values 
of the model parameters of S. 
thermophilus and L. bulgaricus 
estimated from the one-step 
modeling approach. Estimates 
highly correlated are shown in 
bold

S. thermophilus �opt Tmin Topt Tmax pHmin pHopt pHmax ymax

�opt 1.000  − 0.217 0.219  − 0.274  − 0.459  − 0.143  − 0.449  − 0.412
Tmin  − 0.217 1.000  − 0.935 0.969  − 0.033  − 0.036  − 0.039  − 0.030
Topt 0.219  − 0.935 1.000  − 0.887 0.040 0.046 0.049 0.023
Tmax  − 0.274 0.969  − 0.887 1.000  − 0.032 0.012  − 0.013  − 0.034
pHmin  − 0.459  − 0.033 0.040  − 0.032 1.000 0.613 0.906 0.018
pHopt  − 0.143  − 0.036 0.046 0.012 0.613 1.000 0.863 0.005
pHmax  − 0.449  − 0.039 0.049  − 0.013 0.906 0.863 1.000 0.029
ymax  − 0.412  − 0.030 0.023  − 0.034 0.018 0.005 0.029 1.000
L. bulgaricus �opt Tmin Topt Tmax pHmin pHopt pHmax ymax

�opt 1.000 0.416  − 0.232 0.244 0.627 0.092 0.460  − 0.425
Tmin 0.416 1.000  − 0.771 0.903 0.204 0.066 0.164 0.002
Topt  − 0.232  − 0.771 1.000  − 0.901  − 0.150 0.087  − 0.198  − 0.032
Tmax 0.244 0.903  − 0.901 1.000 0.177  − 0.086 0.226 0.071
pHmin 0.627 0.204  − 0.150 0.177 1.000 0.330 0.866 0.027
pHopt 0.092 0.066 0.087  − 0.086 0.330 1.000  − 0.082  − 0.045
pHmax 0.460 0.164  − 0.198 0.226 0.866  − 0.082 1.000 0.074
ymax  − 0.425 0.002  − 0.032 0.071 0.027  − 0.045 0.074 1.000

Fig. 1  Curves of the � functions 
(continuous lines), Eqs. (4) and 
(5), for a L. bulgaricus to the 
temperature ( �L

T
 ), b S. thermo-

philus to the temperature ( �S
T
 ), 

c L. bulgaricus to the pH ( �L
pH

 ), 
and d S. thermophilus ( �S

pH
 ) to 

the pH. The circles (symbols) 
represent the levels of each fac-
tor in which experiments were 
performed
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higher uncertainties in the minimum and maximum parameters 
than the optimum ones can be justified by the experimental 
design. The experiments were performed in levels close to the 

optimal conditions and far from minimum and maximum ones. 
In other words, there are experiments performed close to the 
optimal levels of each factor, but there are not experiments close 

3.03
(±0.84)

7.55
(±2.06)

8.97
(±2.21)

14.9
(±4.7)

41.2
(±9.0)

57.9
(±13.9)

1.33
(±0.27)

9.38
(±0.35)

2.98
7.44 8.60

15.1 41.0
55.2

1.23
9.37

Fig. 2  Frequency distributions (vertical bars) of the S. thermophilus 
growth parameters estimated from 500 runs in the Monte-Carlo simu-
lations. Vertical lines: initial and average values of the model parame-
ters. Horizontal lines: 95% confidence intervals of model parameters. 

Underlined number: estimated value from the experimental data. Ital-
icized number (± 95% confidence interval): estimated value from the 
Monte-Carlo analysis



331Brazilian Journal of Microbiology (2023) 54:323–334 

1 3

to maximum and minimum levels. Therefore, the accuracy of 
the model parameters would be improved with experiments per-
formed close to maximum and minimum levels of each factor.

The values of the estimated parameters from the fitting with 
one-step model approach and the Monte-Carlo analysis were 

similar, corroborating with Akkermans et al. [2], with stated 
that average values of the parameter estimates approximated 
the nominal (given) values. Every parameter estimated in the 
one-step modeling approach was inside the 95% confidence 
interval of the model parameters estimated in the Monte-Carlo 

1.32
(±0.30)

8.34
(±0.29)

53.9
(±15.6)

43.1
(±3.8)

20.7
(±5.8)

3.25
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(±1.20)

9.48
(±2.59)

3.27
4.91

9.28

20.4
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1.25 8.32

Fig. 3  Frequency distributions of the L. bulgaricus growth parameters estimated from 500 runs in the Monte-Carlo simulations. Vertical lines: 
initial and average values of the model parameters. Horizontal lines: 95% confidence intervals of model parameters
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analysis, as can be seen in Figs. 2 and 3. These results are 
desirable and reinforces that one-step modeling approach can 
provide reliable estimation for the model parameters.

Internal model validation

The values of the statistical indexes RMSE , %Bf , %Df , and 
MAE calculated in the internal validation of the primary and 
secondary model parameters of S. thermophilus and L. bulga-
ricus estimated from the two-step and the one-step modeling 
approaches are shown in Table 4. The RMSE values calculated 
from the one-step were, in general, lower (averages of 0.125 
and 0.090 log CFU/mL for S. thermophilus and L. bulgaricus, 
respectively) than the values from the two-step (averages of 
0.306 and 0.104 log CFU/mL for S. thermophilus and L. bul-
garicus, respectively). The same behavior was observed for 
%Df  (averages of 1.5% and 1.2% for S. thermophilus and L. 

bulgaricus, respectively) and MAE values (averages of 0.100 
and 0.070 log CFU/mL for S. thermophilus and L. bulgaricus, 
respectively). Therefore, these results indicate that the param-
eters estimated from one-step approach resulted in lower mean 
residuals and discrepancy of the model to the experimental 
observations than that estimated from the two-step approach. 
Pin et al. [27] stated that values between 25 and 50% for the 
discrepancy between model predictions and observations have 
been reported as acceptable when validating other models.

The %Bf values calculated from the one-step modeling 
approach were, in general, closer to zero (averages of 0.0% 
and − 0.1% for S. thermophilus and L. bulgaricus, respectively) 
than the values from the two-step modeling approach (averages 
of 2.0% and − 0.2% for S. thermophilus and L. bulgaricus, respec-
tively). Dalgaard (2000) [14] considers that the performance of 
a model developed for spoilage bacteria is acceptable when the 
bias factor is lower than 1.25, which correspond to a %Bf lower 

Table 4  Statistical indexes (root-mean-squared errors, RMSE ; per-
cent bias, %Bf  ; percent discrepancy, %Df  ; and mean absolute errors, 
MAE ) calculated in the internal validation of the primary and second-

ary model parameters of S. thermophilus and L. bulgaricus estimated 
from two-step and one-step modeling approaches

a Levels of the factors (temperature and pH) for each dataset can be verified in Table 1
b  RMSE and MAE are expressed as log CFU/mL

Microorganism Seta Two-step approach One-step approach

RMSE b %Bf %Df MAE b RMSE b %Bf %Df MAE b

S. thermophilus 1 0.264 2.7% 3.1% 0.230 0.065 0.5% 0.8% 0.052
2 0.061 0.2% 0.7% 0.052 0.180 1.7% 2.1% 0.149
3 0.366 4.0% 4.3% 0.337 0.250 2.4% 2.9% 0.209
4 0.317  − 3.5% 3.7% 0.300 0.120  − 1.0% 1.4% 0.092
5 0.093  − 0.6% 1.1% 0.076 0.118  − 0.8% 1.4% 0.098
6 0.441  − 4.8% 5.2% 0.408 0.111  − 1.0% 1.3% 0.087
7 0.165  − 0.8% 2.0% 0.141 0.214  − 1.6% 2.6% 0.177
8 0.214  − 2.1% 2.5% 0.181 0.074  − 0.3% 0.9% 0.059
9 0.123 1.1% 1.5% 0.094 0.064  − 0.1% 0.8% 0.042
10 0.132 0.7% 1.7% 0.091 0.127  − 0.5% 1.5% 0.095
11 0.221 1.7% 2.7% 0.177 0.087 0.4% 1.1% 0.070
12 0.227 1.8% 2.8% 0.167 0.091 0.1% 1.1% 0.066
Average 0.306  − 2.0% 3.6% 0.188 0.125 0.0% 1.5% 0.100

L. bulgaricus 1 0.053  − 0.5% 0.7% 0.040 0.031  − 0.1% 0.4% 0.020
2 0.114 1.3% 1.5% 0.102 0.101 1.2% 1.3% 0.091
3 0.093 0.8% 1.2% 0.077 0.083 0.6% 1.1% 0.066
4 0.090 0.5% 1.2% 0.076 0.079  − 0.2% 1.0% 0.065
5 0.111  − 1.2% 1.4% 0.093 0.073  − 0.6% 0.9% 0.051
6 0.137 0.2% 1.9% 0.122 0.130  − 0.7% 1.8% 0.108
7 0.156  − 1.6% 2.1% 0.125 0.112  − 0.5% 1.6% 0.055
8 0.090 0.0% 1.2% 0.078 0.111  − 0.8% 1.5% 0.089
9 0.079 0.0% 1.0% 0.068 0.076 0.3% 1.0% 0.061
10 0.123 0.3% 1.6% 0.106 0.122 0.6% 1.6% 0.098
11 0.084  − 0.5% 1.1% 0.072 0.066  − 0.2% 0.9% 0.054
12 0.120  − 1.2% 1.5% 0.093 0.102  − 0.9% 1.3% 0.077
Average 0.104  − 0.2% 1.4% 0.088 0.090  − 0.1% 1.2% 0.070
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than 25%. Therefore, these results indicate that the parameters 
estimated from one-step approach resulted in lower bias of the 
model to underestimate or overestimate the experimental obser-
vations than that estimated from the two-step approach.

The experimental data and the mathematical model 
curves obtained in the calculation of the internal model 
validation with the parameters estimated from the one-step 
modeling approach are shown in supplementary file 2. The 
most pronounced overprediction (dataset 3, %Bf = 2.4% ) 
and underprediction (dataset 7, %Bf = −1.6% ) of the growth 
of S. thermophilus occurred at lower pH values (5.7 and 
5.36). The biased predictions of L. bulgaricus were less 
pronounced, in which the highest overprediction (dataset 2, 
%Bf = 1.2% ) occurred at a high pH value (6.5). Therefore, 
the biased predictions occurred more as a function of the pH 
levels farther from the optimum for each species than as a 
function of the temperature.

Conclusion

The Baranyi and Roberts primary model and Rosso and cowork-
ers’ secondary model were able to describe the growth data of 
pure cultures of S. thermophilus and L. bulgaricus. The model 
fitting with the one-step modeling approach showed better 
statistical results (higher R2 , lower RMSE , and narrower 95% 
confidence intervals of model parameters) than the two-step 
approach. The values of the eight growth parameters ( μopt , Tmin , 
Topt , Tmax , pHmin , pHopt , pHmax , and ymax ) for each culture esti-
mated from the fitting with the one-step model approach and the 
Monte-Carlo analysis were similar, as desirable reinforcing that 
the one-step modeling approach can provide reliable estimation 
for the model parameters. In the internal model validation, the 
averaged RMSE (0.125 and 0.090 log CFU/mL), %Df ( 1.5% and 
1.2% ), and MAE (0.100 and 0.070 log CFU/mL) values for S. 
thermophilus and L. bulgaricus, respectively, indicate that the 
parameters resulted in low mean residuals and discrepancy of 
the model to the experimental observations. %Bf values close 
to 0 (averages of 0.0% and − 0.1% for S. thermophilus and L. 
bulgaricus, respectively) indicate that the parameters estimated 
resulted in a low bias of the model to underestimate or overesti-
mate the experimental observations.

The results of the current study can help researchers to 
improve their knowledge of the effect of temperature and pH 
on the growth of starter cultures of milk products, including 
the importance of choosing adequate levels of each factor 
in the experimental design, the best modeling approach for 
the parameter estimation, and the need to validate the model. 
Furthermore, the values of the growth parameters estimated 
for each species (S. thermophilus and L. bulgaricus) and 
their respective ± 95% confidence intervals can be helpful 
to further develop the fermentation process.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42770- 023- 00907-5.
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