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Abstract
Bacillus sp. WD22, previously isolated from refinery effluent, degraded 71% of C8 hydrocarbons present in 1.0% v/v PCO 
in seawater (control medium), which reduced to 16.3%, on addition of yeast extract. The bacteria produced a biosurfactant 
in both media, whose surface was observed to be amorphous in nature under FESEM-EDAX analysis. The biosurfactant 
was characterized as a linear surfactin by LCMS and FT-IR analysis. The critical micelle concentration was observed as 
50 mg/L and 60 mg/L at which the surface tension of water was reduced to 30 mN/m. Purified biosurfactant could emulsify 
petroleum-based oils and vegetable oils effectively and was stable at all tested conditions of pH, salinity and temperature 
up to 80 °C. The biosurfactant production was found to be mixed growth associated in control medium, while it was strictly 
growth associated in medium with yeast extract as studied by the Leudeking-Piret model.
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Introduction

Petroleum crude oil (PCO) is the world’s most used energy 
source because it is relatively abundant, highly energy dense 
and can be easily transported across the world [1]. Most of 
the PCO transportation is done via marine vessels, barges, 
rail cars, underground and underwater pipelines, which 
results in widespread contamination [2]. The contamina-
tion of PCO in the marine environment often occurs due to 
shell and barge washing, exploration activities and natural 
oil seepage into sea beds with oil spills, contributing to more 
than 60% of oil release. The repercussions of transfer of PCO 
into marine environment are daunting as PCO consists of 
substantial quantities of polyaromatic hydrocarbons (PAH) 
in addition to asphaltenes, resins and aliphatic hydrocarbons 

[3]. They are proven to exhibit damaging toxicity in marine 
birds and animals in addition to severely harming marine 
ecosystems [4]. Hence, the complete removal of PCO from 
the polluted marine environment is very essential. Among 
various methods of PCO removal, bioremediation, by the 
use of indigenous microorganisms, is the most sustain-
able technique, as it completely mineralizes the pollutants, 
thereby facilitating their removal from the environment. The 
successful use of bioremediation in cleaning up of oil spill 
by Exxon Valdez oil tanker in the Gulf of Alaska in 1989 
opened up prospects of this technology in treatment of oil 
spills [5]. Since PCO is highly hydrophobic, its solubility in 
the oil is limited, and in order to overcome this, chemical 
surfactants are applied to enhance the PCO solubility, which 
often results in secondary pollution [6]. Another advantage 
of using microbes for remediation is that, on exposure to 
oils, most of them secrete biosurfactants extracellularly or 
attached onto their cell wall with potential advantages such 
as low toxicity, biodegradability and stability to wide range 
of salinity, pH and temperature [7].

Biosurfactant production and PCO degradation depends 
on factors like carbon and nitrogen sources and culture con-
ditions such as pH, temperature and agitation speed [8, 9]. 
When crude oil spills occur in the marine environment, there 
is a sudden spike in the carbon content; however, the nitrogen 
becomes a rate-limiting factor as seas and oceans have very 
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low amounts of nitrogen [10]. Addition of organic nitrogen 
could possibly increase the biosurfactant production and sub-
sequent PCO degradation by microorganisms. Degradation of 
PCO in seawater by microbes is currently gaining significance 
as recent literature shows substantial studies on the same. 
Strains of Pseudomonas, Rhodococcus, Bacillus and indig-
enous bacterial communities have been employed enhanced 
degradation of PCO in seawater with an aim to employ them 
for oil spills [11–13]. Our research group has previously 
reported biosurfactant-mediated degradation of PCO in sea-
water by strains of Acinetobacter and Pseudomonas, on sup-
plementation with glucose and yeast extract [14, 15].

Hence, the present study reports the biosurfactant-medi-
ated degradation of PCO in seawater by Bacillus sp. WD22, 
previously isolated from refinery effluent by our research 
group [16]. The aim of the study is to analyse the compo-
sition, properties and production kinetics of biosurfactant 
secreted on exposure to PCO in seawater supplemented with 
glucose and yeast extract, which has been reported for the 
first time.

Materials and methods

Substrates, chemicals and bacteria

Sea water used in this study was obtained from eastern 
shore of Arabian Sea in Surathkal situated in Karnataka, 
India. PCO was obtained from a refinery industry situated in 
Mangalore, Karnataka, India. Bacillus sp. WD22 (GenBank 
Accession ID: MK355614) was previously isolated from 
refinery effluent [16]. All the other substrates and chemicals 
used were of analytical grade.

Growth of Bacillus sp. WD22, PCO degradation 
and biosurfactant production in seawater 
under nutrient supplementation

Control medium was prepared by supplementing sea water 
(100 mL) with 1.0 g/L of glucose. To study the effect of 
nitrogen supplementation on degradation of PCO by Bacil-
lus sp. WD22, another medium was prepared by supple-
menting yeast extract (0.05 g/L) to the control. The media 
were sterilized at 121 °C, 15 lbs pressure for 20 min, and 
inoculated with 5.0% v/v of 16-h-old Bacillus sp. WD22 
 (108 CFU/mL). Inoculated media were then incubated at 
an agitation speed of 100 rpm, 27 °C at pH 8.1 (meas-
ured pH of sea water). The growth of Bacillus sp. WD22 
was determined by measuring dry weight of biomass after 
15 days of incubation.

Estimation of degradation of PCO by gas chromatography 
(GC)

Media were centrifuged at 10,000 rpm for 15 min, and 
cell-free supernatant (CFS, 80 mL) was separated care-
fully devoid of any PCO. The left over CFS with resid-
ual PCO was mixed with hexane (1:4), and the oil was 
extracted using an extraction funnel. The moisture content 
was removed by passing it over anhydrous sodium sul-
phate. PCO was also extracted from the control sample 
(media without addition of bacteria).

Extracted PCO samples (1.0 µL) were injected to a GC 
(Perkin Elmer Clarus 680) with flame ionization detector 
for a run time of 32 min with helium as the carrier gas. 
The inlet initial and final temperature was maintained at 
60 °C and 250 °C, respectively. The following formula was 
used for the estimation of % degradation of PCO.

where Ac and As are the total area under the curve for control 
and bacteria-treated PCO.

Screening tests for detection of biosurfactant production

The production of biosurfactant by Bacillus sp. WD22 
during degradation of PCO in sea water under nutrient 
supplementation was tested by emulsification index meas-
urement, bacterial adhesion to hydrocarbons (BATH test) 
and oil clearance assay [17].

Equal volumes of CFS and PCO were vortexed vigor-
ously for 15 min and allowed to stand for 24 h. The height 
of the emulsified layer and total height was measured, and 
emulsification index, as a measure of emulsification activ-
ity, was calculated as follows:

where He and Ht are the heights of emulsified layer and the 
total solution, respectively [18].

The ability of bacteria to adhere to PCO was determined 
by performing the BATH test. Bacillus sp. WD22 cells 
separated by centrifugation were taken and suspended in 
phosphate buffer pH 7.0, and optical density at 600 nm 
 (OD600) was measured. The suspension (2.0 mL) was vor-
texed at high speed with PCO (100 μL) and allowed to 
stand for 1 h post which  OD600 was measured again. The 
adherence of Bacillus sp. WD22 to PCO was calculated 
as follows:

(1)% Degradation = Ac − As∕Ac ∗ 100

(2)E24 Index =
He

Ht
∗ 100

(3)% Adherence =
ODi − ODo

ODi
∗ 100
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where ODo and ODi are the optical densities after and before 
mixing of cells with PCO, respectively [19].

CFS (10 μL) was dropped to PCO (0.5 mL) spread over 
20 mL of distilled water on a Petri plate. The clearance of PCO 
on addition of CFS depicts the presence of biosurfactant [14].

Extraction of biosurfactant produced by Bacillus sp. WD22

Biosurfactant produced by Bacillus sp. WD22 was extracted 
by the acid precipitation method. CFS was acidified to pH 2.0 
and refrigerated for 16 h for precipitation of biosurfactant. 
CFS was then centrifuged at 8000 rpm for 20 min, and the 
pellet (precipitated biosurfactant) was dissolved in phosphate 
buffer pH. It was dialysed using a dialysis membrane with 
distilled water overnight to separate the salts of sea water [20]. 
Extraction was performed with chloroform/methanol mixture 
(2:1) as the solvent post which the organic phase was sepa-
rated. On complete evaporation at 50 °C, a white powdery 
mass was left behind which was the dried biosurfactant. The 
weight was measured, and yield was calculated in both cases. 
Biosurfactants were then stored at − 20 °C until analysis.

Compositional and structural analysis of purified 
biosurfactants

The qualitative analysis of biosurfactants was performed by 
Anthrone test, Molisch test and ethanol emulsion test to detect the 
presence of proteins, carbohydrates and lipids. The quantification 
of proteins and lipids was then carried out by Lowry’s method 
[21] and modified phenol/sulphuric acid method [22], respectively.

The structure of biosurfactant produced in control medium 
and medium with yeast extract was analysed and compared 
by field emission scanning electron microscopy and energy 
dispersive X-ray (FESEM/EDAX) and liquid chromatogra-
phy mass spectroscopy (LCMS). Dried biosurfactant were 
subjected to gold sputtering and fixed on to aluminium stubs. 
They were then visualized under different magnifications by 
FESEM (JEOLJSM-7800F). EDAX was performed to deter-
mine the elemental composition. In order to study the com-
position of biosurfactant by LCMS, 1 μg/ml of dried biosur-
factant dissolved in acetonitrile was injected to LCMS (1260 
Infinity LC fitted with 6410 Triple Quadruple MS, Agilent 
Technologies, USA). The analysis was performed in full scan 
positive mode from m/z 200 to 2000 with conditions.

Estimation of critical micelle concentration (CMC)

The measurement of surface tension of solutions of varying 
concentrations of purified biosurfactant was carried out by 
using a Sigma 70 Tensiometer (KSV Instruments Ltd., Fin-
land) using the DuNouy method. The CMC of each of the 
biosurfactant grown in both media was determined by plotting 
a graph of surface tension and biosurfactant concentration.

Estimation of stability of purified biosurfactant 
produced by Bacillus sp. WD22

Aqueous solution (2.0  mL) of purified biosurfactant 
(250 mg/L) was maintained at different pH (2.0–12.0) and 
salinity conditions (2–12%) for 2 h. To analyse the stability 
under different temperatures, solutions were stored at 4 °C, 
25 °C, 37 °C, 40 °C and 50 °C for 24 h, 60–80 °C for 2 h 
and 90–100 °C for 30 min. After incubation, the solutions 
were mixed with PCO (2 ml) by vortexing, and E24 index 
was calculated as explained earlier.

Emulsification activity of purified biosurfactants 
produced by Bacillus sp. WD22

Emulsification activity of purified biosurfactants produced 
by Bacillus sp. WD22 was tested against petroleum oils such 
as PCO, used engine oil (UEO), fresh motor oil (FMO) and 
vegetable oils such as sunflower, gingelly, palm, coconut 
and olive oil. Briefly, equal volumes of aqueous solutions 
of purified biosurfactant (250 mg/L) and oils were vortexed, 
and E24 index was calculated.

Bacillus sp. WD22 growth and biosurfactant 
production kinetics

Control medium and medium with yeast extract were pre-
pared and sterilized as described earlier. Same inoculum 
and culture conditions were also maintained. The bacterial 
growth, biosurfactant yield, E24 index and glucose concen-
tration were monitored at interval of 24 h up to 15 days. Sea 
water without the inoculum was maintained as the control 
sample. Biosurfactant yield, biomass concentration and E24 
index were obtained as described earlier. The concentration 
of glucose was measured by DNSA method.

Logistic model was used to determine the kinetic param-
eters of growth of Bacillus sp. WD22:

where µmax, Xo and Xmax are the maximum specific growth 
rate  (h−1), initial biomass concentration (g  L−1) and maxi-
mum biomass concentration (g  L−1); A = X/Xmax [14].

In order to study the biosurfactant production kinetics of 
Bacillus sp. WD22 in sea water supplemented with PCO and 
nutrients, the linear form of Leudeking and Piret model was 
employed.

(4)�maxt = ��

(

Xmax

Xo

)

+ ln(
A

1 − A
)

(5)Pt − Po

B(t)
= �

(

A(t)

B(t)

)

+ �
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where Pt and Po are the product concentrations at time t and 
0, respectively,  � and � are the growth-associated and non-
growth-associated constants, respectively, and

On the basis of values of α and β, type of biosurfactant 
production kinetics can be determined.

Statistical analysis

All experiments were performed in triplicates. The results 
obtained are expressed as mean ± standard deviation.

Results and discussion

Degradation of PCO by Bacillus sp. WD22 
in seawater supplemented with nutrients

The pH of medium and temperature of incubation was 
adjusted to 8.1 and 27 °C as the average pH and sub-
surface temperature of Indian seawater ranges between 

(6)A(t) = Xo{e
�maxt∕

[

1.0 −

(

Xo

Xmax

)

(

1 − e�maxt
)

]

− 1.0}

(7)B(t) =
Xmax

�max

ln

[

1.0 −

(

Xo

Xmax

)

(

1 − e�maxt
)

]

7.5–8.4 and 25–28 °C, respectively [3, 23]. The growth 
of Bacillus sp. WD22 was less in presence of yeast 
extract (3.73 ± 1.02  g/L) as compared to its absence 
(3.95 ± 2.38 g/L) after 15 days. The bacteria degraded 
71.33% of C8 hydrocarbons in the control medium 
(Table 1). However, when yeast extract was added, the 
degradation reduced to 16.25%. In the absence of yeast 
extract, the bacteria utilized C8 hydrocarbons, whereas 
supplementation of yeast extract provided nutrients for its 
growth [24]. PCO degradation reduced by 47% on addition 
of ammonium chloride as the nitrogen source by a bacte-
rial consortium in soil, while Bacillus subtilis, isolated 
from petroleum contaminated soil, degraded 65% of 0.3% 
v/v PCO at pH 7.0, NaCl 1.0% in 5 days [24, 25]

Screening tests for detection of biosurfactant 
activity

The emulsification of PCO by CFS was more in the con-
trol medium (E24 index = 42.67 ± 0.25%) than the medium 
with yeast extract (32.78 ± 0.16%). Similar patterns were 
observed for cell surface hydrophobicity (17.07 ± 0.56% 
and 26.02 ± 0.28%) as well as PCO clearance (Fig. S1). 
This outcome corroborates with the findings of PCO deg-
radation in control and medium with yeast extract. Bacillus 
thuringiensis SH24 when grown in minimal salt medium 
supplemented with PCO showed an E24 index of 35 ± 1.75% 

Table 1  Degradation of PCO 
by Bacillus sp. WD22 in sea 
water supplemented with 
glucose (1.0 g/L) alone and in 
combination with yeast extract 
(0.05 g/L)

Crude oil com-
position

Control With yeast extract

Area under the curve %Removal Area under the curve %Removal

Control WD22 WD22 Control WD22 WD22

C8 1,695,154 486,067 71.33 125,670 105,243 16.25
C9 320,147 335,509 0 152,116 214,358 0
C10 366,145 438,605 0 194,786 317,443 0
C11 329,660 543,209 0 208,647 338,347 0
C12 370,361 429,983 0 218,118 340,602 0
C13 360,514 404,106 0 259,857 396,962 0
C14 375,928 424,762 0 249,806 342,721 0
C15 350,608 395,985 0 216,659 318,661 0
C16 214,761 234,731 0 132,822 198,827 0
C17 299,022 347,730 0 195,445 291,023 0
C18 305,763 317,107 0 179,486 273,197 0
C19 277,385 353,316 0 191,614 243,197 0
C20 241,423 262,527 0 138,412 247,853 0
C21 242,664 254,115 0 144,890 195,941 0
C22 183,546 202,866 0 114,324 177,310 0
C23 137,417 155,957 0 93,774 138,223 0
C24 137,858 159,368 0 96,768 131,790 0
C25 95,346 108,061 0 66,998 100,760 0
C26 105,194 95,209 0 60,671 91,096 0
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against paraffin oil[26], while Bacillus subtilis B30 isolated 
from oil contaminated soil gave an E24 index of > 50% 
against crude oil [27].

Yield of biosurfactant

Post extraction of biosurfactant from CFS by acid pre-
cipitation technique, salt contamination of sea water was 
removed by dialysis. Biosurfactant yield was considerably 
low in case of medium with yeast extract (0.52 ± 0.106 g/L) 
than the control medium (0.76 ± 0.85 g/L). Nutrient defi-
ciency in control medium could possibly have induced 
biosurfactant production to enhance PCO bioavailability. 
Bacillus stratosphericus strain FLU5 isolated from con-
taminated seawater produced 0.23 g/L of lipopeptide bio-
surfactant in presence of 1.0% v/v PCO as sole carbon 
source at 37 °C in 10 days [28].

Structural and compositional analysis 
of biosurfactant

The qualitative analysis of purified biosurfactants produced 
by Bacillus sp. WD22 contained proteins and lipids in both 
media. Biosurfactants was found to contain proteins and 
lipids in the weight ratio 1.84:98.16 and 1.08:98.92 in the 
presence and absence of yeast extract, respectively. Biosur-
factant produced by Bacillus sp. isolated from green coffee 
grains contained 2.5%, 53% and 44% of carbohydrates, pro-
teins and lipids, respectively [29].

On FESEM analysis of biosurfactants produced in both 
media, it was observed that there were no structural vari-
ations (Fig. 1). The surface of biosurfactants produced by 
Bacillus sp. WD22 was amorphous in nature. The struc-
ture of a biosurfactant produced by Bacillus aryabhattai 

was observed to be polymeric in nature [30]. The elemental 
analysis revealed the presence of carbon, oxygen in high 
amount, nitrogen and phosphorous in low amount confirm-
ing the biosurfactants as lipoprotein [14]. Trace amounts 
of chlorine, potassium, sodium, magnesium and sulphur in 
the elemental analysis are the elemental remnants from sea 
water (Fig. 2).

Biosurfactant produced by Bacillus sp. WD22 was 
characterized as a linear surfactin with a C14 β hydroxy 
fatty acid in both control medium and medium with yeast 
extract. Figures 3 and 4 depict the characteristic frag-
mentation pattern of [M + H] + ion m/z 1026 eluted out 
at retention time of 5.58 min and 5.23 min, respectively. 
The fragment at m/z 618.25 and m/z 611.16 are sodium 
adducts of protonated molecule attached to the peptide 
fragment Leu-Leu-Asp-Leu [31]. A biosurfactant secreted 
by Bacillus tequilensis MK 729,017, on exposure to crude 
oil, was also identified as a surfactin as per LCMS analy-
sis [32].

Estimation of CMC

The concentration of surfactant at which lowest surface 
tension is attained is referred as CMC. The surface ten-
sion of water was measured on addition of biosurfactant 
at various concentrations (5.0–100 mg/L). The ability 
of biosurfactant to reduce the surface tension of water 
depends on its purity and also the composition of medium 
in which it is produced [33]. The CMC for biosurfactant 
of Bacillus sp. WD22 was 50 mg/L and 60 mg/L for con-
trol and yeast extract media, respectively (Fig. 5). Advan-
tage of biosurfactant with low CMC values is that less 
concentration of biosurfactant is sufficient to reduce the 
ST to its minimum value.

A B

Fig. 1  The structures of biosurfactant produced by Bacillus sp. WD22 in seawater supplemented with PCO and glucose (A) and on addition of 
yeast extract (B) as visualized under FESEM
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Stability analysis of purified biosurfactant

The stability of biosurfactant produced by Bacillus sp. 

WD22 were stable from pH 4.0 to 12.0 (Fig. 6A); however, 
on increase of NaCl concentration, the stability showed a 
gradual decrease (Fig. 6B). Biosurfactant produced by B. 

Fig. 2  Elemental composition of biosurfactant produced by Bacillus sp. WD22 in seawater supplemented with PCO and glucose (A) and on 
addition of yeast extract (B) as analysed by EDAX

Fig. 3  LCMS spectrum of biosurfactant produced by Bacillus sp. WD22 produced in control medium depicting the [M +  H]+ ion m/z 1026 at 
retention time of 5.26 min

Fig. 4  LCMS spectrum of biosurfactant produced by Bacillus sp. WD22 produced in medium with yeast extract depicting the [M +  H]+ ion m/z 
1026 at retention time of 5.58 min
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Fig. 5  Variation of surface tension (mN/m) with concentration of biosurfactant produced by Bacillus sp. WD22 in control medium (left) and 
yeast extract medium (right)

Fig. 6  E24 index values as a measure of stability of biosurfactant produced by Bacillus sp. WD22 under different conditions of pH (A), tempera-
ture (B) and NaCl (g/100 mL) (C)

2021Brazilian Journal of Microbiology (2022) 53:2015–2025
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Fig. 7  Time course profile of growth of Bacillus sp. WD22 and biosurfactant production along with utilization of glucose and increase in emul-
sification activity in control medium

Fig. 8  Time course profile of growth of Bacillus sp. WD22 and biosurfactant production along with utilization of glucose and increase in emul-
sification activity in medium supplemented with yeast extract

2022 Brazilian Journal of Microbiology (2022) 53:2015–2025
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amyloliquefaciens SH20 was stable up to 15% NaCl after 
which the emulsification activity reduced [26]. When the 
temperature was increased beyond 60 °C, the stability of 
biosurfactant reduced drastically (Fig. 6C). Biosurfactant 
produced by B. safensis J2 was observed to be stable up to 
pH 7.0 and temperature 35 °C [34].

Emulsification activity of purified biosurfactant

The ability of biosurfactant to emulsify different hydrocar-
bon and vegetable oils was depicted in terms of E24 Index 
(Fig. S2 and S3). Biosurfactant could solubilize most of the 
oils with maximum emulsification of PCO and gingelly oil. 
Biosurfactant produced in control medium showed slightly 
better activity than that in medium with yeast extract. A 
lipopeptide biosurfactant produced by Bacillus licheni-
formis L20 emulsified various hydrocarbons and PCO [35].  

Kinetics of bacterial growth and biosurfactant 
production

Bacillus sp. WD22 was grown in the presence of 1.0% PCO 
and 1.0 g/L glucose for 15 days in control medium and medium 
with yeast extract (Figs. 7 and 8). There was increased emulsi-
fication activity from the beginning of incubation period which 
gradually slowed down after 8 days in the control medium, 

whereas the reverse pattern was observed in the medium with 
yeast extract. Similar pattern was observed with biosurfactant 
production wherein increased production was observed from 
first day of incubation in control medium than the medium 
with yeast extract. This could be possibly due to nutrient 
limitations in control medium (no yeast extract) resulting in 
increased solubilization and subsequent uptake of PCO an 
energy source. In case of medium with yeast extract, the sud-
den increase in emulsification activity and biosurfactant pro-
duction was observed after the 8th day. This could be due to 
depletion of glucose and yeast extract, and hence the bacteria 
start to produce biosurfactant to utilize PCO for maintenance. 
This can be corroborated from the observation that the bacteria 
degraded 71% and 16.25% of C8 hydrocarbons present in PCO 
in control medium and medium with yeast extract, respectively. 
Considerable variation was visualized in biosurfactant produc-
tion, whereas no variation in the glucose utilization and bio-
mass production patterns were noted.

The logistic model and Leudeking-Piret model were used 
to describe the kinetics of bacterial growth and biosurfactant 
production by Bacillus sp. WD22 (Figs. 9 and 10). The models 
successfully described the growth and biosurfactant produc-
tion on analysing correlation of experimental concentration 
with model predicted concentration and R2 values (Fig. S4 
and S5). The maximum specific growth rate was found to be 
more in medium with yeast extract than the control medium 
(Table 2), but the maximum biomass concentration was 

Fig. 9  Linear plot of logistic 
model for kinetics of growth of 
Bacillus sp. WD22 in control 
medium (A) and medium with 
yeast extract (B)
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Fig. 10  Linear plot of Leudek-
ing-Piret model for kinetics of 
biosurfactant production by 
Bacillus sp. WD22 in control 
medium (A) and medium with 
yeast extract (B)
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observed in medium with yeast extract. Biosurfactant produc-
tion was found to be mixed growth associated in the control 
medium (α = 0.116 Ug/X and β = 0.0157 Ug/Xh), whereas in 
the presence of yeast extract, the production was found to be 
strictly growth associated (negligible β value = 0.0033 Ug/
Xh).

Conclusions

Bacillus sp. WD22, previously isolated from refinery 
effluent, degraded C8 hydrocarbons of PCO in seawater 
with glucose supplementation, which was repressed on 
addition of yeast extract. The degradation was aided by 
a biosurfactant which was confirmed to be surfactin by 
FT-IR and LCMS analysis. This biosurfactant is capable 
of emulsifying petroleum-based and vegetable oils with 
good stability against tested conditions of pH, tempera-
ture and salinity. This biosurfactant could be extracted, 
purified and used for a wide range of environmental 
applications.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42770- 022- 00811-4.
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