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Abstract
Coinoculation of symbiotic  N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop 
productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chick-
pea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify 
the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield 
of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased 
nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain 
legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, 
coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can 
be recommended as an environmental-friendly agricultural practice for increased crop yields.
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Introduction

Grain legumes play an important role in the diets of billions 
of people worldwide in both temperate and tropical regions, 
but are not always represented by high yields (Table 1). Most 
of them are either consumed directly as food by humans, 
or processed for use as fodder, biofuel, and other industrial 
purposes [1]. Legumes are highly valued crops because their 
seeds contain high levels of protein, fibre, mineral nutrients, 
lipids, and antioxidants due to their  N2-fixing ability, which 
supports high photosynthetic capacity [2, 3]. Additionally, 
the N-rich residues of legumes can improve soil fertility, 
thus contributing to increased food production in subsequent 
cropping cycles [1].

Legumes meet part of their N demand through N uptake 
from soil solution, and the other from symbiosis with rhizo-
bia, which are gram-negative bacteria that elicit the forma-
tion of root nodules inside which bacteroids reduce  N2 to 
 NH3 in a process called biological N fixation (BNF) [6]. 
Although BNF can meet the full N requirements in leg-
umes, it is often hampered by environmental conditions such 
drought, high temperatures, soil N, low efficiencies of rhizo-
bial strains, and the type of plant species/cultivar [7, 8]. The 
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efficiency of BNF in legumes has been shown to increase 
with inoculation of efficient and competitive rhizobia that 
infect root hairs before indigenous soil rhizobia, which 
may be low  N2-fixers [6]. Inoculation of rhizobia at sowing 
allows bacteria to be present right at the beginning of root 
growth, thus favouring early nodule formation. In addition, 
seed inoculation promotes the formation of larger nodules, 
closer to the crown of the plant, resulting in nodular char-
acteristics that provide greater symbiotic efficiency [6, 9].

Rhizobial inoculation is a common and highly recom-
mended practice to improve crop yield, harvest index, and 
the protein content in grain legumes [3, 10, 11]. In many 
situations, efficient rhizobial inoculation meets all the leg-
ume’s N requirements, and supports high grain yields [8, 12, 
13]. However, BNF efficiency could be improved by coin-
oculation of rhizobia with plant growth-promoting bacteria 
(PGPB), which enhance rhizobial symbiosis by complemen-
tary mechanisms in plant growth promotion [10, 13, 14].

Among PGPB, gram-positive bacteria of the Bacil-
lus genus caught the attention of researchers to the vari-
ous mechanisms by which they promote plant growth [11, 
15, 16], as well as their resilience through the formation 
of endospores, which increases their chance of success as 
bacterial inoculants [17]. Bacillus and other related genera 
are potential PGPB due to their ability to produce phytohor-
mones such as gibberellic acid (GA) and indole-3-acetic acid 
(IAA) [11, 15, 16, 18–20]. In addition, Bacillus strains are 
also considered phosphate-solubilizing bacteria due to their 
ability to release large amounts of siderophores (which solu-
bilizes Fe from the inorganic mineral  FePO4), organic acids 
(which decrease soil solution pH, and dissolve more labile 

inorganic phosphate), and phosphatases (which mineralize 
organic phosphates present in soil organic matter) [11, 15, 
16, 19, 21, 22]. Some Bacillus strains produce potent toxins 
which act as antifungal and antibiotic compounds that con-
trol growth of antagonistic microorganisms, or induce plant 
resistance against pathogens [15, 16, 23–30]. Bacillus strains 
also release ACC deaminase, an enzyme that degrades the 
precursor of ethylene, a phytohormone that induces plant 
senescence [16] and alleviates drought stress [31]. Due to 
these traits, there are several inoculant products based on 
Bacillus species which are available in the market and can 
be used for agricultural crops [15, 17]. These inoculants 
(rhizobia and bacilli) can be coinoculated in grain legumes 
to increase the symbiotic efficiency of rhizobia through com-
plementary mechanisms of plant growth promotion [11, 32, 
33]. That way, coinoculation could also increase the sym-
biotic efficiency of rhizobia, legume N content, plant size, 
and grain yields. The main objective of this study was to 
assess the magnitude of additive effects of coinoculation of 
rhizobia and bacilli relative to single inoculation of rhizobia 
on plant growth and yield of grain legumes.

Materials and methods

Data collection

Data were acquired from a library search of peer-reviewed 
articles in the platforms “Web of Science” and “Google 
Scholar”, using the keywords: “coinoculation”, “rhizobium” 

Table 1  Production of grain legume and cereal crops in the world during 2019

Data recalculated from FAO [4], except for mung bean, which was taken from World Vegetable Center [5]
n.e., not estimated
Legume species: chickpea, Cicer arietinum; common bean, Phaseolus vulgaris; cowpea, Vigna unguiculata; faba bean, Vicia faba; groundnut, 
Arachis hypogaea; lentil, Lens culinaris; mung bean, Vigna radiata; pea, Pisum sativum; pigeon pea, Cajanus cajan; soybean, Glycine max; urad 
bean, Vigna mungo

Grain legume Production (million 
tonnes)

Area harvested (mil-
lion ha)

Yield (kg  ha−1) Major producers

Chickpea 14.2 13.7 1038 India, 70%; Turkey, Russia, and Myanmar: 4% each
Common bean 28.9 33.1 874 India, 38%; Myanmar, 10%; Brazil, 8%
Cowpea 8.9 14.4 616 Nigeria, 40%; Niger, 27%; Burkina Faso, 7%
Faba bean 5.4 2.6 2108 China, 32%; Ethiopia, 19%; UK, 10%
Groundnut 48.8 29.6 1647 China, 36%; India, 14%; Nigeria, 9%
Lentil 5.7 4.8 1195 Canada, 38%; India, 21%; Australia, 9%
Mung bean 5.3 7.3 730 India, 30%; Myanmar, 30%; China, 16%
Pea 14.2 7.2 1979 Canada, 30%; Russia, 17%; China, 10%
Pigeon pea 4.4 5.6 788 India, 75%; Malawi, 10%; Myanmar, 8%
Soybean 333.7 120.5 2769 Brazil, 34%, USA, 29%; Argentina, 17%
Urad bean n.e n.e 909 India, 70%; Myanmar, Pakistan
Total legumes 469.9 238.8 n.e
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or “rhizobia” and “bacillus” or “bacilli”, associated with 
one of the grain legumes listed below in pots or field exper-
iments. The outcome of the library search (Supplemen-
tary Material) for each grain legume in this meta-analysis 
included chickpea (Cicer arietinum) [22, 34–49]; common 
bean (Phaseolus vulgaris) [18, 23, 24, 30, 31, 50–65]; cow-
pea (Vigna unguiculata) [66–72]; faba bean (Vicia faba) [21, 
73–76]; groundnut (Arachis hypogaea) [25, 27, 28, 77–79]; 
lentil (Lens culinaris) [26, 80–84]; mung bean (Vigna 
radiata) [85–91]; pea (Pisum sativum) [65, 83, 92]; pigeon 
pea (Cajanus cajan) [93–96]; soybean (Glycine max) [20, 
51, 65, 84, 97–115]; and urad bean (Vigna mungo) [14, 116].

In the meta-analysis, plants or plots inoculated only 
with one rhizobial strain were considered as “control”, and 
coinoculation with at least one rhizobium and one bacil-
lus strain as “treatment”. Paenibacillus, Brevibacillus, 
and Lysinibacillus, which have been recognized as plant  

growth-promoting Bacillus bacteria, were used by some 
researchers in their experiments.

Statistical parameters such as the mean, standard devia-
tion, and number of replications of each experimental unit 
were obtained for the following variables: nodules (number 
and/or dry matter), biological nitrogen fixation (BNF; nitro-
genase activity or N-derived from BNF by  N15), N accumu-
lated in the plant (N concentration or total mass in the plant, 
or in the shoot), P accumulated in the plant (P concentration 
or total mass in the plant, grain, or in the shoot), root size 
(length or dry matter), shoot size (height or dry matter), and 
grain yield (dry matter of grains). Studies with less than 
three replications were excluded from the meta-analysis. 
When standard deviation was not presented in articles, it 
was calculated based on coefficient of variation or standard 
error. If none of these indicators were presented, we first 
calculated coefficient of variation with the means available 
in each experiment and then obtained standard deviation 
values.

Table 2  Log response ratio of nodule and biological N fixation due to the coinoculation of rhizobia and plant growth-promoting bacilli in grain 
legumes

n is the number of observations; lr is the log response ratio obtained by dividing treatment value (rhizobia + bacilli) per control (rhizobia); 95% 
C.I. are the lower and upper confidence intervals at p < 0.95
Interpretation: Negative values of lr indicated that coinoculation of rhizobia and bacilli decreases the variable values, and positive values of lr 
indicated that coinoculation promoted increases in the variable values. When the value of lr is negative and both confidence intervals are nega-
tive, the effects are significantly negative. When the value of lr is positive and both confidence intervals are positive, the effects are significantly 
positive
Legume species: chickpea, Cicer arietinum; common bean, Phaseolus vulgaris; cowpea, Vigna unguiculata; faba bean, Vicia faba; groundnut, 
Arachis hypogaea; lentil, Lens culinaris; mung bean, Vigna radiata; Pea, Pisum sativum; pigeon pea, Cajanus cajan; soybean, Glycine max; 
urad bean, Vigna mungo
Database and the “R” script for the meta-analysis are presented in the Supplementary Material

Grain legume Exp. condition Nodulation Nitrogenase activity

n lr 95% C.I p n lr 95% C.I p

Chickpea Pot 97 0.131 0.071; 0.192  < 0.0001 50 0.146 0.039; 0.253 0.0074
Field 94 0.260 0.220; 0.299  < 0.0001 4 0.134 0.050; 0.214  < 0.0001

Common bean Pot 152 0.092 0.033; 0.151 0.0023 33 0.197 0.099; 0.294  < 0.0001
Field 18 0.020  − 0.046; 0.085 0.5546 4 0.139  − 0.296; 0.574 0.5321

Cowpea Pot 159 0.013  − 0.032; 0.057 0.5749
Field 4  − 0.337  − 0.609; − 0.064 0.0154

Faba bean Field 138 0.029  − 0.020; 0.077 0.2457 21 0.299 0.164; 0.433  < 0.0001
Groundnut Pot 27 0.594 0.454; 0.734  < 0.0001 7 0.099  − 0.052; 0.251 0.1961
Lentil Pot 12 0.301 0.2165; 0.385  < 0.0001 1  − 0.569  − 0.997; − 0.142 0.0090

Field 8 0.095 0.021; 0.169 0.0121 2 0.475 0.331; 0.619  < 0.0001
Mung bean Pot 72 0.006  − 0.064; 0.077 0.8651 48  − 0.211  − 0.322; − 0.102 0.0002

Field 30 0.199 0.165; 0.232  < 0.0001
Pea Pot 8 0.226 0.002; 0.452 0.0485 2  − 0.376  − 0.758; 0.005 0.0532
Pigeon pea Pot 25 0.100  − 0.111; 0.311 0.3520 1 0.291 0.139; 0.442 0.0002

Field 21 0.223  − 0.158; 0.611 0.2483
Soybean Pot 96 0.213 0.142; 0.283  < 0.0001 47 0.045  − 0.156; 0.246  < 0.0001

Field 89 0.400 0.300; 0.501  < 0.0001 4  − 0.114  − 0.723; 0.495 0.7129
Urad bean Pot 6 0.036  − 0.072; 0.144 0.5100
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Effect size was calculated using the log response ratios 
(lr) and the total variability in the response ratios, from 
control to experimental groups, with equations proposed 
by Hedges et al. [117] and Gurevitch and Hedges [118]. 
Analyses were done at R platform version 4.0.1 (R Core 
Team, 2020) using metaphor package [119]; script for run 
is presented as Supplementary Material.

Results

Overall, the meta-analysis indicated that coinoculation of 
rhizobia and bacilli promoted plant growth of different grain 
legumes relative to single rhizobia inoculation. Nodulation 
(or nodule) was the most responsive variable to coinocula-
tion, but other plant variables were also highly increased. In 
pot experiments, coinoculation significantly increased nodu-
lation of chickpea, common bean, groundnut, lentil, pea, and 
soybean, while in field experiments, it increased nodulation 
of chickpea, cowpea, mung bean, and soybean (Table 2). In 
field-grown cowpea, coinoculation decreased the number 

and mass of nodules (Table 2). In the other legumes, the 
coinoculation of rhizobia and bacilli did not change nodula-
tion (Table 2).

Nitrogenase activity (indicator of BNF) was stimulated by 
coinoculation in chickpea, common bean, and pigeon pea in 
pot experiments, and in faba bean and lentil in field experi-
ments. However, it was decreased in lentil (n = number of 
data points = 1) and mung bean (n = 48) in pot experiments 
(Table 2). Biological N fixation of other grain legumes 
was not affected by coinoculation of rhizobia with bacilli 
(Table 2).

Most grain legumes accumulated more N in the plant 
when coinoculated, i.e., chickpea (pot and field), common 
bean (field), faba bean (field), mung bean (pot and field), 
pigeon pea (pot), and soybeans (pot). On the other hand, 
the plant N content of soybean and cowpea in the field was 
negatively affected by coinoculation (Table 3). Likewise, 
coinoculation promoted higher uptake of P in the chickpea 
(pot and field), lentil (field), and urad bean (pot) (Table 3).

Coinoculation promoted shoot and root growth of most grain 
legumes. Chickpea (pot and field), faba bean (field), groundnut 

Table 3  Log response ratio of the coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes

n is the number of observations; lr is the log response ratio obtained by dividing treatment value (rhizobia + bacilli) per control (rhizobia); 95% 
C.I. are the lower and upper confidence intervals at p < 0.95
Interpretation: Negative values of lr indicated that coinoculation of rhizobia and bacilli decreases the variable values, and positive values of lr 
indicated that coinoculation promoted increases in the variable values. When the value of lr is negative and both confidence intervals are nega-
tive, the effects are significantly negative. When the value of lr is positive and both confidence intervals are positive, the effects are significantly 
positive
Legume species: chickpea, Cicer arietinum; common bean, Phaseolus vulgaris; cowpea, Vigna unguiculata; faba bean, Vicia faba; groundnut, 
Arachis hypogaea; lentil, Lens culinaris; mung bean, Vigna radiata; pea, Pisum sativum; pigeon pea, Cajanus cajan; soybean, Glycine max; urad 
bean, Vigna mungo
Database and the “R” script for the meta-analysis are presented in the Supplementary Material

Grain legume Exp. condition Plant N Plant P

n lr 95% C.I p n lr 95% C.I p

Chickpea Pot 28 0.311 0.185; 0.436  < 0.0001 12 0.165 0.112; 0.218  < 0.0001
Field 23 0.051 0.012; 0.089 0.0095 26 0.222 0.168; 0.277  < 0.0001

Common bean Pot 20 0.041  − 0.105; 0.187 0.5825
Field 7 0.179 0.103; 0.255  < 0.0001

Cowpea Pot 90  − 0.185  − 0.228; − 0.143  < 0.0001
Field 2  − 0.055  − 0.255; 0.144 0.5877

Faba bean Field 24 0.072 0.011; 0.132 0.0200 18 0.050  − 0.002; 0.102 0.0604
Groundnut Pot 2  − 0.077  − 0.587; 0.435 0.7691 6  − 0.022  − 0.059; 0.015 0.2458
Lentil Field 2 0.244 0.054; 0.435 0.0120
Mung bean Pot 72 0.215 0.177; 0.253  < 0.0001

Field 12 0.136 0.071; 0.202  < 0.0001
Pea Pot 4 0.030  − 0.051; 0.119 0.4326
Pigeon pea Pot 1 0.117 0.043; 0.190 0.0019

Field 10  − 0.003  − 0.120; 0.113 0.9555
Soybean Pot 5 0.458 0.032; 0.883 0.0349

Field 50  − 0.046  − 0.082; − 0.011 0.0097 2 0.000  − 0.015; 0.015 0.9900
Urad bean Pot 2 0.019  − 0.008; 0.047 0.1739 4 0.091 0.058; 0.124  < 0.0001
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(pot), lentil (pot), and soybean (pot and field) had larger roots, 
while only common bean (field) had smaller roots because of 
coinoculation (Table 4). In addition, there were significant 
increases in shoot size of chickpea (pot and field), common 
bean (pot and field), faba bean (field) groundnut (pot), lentil 
(pot), mung beans (pot and field), soybean (pot and field), and 
urad bean (pot), and only decreased in cowpea (pot) (Table 4).

Finally, coinoculation had positive effects on grain yield 
of chickpea (pot and field), cowpea (pot), faba bean (field), 
lentil (field), mung bean (field), and soybean (pot) (Table 5). 
Nevertheless, negative effects were observed on lentil grown 
in pot (n = 1) (Table 5).

Discussion

During several decades, researchers have hypothesized 
that inoculation of more than one type of microorganism 
can increase the population of microorganisms that act in  

plant ecophysiology by complementary beneficial mecha-
nisms [10, 11, 32, 33]. In the present meta-analysis of data 
regarding coinoculation of rhizobia with bacilli in 11 grain 
legume crops, we produced information that corroborates to 
the above said hypothesis. Our findings expand the current 
knowledge of inoculation techniques to the other legumes 
that were previously applied for soybean only [13, 14]. This 
is the first study worldwide on meta-analysis related to coin-
oculation of grain legumes with rhizobia and bacilli, and it 
emphasizes the role of several strains of the Bacillus genus 
to improve rhizobial symbiosis performance, and increase 
growth and yields of grain legumes in different parts of the 
world (cf. Supplementary Material).

Our meta-analysis confirmed that coinoculation of rhizo-
bia and bacilli enhances the root nodule number, accumu-
lates more N and P, increases root and shoot growth, and 
finally results in higher grain yields (Tables 2, 3, 4, and 5). 
Higher nodulation and increased root growth may have been 
consequence of increased phytohormone production, such as 

Table 4  Log response ratio of the coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes

n is the number of observations; lr is the log response ratio obtained by dividing treatment value (rhizobia + bacilli) per control (rhizobia); 95% 
C.I. are the lower and upper confidence intervals at p < 0.95
Interpretation: Negative values of lr indicated that coinoculation of rhizobia and bacilli decreases the variable values, and positive values of lr 
indicated that coinoculation promoted increases in the variable values. When the value of lr is negative and both confidence intervals are nega-
tive, the effects are significantly negative. When the value of lr is positive and both confidence intervals are positive, the effects are significantly 
positive
Legume species: chickpea, Cicer arietinum; common bean, Phaseolus vulgaris; cowpea, Vigna unguiculata; faba bean, Vicia faba; groundnut, 
Arachis hypogaea; lentil, Lens culinaris; mung bean, Vigna radiata; pea, Pisum sativum; pigeon pea, Cajanus cajan; soybean, Glycine max; urad 
bean, Vigna mungo
Database and the “R” script for the meta-analysis are presented in the Supplementary Material

Grain legume Exp. condition Root size Shoot size

n Log R 95% C.I p n Log R 95% C.I p

Chickpea Pot 33 0.341 0.156; 0.523 0.0003 67 0.312 0.182; 0.440  < 0.0001
Field 16 0.179 0.120; 0.238  < 0.0001 71 0.184 0.123; 0.244  < 0.0001

Common bean Pot 38 0.007  − 0.039; 0.053 0.7604 122 0.054 0.005; 0.103 0.0312
Field 6  − 0.097  − 0.192; − 0.003 0.0442 20 0.071 0.025; 0.118 0.0025

Cowpea Pot 158  − 0.015  − 0.050; 0.021 0.4127 116  − 0.070  − 0.097; − 0.043  < 0.0001
Field 2  − 0.034  − 0.239; 0.171 0.7455

Faba bean Pot 4 0.033  − 0.032; 0.097 0.3213
Field 80 0.094 0.043; 0.145 0.0003 104 0.034 0.006; 0.062 0.0167

Groundnut Pot 37 0.177 0.123; 0.230  < 0.0001 72 0.119 0.057; 0.181 0.0002
Lentil Pot 8 0.170 0.111; 0.229  < 0.0001 20 0.031 0.020; 0.042  < 0.0001

Field 5 0.056  − 0.0201; 0.132 0.1494
Mung bean Pot 18 0.206  − 0.009; 0.421 0.0605 80 0.151 0.065; 0.237 0.0006

Field 24 0.129 0.072; 0.186  < 0.0001
Pea Pot 12 0.040  − 0.017; 0.097 0.1716 13 0.043  − 0.019; 0.105 0.1729
Pigeon pea Pot 1 0.388  − 0.145; 0.920 0.1533 17 0.095  − 0.052; 0.242 0.2043

Field 11 0.006  − 0.105; 0.117 0.9202 15 0.065  − 0.039; 0.170 0.2217
Soybean Pot 42 0.237 0.161; 0.314  < 0.0001 58 0.181 0.122; 0.240  < 0.0001

Field 19 0.198 0.131; 0.264  < 0.0001 45 0.055 0.032; 0.077  < 0.0001
Urad bean Pot 7 0.058  − 0.019; 0.136 0.1416 8 0.063 0.002; 0.123 0.0427
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gibberellic acid (GA) and indole-3-acetic acid (IAA), which 
stimulate plant cell division and elongation [120]. In fact, 
many studies that compose the database of this meta-anal-
ysis have indicated that Bacillus strains produce IAA and 
other plant growth-promoting substances [18–20, 44–47, 49, 
56, 79, 84–86, 88, 98, 108].

Coinoculated legumes accumulated more N in relation 
to control (plants inoculated only with rhizobia) (Table 3). 
Higher N content may have been consequence of higher 
nodulation since nodule dry mass and BNF were positively 
highly correlated (e.g., [14]). However, it is interesting to 
mention that although coinoculation increased plant N con-
tent in the majority of grain legumes, it did not necessarily 
increase nitrogenase activity of rhizobial nodules (Table 2). 
It could be that increased N accumulation in legume plants 
was related to increased root growth and as increased root 
growth ensures that plants were supplied with more nutrients 
[121]. Therefore, high N uptake (Table 3) was probably the 
result of both increased nodule N fixation capacity (Table 2) 
and the ability of bacilli to promote root growth (Table 4).

Moreover, coinoculation of rhizobia and bacilli in grain 
legumes also enhanced the level of P accumulation in the 
plants (Table 3), the result of the combined effect of high 

root growth and P solubilization activity of Bacillus spp. 
[15, 92, 100, 121]. Many reports which were used in this 
meta-analysis confirmed the capacity of Bacillus strains to 
solubilize P in growth media and in soil used for the cultiva-
tion of inoculated legumes [19, 34, 38, 44, 49, 78, 79, 91]. 
In addition to the above results, shoot and root biomasses 
of chickpeas and soybeans were increased by the rhizobia-
bacilli coinoculation and suggested that root growth provides 
more resources for shoot growth (Table 3).

Additionally, increases in root size can also be very ben-
eficial under stressful conditions because higher root sys-
tems can uptake more water and nutrients [85, 122, 123]. 
For example, coinoculation of Rhizobium tropici with Pae-
nibacillus polymyxa alleviated the negative effects of severe 
drought stress on common beans under greenhouse condi-
tions [31]. Likewise, coinoculation of Mesorhizobium ciceri 
with Bacillus sp. increased chickpea growth and grain yields 
in P-deficient soil in dry areas of a Mediterranean region 
[22]. The results in Table 5 are consistent with this proposi-
tion, as several legume crops produced more grains when 
they were coinoculated.

Some legumes had more pronounced responses than oth-
ers. For example, the most consistent positive results were 

Table 5  Log response ratio of 
the coinoculation of rhizobia 
and plant growth-promoting 
bacilli in grain legumes

n is the number of observations; lr is the log response ratio obtained by dividing treatment value (rhizo-
bia + bacilli) per control (rhizobia); 95% C.I. are the lower and upper confidence intervals at p < 0.95
Interpretation: Negative values of lr indicated that coinoculation of rhizobia and bacilli decreases the vari-
able values, and positive values of lr indicated that coinoculation promoted increases in the variable values. 
When the value of lr is negative and both confidence intervals are negative, the effects are significantly 
negative. When the value of lr is positive and both confidence intervals are positive, the effects are signifi-
cantly positive
Legume species: chickpea, Cicer arietinum; common bean, Phaseolus vulgaris; cowpea, Vigna unguicu-
lata; faba bean, Vicia faba; groundnut, Arachis hypogaea; lentil, Lens culinaris; mung bean, Vigna radiata; 
pea, Pisum sativum; pigeon pea, Cajanus cajan; soybean, Glycine max; urad bean, Vigna mungo
Database and the “R” script for the meta-analysis are presented in the Supplementary Material

Grain legume Exp. condition Grain yield

n Log R 95% C.I p

Chickpea Pot 2 0.161 0.007; 0.316 0.0405
Field 34 0.159 0.096; 0.221  < 0.0001

Common bean Pot 1  − 0.215  − 0.712; 0.282 0.3963
Field 20 0.060  − 0.027; 0.146 0.1756

Cowpea Pot 3 0.261 0.210; 0.313  < 0.0001
Faba bean Field 53 0.058 0.014; 0.103 0.0105

Pot 1 0.237  − 0.980; 1.454 0.7028
Lentil Pot 1  − 0.150  − 0.236; − 0.036 0.0007

Field 3 0.079 0.015; 0.144 0.0164
Mung bean Pot 18  − 0.113  − 0.308; 0.083 0.2591

Field 9 0.181 0.109; 0.252  < 0.0001
Pigeon pea Pot 1  − 0.259  − 0.972; 0.454 0.4760
Soybean Pot 3 0.119 0.064; 0.174  < 0.0001

Field 52  − 0.005  − 0.026; 0.017 0.6643
Urad bean Pot 2 0.033  − 0.064; 0.130 0.5082
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obtained with chickpea and soybean, whereas cowpea had 
some negative responses, particularly in the plant N con-
tents (Table 2) and shoot size (Table 3). Regarding chickpea 
and soybean, increase in shoot size (Table 4) resulted in 
high grain yields (Table 5). However, in cowpea, coinocula-
tion decreased shoot growth (negative lr for shoot size) but 
increased grain yield (positive lr for grain yield). Results cor-
roborate with the fact that the benefits of coinoculation were 
not related to increased shoot growth proportionally with 
grain yield, but probably to changes in the source-sink rela-
tionships and in the harvest index of these legume crops [3].

In soils, both rhizobia and bacilli biofilms consume 
recently produced photosynthates. Rhizobia symbiosis 
may consume as much as 14% of recent photosynthates [2] 
while rhizospheric and soil microorganisms may absorb 
6 to 10% of photosynthates exuded through roots [124]. 
This amount should not compromise plant growth because 
photosynthetic rates are likely to increase due to C sink 
stimulation [2, 3, 125]. On the contrary, complementary 
characteristics of rhizobia-bacilli-legume tripartite associ-
ation should result in higher plant growth and grain yield. 
In addition to the plant growth-promoting mechanisms 
related to phytohormone up-regulation and P solubiliza-
tion, Bacillus spp. also play an important role on the bio-
logical control of phytopathogen fungi and invertebrate 
plagues. Indeed, many studies used for this meta-analysis 
were designed to test the efficacy of Bacillus strains to 
control plagues and diseases that affect grain legume 
growth [25–28, 30, 60, 76, 80, 92].

Coinoculation of rhizobia and bacilli is possibly a step 
forward in the “Green Revolution” headed by microbial 
inoculants [126]. In this meta-analysis, we gathered results 
involving several different bacilli and rhizobia strains in 
many legume crops worldwide. The results confirmed 
that coinoculation of rhizobia and bacilli strains was a 
general strategy to increase biological nitrogen fixation, 
plant growth, and nutrient acquisition of nearly all grain 
legumes tested. Therefore, this meta-analysis shows that 
coinoculation could be considered a viable technology for 
grain legumes in general, which suggests that more studies 
involving the best combinations of rhizobia and bacilli in 
each grain legume crop should be pursued.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42770- 022- 00800-7.
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