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Abstract
To explore the in vivo and in vitro plant growth promoting activities, biocatalytic potential, and antimicrobial activity of 
salt tolerance rhizoactinobacteria, rhizospheric soil of a halotolerant plant Saueda maritima L. was collected from Rann of 
Tiker, near Little Rann of Kutch, Gujarat (India). The morphology analysis of the isolated strain TSm39 revealed that the 
strain belonged to the phylum actinobacteria, as it was stained Gram-positive, displayed filamentous growth, showed spore 
formation and red pigment production on starch casein agar (SCA). It was identified as Georgenia soli based on 16S rRNA 
gene sequencing. The Georgenia soli strain TSm39 secreted extracellular amylase, pectinase, and protease. It showed in vitro 
plant growth-promoting (PGP) activities such as indole acetic acid (IAA) production, siderophore production, ammonia 
production, and phosphate solubilization. In vivo plant growth-promoting traits of strain TSm39 revealed 30% seed germi-
nation on water agar and vigor index 374.4. Additionally, a significant increase (p ≤ 0.05) was found in growth parameters 
such as root length (16.1 ± 0.22), shoot length (15.2 ± 0.17), the fresh weight (g), and dry weight (g) of the roots (0.43 ± 0.42 
and 0.32 ± 0.12), shoots (0.62 ± 0.41 and 0.13 ± 0.03), and leaves (0.42 ± 0.161 and 0.14 ± 0.42) in treated seeds of Vigna 
radiata L. plant with the strain TSm39 compared to control. The antibiotic susceptibility profile revealed resistance of the 
strain TSm39 to erythromycin, ampicillin, tetracycline, and oxacillin, while it displayed maximum sensitivity to vancomy-
cin (40 ± 0.72), chloramphenicol (40 ± 0.61), clarithromycin (40 ± 1.30), azithromycin (39 ± 0.42), and least sensitivity to 
teicoplanin (15 ± 0.15). Moreover, the antimicrobial activity of the strain TSm39 was observed against Gram’s positive and 
Gram’s negative microorganisms such as Shigella, Proteus vulgaris, and Bacillus subtilis. These findings indicated that the 
Georgenia soli strain TSm39 has multiple plant-growth-promoting properties and biocatalytic potential that signifies its 
agricultural applications in the enhancement of crop yield and quality and would protect the plant against plant pathogens.
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Introduction

Actinobacteria are the most significant microbes present in 
the soil and are studied for the production of various bio-
logically active substances, such as antibiotics and enzymes 
[1]. Plant growth-promoting rhizobacteria (PGPR) promote 
plant growth directly or indirectly through plant growth 
hormone production, nutrient acquisition, and plant disease 

suppression [2]. The PGPR are beneficial to plants as they 
increase the availability of macro and microelements such as 
nitrogen, phosphorus, iron, and zinc in the rhizosphere and 
produce plant growth-promoting substances such as indole 
[3]. The rhizobacteria can improve plant growth under unfa-
vorable conditions such as chemically contaminated soil [4]. 
Currently, most attention has been paid to PGP rhizobacteria 
to replace chemical fertilizers and pesticides [5]. Moreo-
ver, general belonging to the phylum Actinobacteria such 
as Streptomyces, Thermobifida, and Microbispora help the 
plant by producing phytohormones such as indole acetic 
acid (IAA) as well as siderophores and various fungicidal 
compounds [6, 7]. Actinobacteria have been oppressed in 
the pharmaceutical industry since the 1940s; however, only 
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a few products have been developed for their applications in 
agriculture [8].

Plants exhibit a relationship with the microbial popula-
tions colonizing around the rhizosphere [9]. Actinobacteria 
are a group of microbes among the total soil microbial com-
munity that display the ability to produce various second-
ary metabolic compounds. They can display the antagonistic 
and competitive effects on the other microbial communities 
and can also produce plant growth regulators (PGRs) [10, 
11]; especially Streptomyces have biocontrol action against 
a range of phytopathogens [12].

Suaeda maritima L. is a dominant halotolerant plant gen-
erally found in the saline regions of Little Rann of Kutch, 
Gujarat (India), which is nominated as a biosphere reserve 
and is characterized as terrestrial and coastal ecosystems 
[13]. The PGP activities of rhizospheric microbes from this 
extreme habitat are still the least studied [14]. Therefore, 
the main objective of this study was to isolate actinobacteria 
from the rhizospheric soil of the medicinal plant Suaeda 
maritima L., followed by identification based on cultural, 
morphological, and molecular features. Moreover, this work 
focused on mining in vitro plant growth attributes by evalu-
ating the potential of strain TSm39 to solubilize phosphate, 
produce IAA (indole acetic acid), siderophore, ammonia, 
and extracellular enzymes. Furthermore, the antimicro-
bial potential of salt-tolerant strain TSm39 was explored. 
Additionally, the strain TSm39 was studied for its ability 
to enhance the growth of the Vigna radiate L. plant under 
controlled conditions by pot experiment to evaluate its appli-
cations for sustainable agriculture.

Materials and methods

Study site and rhizospheric soil sample collection

The rhizospheric soil sample of the medicinal plant Suaeda 
maritima L. was collected from the Rann of Tiker nearby 
Little Rann of Kutch, Gujarat (India). The rhizospheric soil 
from a depth of 15 cm was collected with the help of a sterile 
spatula, packed in sterile disposable bags, and labeled. The 
sample was stored in an icebox and transported to the labo-
ratory, where it was stored at − 20 °C until further analysis. 
The rhizospheric soil sample was analyzed for its physico-
chemical parameters such as electric conductivity, pH, and 
water holding capacity.

Isolation and morphological characterization 
of rhizospheric actinobacteria

The rhizospheric actinobacteria were isolated from rhizos-
pheric soil samples by serial dilution and the spread plate 
method. The soil sample of 1 g was added to 10 mL sterile 

D/W and mixed well. The supernatant was spread on various 
isolation media such as a range of International Streptomyces 
Project (ISP) media (ISP1 to 7), nutrient agar, starch agar, 
starch casein agar, actinomycete isolation agar, followed by 
incubation at 28 °C for 7 days. After incubation, the isolates 
were characterized based on their morphology, Gram’s reac-
tion, and cultural characteristics.

The salt and pH profile

The salt profile of actinobacteria strain TSm39 was studied 
in a starch agar medium embedded with 0–15% NaCl (w/v). 
The strain was spot inoculated on media and incubated at 
28 °C for 7 days. Similarly, the pH profile of the actinobac-
teria strain TSm39 was studied at 7–12 pH.

16S rRNA gene amplification, sequencing 
and phylogeny analysis

The genomic DNA was extracted directly by colony PCR. 
The 16S rRNA gene amplification was carried out using a 
set of universal eubacterial primers (27F and 1492R). The 
amplified products were loaded on 0.8% agarose gel, and 
the final PCR product was observed under a UV transillu-
minator (Bangalore Genei, India). The isolate was identified 
based on 16S rRNA gene sequence similarity with that of 
the gene sequence of known organisms in the NCBI data-
base. The 16S rRNA gene sequence was analyzed with a 
gapped BLAST (http:// www. ncbi. nlm. nih. gov) search, and 
closely related sequences were aligned by CLC Genomics 
Workbench version 11. 1.0. The evolutionary distances were 
computed using the neighbor-joining method.

Screening of actinobacteria forin vitroplant 
growth‑promoting activities

Ammonia production

To determine the ammonia production, the actinobacterial 
culture was inoculated into 10 mL of peptone water (Hime-
dia, India) and incubated at 28 °C for 7–8 days with shaking 
at 150 rpm. After incubation, 1 mL of Nessler’s reagent was 
added. The development of brown color indicates a positive 
result for ammonia production [15].

IAA production

For IAA production, the spore culture of the isolate was 
inoculated into 1 mL tryptophan broth and incubated at 
28 °C for 8–10 days at 150 rpm. After the completion of 
incubation time, the broth was centrifuged at 10,000 × g for 
10 min. The Salkowski’s reagent (1 mL 0.5 M Ferric chlo-
ride; 50 mL 35% solution of perchloric acid) of 1 mL was 
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added. The development of the pink color indicates a posi-
tive test [16].

Siderophore production

The chrome azurol S (CAS) agar plates were prepared and 
spot inoculated with actinobacterial strains and incubated 
at 28 °C for 8–10 days. The strains producing a yellow halo 
zone around the colony are considered positive for sidero-
phore production [17].

Phosphate solubilization

The phosphate solubilization was detected on a minimal 
medium embedded with insoluble  Ca3(PO4)2 and bromophe-
nol blue dye. The plate was spot inoculated and incubated 
at 28 °C for 8–10 days. The isolates showing a clear zone 
around the colony were considered as positive [18].

Enzymatic profile

Protease

Protease secretion was detected in the gelatin agar plate (gel-
atin 30 g  L−1; peptone 10 g  L−1; yeast extract 5 g  L−1; NaCl 
30 g  L−1; agar 30 g  L−1). The strain TSm39 was inoculated 
by the spot inoculation method [19]. After an incubation 
for 4–5 days, the plate was flooded with Frazier’s reagent 
 (HgCl2 150 g  L−1; 200 mL HCl was dissolved in 1000 mL 
D/W) to determine protease secretion.

Amylase

For analysis of amylase secretion, starch agar plate (starch 
agar powder 30 g  L−1; agar 30 g  L−1) was spot inoculated 
and incubated at 28 °C for 7 days. After incubation, the plate 
was flooded with Gram’s iodine solution to detect the zone 
of the utilization of the substrate.

Cellulase

Detection of cellulase was performed on cellulose agar 
medium  (KH2PO4 0.5 g  L−1;  MgSO4 0.25 g  L−1; cellulose 
2 g  L−1; agar 30 g  L−1; gelatine 2 g  L−1). The pH of the 
medium was adjusted to 8 by adding separately autoclaved 
 Na2CO3 (200 g/L). The pure isolate was spot inoculated on 
cellulose agar, followed by incubation for 7 days at 28 °C. 
Cellulase production was detected by flooding the plates 
with Gram’s iodine reagent. The clear zone surrounding the 
colony indicated the production of extracellular cellulase.

Pectinase

The pectinase activity was determined on pectin agar (pectin 
1 g  L−1;  NH4Cl 0.3 g  L−1;  KH2PO4 0.2 g  L−1;  K2HPO4 0.3 g 
 L−1;  MgSO4 0.01 g  L−1; agar 3 g  L−1). The isolate was spot 
inoculated on pectin agar and incubated at 28 °C for 7 days. 
Pectinase production was detected by flooding the plates 
with 1% CTAB (cetyltrimethylammonium bromide) solution 
and incubating at room temperature for 15 min. The clear 
zone around the colony indicates hydrolysis of pectin.

Antibiotic sensitivity and antibacterial activity 
analysis

An antibiotic sensitivity test of selected actinobacteria was 
performed using the disc diffusion method in starch agar 
medium supplemented with 20 different antibiotics, includ-
ing amoxyclav (30 mg), cephalothin (30 mg), novbiocin 
(5 mg), erythromycin (15 mg), co-trimoxazole (25 mg), 
penicillin-G (10 mg), ofloxacin (5 mg), clindamycin (2 mg), 
chloramphenicol (30 mg), ampicillin (10 mg), amikacin 
(30 mg), teicoplanin (10 mg), methicillin (5 mg), tetracy-
cline (30 mg), oxacillin (1 mg), and gentamicin (10 mg). The 
isolate was also screened for antibacterial activity against 
Gram’s positive and Gram’s negative pathogens on the ISP-2 
(yeast malt extract agar) medium.

Pot experiment

The selected isolate was analyzed for in vivo plant growth-
promoting attributes using Vigna radiate L. (mung) test 
plant. The mung beans were surface sterilized with sodium 
hypochlorite (20 g  L−1) solution and washed with sterile 
D/W several times. Furthermore, the test seeds were soaked 
in actinobacterial culture  (108 CFU), while the control seeds 
were soaked in sterile D/W. Both test and control seeds were 
incubated for 2 h and dried. Then, the seeds were inoculated 
on water agar (20 g  L−1) for seed germination rate and were 
sown in a polythene bag containing 1.5 kg sterile soil for 
the determination of growth parameters such as root length, 
shoot length, fresh weight, and dry weight of the test plant 
Vigna radiata L.

Statistical analysis

All the experiments were laid out in a completely rand-
omized block system with three replicates of bacterial and 
control treatment. Statistical analysis was performed using 
R statistic software version 4.1.3 (2022) [20]. One-way 
ANOVA was performed to test the variations in shoot length, 
root length, fresh and dry weight of root, and shoots of the 
plant. Means of the bacterial treatment were compared with 
control using Tukey’s HSD test at considered significance 
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at the p < 0.05 level; all the data presented in this study 
means ± standard deviations (SD) of independent replicates.

Results

Rhizospheric soil sample analysis

The rhizospheric soil of the Suaeda maritima L. plant was 
collected from Rann of Tiker (23; 13; 16.8300 E and 71; 6; 
21.6199 N), Gujarat, India. The physicochemical parameters 
of the rhizospheric soil, such as electrical conductivity of 
1.16 dS/m and pH 8.41, indicated the saline and slightly 
alkaline nature of rhizospheric soil. Additionally, the water 
holding capacity of rhizospheric soil was 46.46% which was 
very high compared to the water holding capacity of non-
rhizospheric soil collected from Little Rann of Kutch.

Cultural and physiological characterization

The actinobacterial strain TSm39 could grow on a range of 
International Streptomyces Project (ISP) media (ISP1 to 7), 
starch agar, starch casein agar, actinomycete isolation agar, 
except on nutrient agar at the optimum growth temperature 
of 28 °C. The actinobacterial strain TSm39 was Gram-posi-
tive, showed filamentous growth, and produced red-colored 
reverse side pigmentation on starch casein agar (SCA). Fur-
thermore, the strain TSm39 grew in a starch agar medium 
supplemented with NaCl (0–200 g  L−1). It could tolerate 
up to 100 g  L−1 of NaCl containing starch agar medium at 
an optimum pH of 8 (Table 1), indicating the organism’s 
haloalkali tolerant nature. The cultural characteristics, physi-
cal properties, and biotechnological potential of rhizospheric 
actinobacteria isolated from various sites are provided in 
(Table 1).

16S rRNA gene sequencing and phylogenetic 
analysis

Colony PCR yielded approximately 1500  bp amplified 
product. The amplified product was sequenced further to 
identify the organism. The comparison of the 16S rRNA 
gene sequence of the strain TSm39 with 16S rRNA gene 
sequences from the NCBI GenBank database revealed a 
99.56% similarity of the strain TSm39 with Georgenia soli. 
Thus, the isolated organism was identified as Georgenia soli 
strain TSm39. The phylogenetic analysis of the Georgenia 
soli strain TSm39 is shown in Fig. 1.

In vitroplant growth promoting activity

A Georgenia soli strain TSm39 produced ammonia, which 
can be detected by the formation of a yellow color after the 

addition of Nessler’s reagent in peptone water. Furthermore, 
to check the IAA production, 1 mL of Salkowski’s reagent 
was added to a tryptophan solution inoculated with strain 
TSm39. The pink color development indicated the usage 
of tryptophan and the production of indole acetic acid. 
The rhizospheric Georgenia soli strain TSm39 produced 
51.27 μg/mL IAA when 500 mg/mL tryptophan was pro-
vided in the medium. The ability of Georgenia soli strain 
TSm39 to produce siderophores was found on chrome azurol 
S (CAS) agar. After 7 days of incubation, the strain pro-
duced a yellow halo zone around the colony, indicating a 
siderophore production. The Georgenia soli strain TSm39 
was a phosphate solubilizer, as indicated by the clear zone 
around the colony on media containing inorganic phosphate. 
The rhizospheric Georgenia soli strain TSm39 exhibited a 
solubilization index of 3.5 on a Pikovskaya’s agar medium 
embedded with tricalcium phosphate.

Enzymatic profile of rhizospheric actinobacteria

The Georgenia soli strain TSm39 was screened to detect 
the secretion of extracellular enzymes such as protease, 
amylase, cellulase, and pectinase. A clear halo zone around 
the colonies confirmed the production of the enzymes. The 
Georgenia soli strain TSm39 used substrates such as gelatin, 
starch, and pectin and showed protease, amylase, and pecti-
nase secretion in respective media (Fig. 2). The Georgenia 
soli strain TSm39 showed maximum amylase activity (zone 
ratio 6 ± 0.32) on starch agar, followed by pectinase activity 
(zone ratio 2.1 ± 0.11) on pectin agar, and protease activity 
(zone ratio 2 ± 0.16) on gelatin agar medium. However, the 
strain TSm39 did not show cellulase activity in the cellulose 
agar medium.

Antibiotic sensitivity and antibacterial activity 
profile

The antibiotic susceptibility test revealed that the Geor-
genia soli strain TSm39 was more sensitive to vancomycin 
(30 mg), chloramphenicol (30 mg), clarithromycin (15 mg), 
and azithromycin (15  mg) as indicated by zone ratios 
(mean ± SD) 40 ± 0.72, 40 ± 0.61, 40 ± 1.30, and 39 ± 0.42, 
respectively, while the strain was least sensitive to teicopla-
nin (10 mg), as indicated by zone ratio 15 ± 0.15. Moreo-
ver, the strain TSm39 showed resistance to erythromycin 
(15 mg), ampicillin (10 mg), methicillin (5 mg), tetracycline 
(30 mg), and oxacillin (1 mg) (Fig. 3a, b). Furthermore, the 
Georgenia soli strain TSm39 exhibited antibacterial activity 
against various test organisms. The strain TSm39 showed 
resistance to Staphylococcus aureus, Salmonella typhi, and 
Bacillus subtilis on yeast malt extract agar, as shown in 
Fig. 4. However, the strain was sensitive to Enterococcus 
faecalis, Bacillus cereus, and Escherichia coli, as indicated 
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by the zones of inhibition 1.5 ± 0.12, 2 ± 0.46, 1.8 ± 0.39, 
respectively, on yeast malt extract agar.

In vivo plant growth promoting traits

The Georgenia soli strain TSm39 showed multiple in vitro 
plant growth-promoting activities, produced multienzymes, 
and displayed antimicrobial properties. Therefore, in vivo 
plant, growth-promoting potential was further checked by 
performing the pot experiment. The results of the pot exper-
iment showed that the seed germination rate significantly 
(p ≤ 0.05) increased up to 30% in treated seeds compared to 
untreated seeds (control). The vigor index of 374.4 was cal-
culated from the total plant length (Table 2). While various 

growth parameters were compared, significant differences 
(p ≤ 0.05) were observed between treated and untreated 
seeds of plant Vigna radiate L. (Table 3; Fig. 5a–c). The 
shoot length (12.0 ± 0.04) and root length (13.3 ± 0.18) of 
plant Vigna radiata L. increased significantly (p ≤ 0.05) by 
32% in treated seeds compared to untreated seeds. Simi-
larly, the fresh weight (g) and dry weight (g) of the roots 
(0.43 ± 0.42 and 0.32 ± 0.12), shoots (0.62 ± 0.41 and 
0.13 ± 0.03), and leaves (0.42 ± 0.161 and 0.14 ± 0.42) also 
increased significantly in TSm39-treated seeds compared to 
untreated seeds (Fig. 6). The in vivo studies revealed that 
the Georgenia soli strain TSm39 produced indole acetic 
acid (IAA) and enhanced root and shoot elongation of plant 
Vigna radiata L. 

Discussion

In this study, actinobacteria were isolated and screened for 
their plant growth-promoting attributes from rhizospheric 
soil with high salinity. Little Rann of Kutch is a saline eco-
system with sandy soil and contains 60% clay [31]. The 
pH value of the rhizospheric soil of the Suaeda maritime 
L. plant was 8.41, which is related to rhizospheric soil of 
Arnebia euchroma with pH values ranging from 7.97 to 
8.43 that assessed for cultivable microbial diversity [32]. 
The electrical conductivity (EC) of the rhizospheric soil of 
Suaeda maritime L. was 7.81 dS/m. Electrical conductiv-
ity is generally associated with soil salinity [33]. Recently, 
the electrical conductivity of the rhizospheric soil of gray 

Fig. 1  Phylogenetic analysis of 
Georgenia soli strain TSm39
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mangrove (Avicennia marina) was measured 4.81 dS/m, 
which is less compared to this study [34]. In contrast, the 
electrical conductivity of the rhizospheric soil of Durum 
plants from various areas of the Dead Sea region varied in 
the range of 3.32–17.7 dS/m [35]. The actinobacteria are 

abundantly distributed in rhizospheric habitats, where they 
promote plant growth by making nutrients available to the 
plant by dissolving the molecules surrounding the plant or 
inhibiting the activity of plant pathogens [34]. A Georgenia 
soli strain TSm39, belonging to the phylum Actinobacteria, 
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Fig. 4  Antimicrobial activity 
of the rhizospheric Georgenia 
soli strain TSm39 against 
various pathogens including (a) 
Escherichia coli, (b) Bacil-
lus cereus, (c) Enterobacter 
faecalis in starch agar, (d) graph 
showing the zone of inhibition 
displayed by the strain TSm39 
against various pathogens
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showed maximum growth on isolation media including 
ISP-1 to 7, actinomycete isolation agar, starch casein agar, 
and starch agar at an optimum pH of 8 and 28 °C tempera-
ture, which is comparable to the reported actinobacteria 
isolated from rhizospheric soil of various regions (Table 1).

The Georgenia soli strain TSm39 showed various 
in vitro plant growth-promoting activities such as ammonia 

production, IAA production, phosphate solubilization, and 
siderophore production. Ammonia production plays a vital 
role in the suppression of plant disease. Overproduction 
of ammonia serves as a prompting factor for the virulence 
of opportunistic plant pathogens and satisfies the nitrogen 
demand of the plant [25, 36]. In this study, a Georgenia soli 
strain TSm39 produced 51.27 ± 0.25 μg  mL−1 indole ace-
tic acid (IAA) in the presence of tryptophan. The few gen-
era belonging to the phylum Actinobacteria promote plant 
growth by producing IAA. These IAA producing actinobac-
teria such as Streptomyces viridis isolated from the rhizos-
pheric soil of Thai medicinal plant and Streptomyces fradiae 
NKZ-259 isolated from Qinghai, China were produced IAA 
in the range of 6.44–42.34 μg  mL−1 that enhanced the root 
and shoot development [37, 38]. Recently, an endophyte, 
Bacillus siamensis CNE6, isolated from Cicer arietinum L. 
produced 33.27 ± 2.16 μg  mL−1 IAA (Gorai et al., 2021) 
which is comparatively less compared to Georgenia soli 
strain TSm39 that produced 51.27 ± 0.25 μg  mL−1 IAA [39]. 
In comparison, Carlosrosaeavrieseae UFMG-CM-Y6724 

Table 2  The effect of Georgenia soli strain TSm39 on % seed germi-
nation and vigor index. Values are the mean of triplicates with stand-
ard deviation (mean ± SD). P values were calculated using one-way 
ANOVA in the R programming

Interpretation of P values: * (p value between 0.05 and 0.01); ** (p 
value between 0.01 and 0.001); *** (p value less than 0.001)

Seed treatment Germina-
tion rate 
(%)

Total plant length (cm) Vigor index

Control 60% 3.23 ± 0.14** 194
TSm39 90% 4.16 ± 0.29*** 374.4

Table 3  The effect of Georgenia soli strain TSm39 on plant growth parameters of Vigna radiata L. plant. Values are the mean of triplicates with 
standard deviation (mean ± SD)

P values were calculated using one-way ANOVA in the R programme and its interpretation is as follows: * (p value between 0.05 and 0.01), ** 
(p value between 0.01 and 0.001), *** (p value less than 0.001)

Treatments Root length 
(cm)

Shoot length 
(cm)

Root fresh 
weight (g)

Root dry 
weight (g)

Shoot fresh 
weight (g)

Shoot dry 
weight (g)

Leaves fresh 
weight (g)

Leaves dry 
weight (g)

Control 13.3 ± 0.18** 12.0 ± 0.04** 0.32 ± 0.22* 0.29 ± 0.03** 0.43 ± 0.61** 0.12 ± 0.07* 0.32 ± 0.81** 0.11 ± 0.63**
TSm39 16.1 ± 0.22** 15.2 ± 0.17*** 0.43 ± 0.42** 0.32 ± 0.12*** 0.62 ± 0.41** 0.13 ± 0.03** 0.42 ± 0.16** 0.14 ± 0.42***

Fig. 5  The effect of the strain 
TSm39 on seed germination and 
seedling growth. (a) Germina-
tion of control seeds without 
the treatment with the strain 
TSm39. (b) Germination of the 
seeds treated with the strain 
TSm39

(a)

(b)

Control Control

Test Test
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showed a maximum IAA production 76.1 μg  mL−1 in the 
presence of tryptophan [40].

Siderophores are ferric iron chelators secreted by bacteria 
to acquire iron from the surrounding. Siderophores signifi-
cantly enhance plant growth and display antagonism against 
phytopathogens. Siderophores form a complex with iron 
 (Fe3+) and make the iron available to the plant under iron-
deficient conditions while making the iron unavailable to 
phytopathogens [27, 41]. Georgenia soli strain TSm39 under 
study showed siderophore production on CAS agar medium, 
indicated by the color change of the medium from blue to 
yellowish orange. Similarly, Streptomyces sp. isolated from 
various rhizospheric soils of different plants collected from 
diverse regions of Brazil were well studied for the produc-
tion of siderophores [42]. Recently reported Azospirillum 
brasilense also produced siderophores in the CAS medium 
[43]. Besides, a Streptomyces sp. CLV45 isolated from 
rhizosphere soil of plants belonging to the family Fabaceae 
was studied for their in vitro plant growth promoting activi-
ties, including IAA and siderophore production [44].

Phosphate solubilization is a variable characteristic 
among bacteria and is very advantageous for their appli-
cation as biofertilizers. Phosphate solubilization generally 
occurs through the secretion of organic acids. The phos-
phate solubilization index of the Georgenia soli strain 
TSm39 was 3.5 on Pikovskaya’s agar. It exhibited the high-
est solubilization index on a medium embedded with tri-
calcium phosphate. Similarly, the endophytic bacteria such 

as Bacillus cereus (BacDOB-E19) and Pseudomonas aer-
uginosa (RBacDOB-S24) showed phosphate solubilization 
activity on Pikovskya’s medium [45]. More recently, Strepto-
myces coelicoflavus showed phosphate solubilizing activity 
on Pikovskya’s medium [34].

The haloalkaliphilic organisms can survive in both saline 
and alkaline conditions [46]. Haloalkaliphilic actinobacteria 
can produce multiple enzymes, including amylase, cellulase, 
pectinase, protease, and chitinase. Bacterial strains that pro-
duce multiple enzymes under various stress conditions hold 
enormous ecological and industrial significance. Protease is 
essential in the detergent, food, pharmaceutical, cosmetic, 
and photographic industries. Similarly mylases are used in 
the food, textiles, paper, detergent, and biofuel industries 
[47]. Pectinases and cellulases are used in the food industry 
for extracting and clarifying wines, juices, and in the textile 
industry for preparing linen fabrics and hemp manufacture 
[48]. The Georgenia soli strain TSm39 tolerated both saline 
and alkaline conditions and produced multiple extracellular 
enzymes such as protease, amylase, and pectinase, signi-
fying its industrial importance. Recently, Bacillus isolates 
from Brassica napus L. roots have produced hydrolytic 
enzymes, including protease, amylase, xanthanase, and cel-
lulase [48]. According to the literature, above 60% of salt-
tolerant alkaliphilic actinobacteria could produce extracel-
lular enzymes such as proteases, cellulases, and amylases at 
higher salt and alkaline pH [49]. The Halomonas meridian 
showed optimum amylase production in 10% NaCl (w/v) 

Fig. 6  Pot experiment and 
growth parameters of Vigna 
radiata plant (a) Effect of the 
strain TSm39 on plant height 
— control (without inoculation 
of the strain TSm39) and test 
(treated with the strain TSm39) 
(b) Effect of the strain TSm39 
on shoot length (□) and root 
length (■) per plant (c) Effect 
of TSm39 culture on root fresh 
weight ( ) shoot fresh weight (
), leaves fresh weight ( ), root 
dry weight ( ), shoot dry weight 
( ), leaves fresh weight ( ) per 
plant
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[50], which is quite similar to the salt tolerance of Georgenia 
soli strain TSm39 [(10% NaCl (w/v)]. The protease and cel-
lulase are cell wall degrading enzymes; thus, the isolates 
producing these enzymes protect the plant by breaking the 
cell wall of oomycete pathogens such as Pythium sp. [51]. 
Previously, the Nocardiopsis alba strain OK-5 was studied 
for alkali stable proteases isolated from Okha, the coastal 
region of Gujarat, India [52]. The cellulases from Bacillus 
sp., Pseudomonas sp., and Serratia sp. were isolated and 
screened from municipal solid wastes and rice straw wastes 
using carboxy methyl cellulose (CMC) agar medium [53]. 
Overall, the results showed that the Georgenia soli strain 
TSm39 tolerated both saline and alkaline conditions and 
produced multiple extracellular enzymes such as protease, 
amylase, and pectinase, signifying its industrial importance.

The actinobacterial genera, particularly Streptomyces, 
are renowned for antibiotic resistance. Earlier, the resist-
ance of Streptomyces sp. to tetracycline (30 mg) and oxa-
cillin (5 mg), and sensitivity to vancomycin (30 mg) and 
chloramphenicol (15 mg) were revealed together with the 
antibacterial activity of Streptomyces sp. Against Bacillus 
subtilis and Xanthomonas oryzae [54]. Similarly, the strain 
TSm 39 in this study was sensitive to vancomycin (30 mg) 
and chloramphenicol (30 mg) but displayed resistance to 
tetracycline (30 mg) and oxacillin (1 mg) antibiotics. Previ-
ously, the novel antibiotic tunicamycin was discovered with 
anti-complement properties based on the genome analysis 
of the marine actinobacteria Streptomyces sp. DUT11 [55]. 
Streptomyces is the most potential genera well studied for 
antimicrobial metabolites [56, 57]. Similarly, the very least 
explored Georgenia soli strain TSm39 in this study showed 
antimicrobial activity against Staphylococcus aureus, Sal-
monella typhi, and Bacillus subtilis on yeast malt extract 
agar. Similarly, a novel marine actinobacterium, Strepto-
myces variabilis RD-5, with antibacterial activity against 
Escherichia coli, Klebsiella pneumoniae, Enterobacter cloa-
cae, Pseudomonas sp. and Salmonella enteritidis, Bacillus 
subtilis, and Staphylococcus aureus, was isolated from sea 
sediments of the Gulf of Khambhat, Gujarat [58]. More 
recently, the strains Acinetobacter lwoffii Bac109 and Pan-
toea agglomerans Bac131 were studied for their in vitro and 
ex vitro plant growth-promoting and antifungal activities 
[59].

In this study, a pot experiment was performed using 
mung beans treated with Georgenia soli strain TSm39. A 
significant increase (p ≤ 0.05) in shoot length (12.0 ± 0.04) 
and root length (13.3 ± 0.18) of plant Vigna radiate L. was 
observed in treated seeds compared to untreated seeds. 
Similarly, a significant increase was observed in the fresh 
weight (g) and dry weight (g) of the roots (0.43 ± 0.42 and 
0.32 ± 0.12), shoots (0.62 ± 0.41 and 0.13 ± 0.03), and leaves 
(0.42 ± 0.161 and 0.14 ± 0.42). The Georgenia soli strain 
TSm39 enhanced the root and shoot length of the Vigna 

radiate L. plant significantly (p ≤ 0.05) compared to the con-
trol due to indole acetic acid and siderophores produced by 
the strain TSm39, as these two parameters direct in vitro 
PGP mechanisms to promote plant growth. Similarly, the 
plant growth-promoting Bacillus strains (V62 and V39) and 
Arthrobacter strains (V84 and V54) contain multiple plant 
growth-promoting traits and show their potential effect on 
maize growth [60]. Recently, Pseudomonas aeruginosa, the 
rhizospheric strain MK513745 significantly enhanced the 
shoot length (37 ± 0.88) of Vigna radiata L. plant compared 
to control (20 ± 0.06) [61]. Moreover, plant growth-promot-
ing bacterium Azospirillum brasilense strain 2A1 increased 
the root length (17.7 ± 2.9) of petunia plant compared to 
control (14.07 ± 2.9) [43].

Overall, the Georgenia soli strain TSm39 grew under 
alkaline pH and at high salinity. Furthermore, the Georgenia 
soli strain TSm39 showed various in vitro plant growth-pro-
moting attributes, produced various extracellular enzymes, 
and displayed antibiotic and antimicrobial potential. Addi-
tionally, the strain TSm39 significantly enhanced the plant 
growth parameters of Vigna radiata L. under natural envi-
ronmental conditions. The results indicate that the Geor-
genia soli strain TSm39 would enhance plant growth and 
crop quality. Moreover, it would protect plants from phy-
topathogens in the agricultural field.
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