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Abstract
Caspofungin and other echinocandins have been used for the treatment of human infections by the opportunistic yeast 
pathogen, Candida albicans. There has been an increase in infections by non-albicans Candida species such as Candida 
glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida auris in clinical or hospital settings. This 
is problematic to public health due to the increasing prevalence of echinocandin resistant species/strains. This review will 
present a summary on various studies that investigated the inhibitory action of caspofungin on 1,3-β-d-glucan synthesis, on 
cell wall structure, and biofilm formation of C. albicans. It will highlight some of the issues linked to caspofungin resistance 
or reduced caspofungin sensitivity in various Candida species and the potential benefits of antimicrobial peptides and other 
compounds in synergy with caspofungin.
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Introduction

Caspofungin ((MK-0991; L-743,872) is a fungicidal, water-
soluble semisynthetic echinocandin that inhibits synthesis of 
β-1,3-d-glucan, a main structural component of the fungal 
cell wall (Fig. 1) [1]. Apart from caspofungin, micafungin 
and anidulafungin are two additional echinocandins 
approved for used by the US Food and Drug Administra-
tion (FDA) (Fig. 1) [2, 3]. Though these echinocandins have 
different side chains, there have three common components 
essential for their activities [2]. They are as follows: (a) a 
homotyrosine amino acid residue essential for the antifun-
gal activity and for the inhibition of the glucan synthase 
enzyme; (b) proline residues which enhances the antifun-
gal potency of the echinocandin drugs; and (c) the hydroxyl 
groups in the echinocandin B nucleus which improve their 
stability and increase their water solubility [2]. Currently, a 
novel echinocandin derived from anidulafungin, rezafungin 
(also known as CD101), is undergoing phase-III trials [4–6].

Caspofungin and β‑(1,3)‑glucan synthase

The model yeast Saccharomyces cerevisiae

Saccharomyces cerevisiae cell wall comprises an inner layer 
containing the polysaccharides β-1,3-glucan, β-1,6-glucan, 
and chitin and while mannoproteins act as “fillers” affect-
ing cell wall porosity and are in the outer layer the yeast cell 
wall (Fig. 2) [7, 8]. In S. cerevisiae, β-1,3-glucan synthase 
has been shown to catalyze the formation of a β-1,3-glucan 
polymer, a major component of the fungal cell wall (Fig. 2). 
In yeast and many fungal species, the β-1,3-D-glucan chains 
form a solid three-dimensional matrix, which gives the cell 
wall its shape and mechanical strength. Kollár et al. [9, 10] 
demonstrated that chitin (a linear polymer composed of 
β-(1,4)-linked N-acetylglucosamine subunits) is glycosidi-
cally linked to nonreducing branches of the β1,3-glucan and 
β1,6-glucan in S. cerevisiae. Later work by Cabib et al. [11] 
found that β-1,3-D-glucan formed a noncovalent complex 
with chitin. β-1,6-glucan plays a role in the organization of 
the yeast cell wall by interconnecting all other wall com-
ponents into a lattice by attaching mannoproteins via their 
glycosylphosphatidylinositol (GPI) glycan remnant to β-1,3-
glucan and chitin [12, 13].

β-1,3-glucan synthesis in S. cerevisiae involves the 
integral membrane proteins Fks1p and Fks2p which act 
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as subunits of the β-1,3 glucan-synthase enzyme complex 
(Fig. 2) [14–17] and the regulatory subunit encoded by 
RHO1 [18–20]. Another FKS homolog, FKS3, was required 
for normal spore wall formation while FKS2 (GSC2) was the 
primary β-1,3-glucan synthase in S. cerevisiae sporulation 
[21]. Interestingly, work on FKS1 and FKS2 by Mazur and 
colleagues [17] showed that not only FKS1 was affected by 
the echinocandin but that FKS2 was also sensitive to the 
echinocandin L-733,560, due to the increased sensitivity of 
fks1 null mutants to this drug. However, work by Doug-
las et al. [22] and El-Sherbeini and Clemas [23] presented 
evidence of mutations within the FKS1 gene that could 
affect the sensitivity to the semisynthetic pneumocandin 
B, L-733,560 in S. cerevisiae. Screening of the S. cerevi-
siae deletion mutant collection for altered sensitivity to the 
drug found that deletions in 52 genes led to caspofungin 
hypersensitivity and those in 39 genes to resistance [24]. 
Use of a genomic approach to identify genes involved in 
caspofungin susceptibility in S. cerevisiae showed that the 
disruption of 20 genes involved in key functions such as in 
cell wall and membrane function, chitin and mannan bio-
synthesis, vacuole, and transport functions led to increased 
caspofungin sensitivity [25]. For example, the loss of ERG3, 
a C-5 sterol desaturase which catalyzes the introduction of 

a C-5(6) double bond into episterol, a precursor in ergos-
terol biosynthesis, led to increased caspofungin resistance 
in S. cerevisiae [25]. Furthermore, Carolus et al. [26], Rybak 
et al. [27], and Spettel et al. [28] identified that the disrup-
tion/mutation in ERG3 resulted in increased resistance to 
azole and echinocandin antifungals in C. albicans, Candida 
auris, and Candida parapsilosis.

Candida albicans

Since identifying the FKS1 homolog in C. albicans [29] 
and demonstrating that the non-competitive binding ability 
of echinocandins to FKS1 gene in C. albicans [30], echino-
candins including caspofungin have been used in the treat-
ment of Candida spp. and other fungal infections [1]. FKS2 
and FKS3 are also found in C. albicans and in C. albicans 
mutants lacking either FKS2 or FKS3 that FKS1 expres-
sion was upregulated suggesting that FKS2 and FKS3 act as 
negative regulators of FKS1 [31].

However, there have been many reports documenting 
echinocandin resistance in Candida species [32–35]. Such 
echinocandin resistance in Candida spp. is due to point 
mutations in 2 highly conserved “hot spot” regions, i.e., HS1 
and HS2 of the FKS1 gene [32, 33, 36]. Previous studies by 

Fig. 1  Chemical structure of 
three echinocandins. a Caspo-
fungin. b Anidulafungin. c 
Micafungin
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Park and colleagues [37] demonstrated that substitutions in 
the Fks1p subunit of GS in S. cerevisiae and four clinical C. 
albicans isolates and a Candida krusei isolate were sufficient 
to confer reduced susceptibility to echinocandins.

The haploid Candida glabrata, an evolutionarily close 
relative of S. cerevisiae, causes mucosal and systemic 
infections especially in the human immunodeficiency 
virus-infected population [38]. Its genome has also three 
GS homologs, FKS1, FKS2, and FKS3 [39]. In this par-
ticular species, mutations in both FKS1 and FKS2 but not 
FKS3 have been associated with echinocandin resistance 
[40, 41]. Clinical C. glabrata isolates displaying reduced 
susceptibility or resistance to anidulafungin, caspofungin, 
and micafungin were not only due to FKS1 modification but 
to point mutations in the FKS2 [42]. Similarly, FKS1 hot 
spot 1 (HS1) and FKS2 HS1 have been identified in clini-
cal C. auris isolates with reduced caspofungin susceptibil-
ity [43]. Genetic engineering for full-length replacement of 
the FKS1 gene, containing FKS1 hotspot (HS) regions HS1 
or HS2 mutations from C. albicans, the F659 deletion in 
the FKS2 allele of C. glabrata and the naturally occurring 
P660A substitution in FKS1 of C. parapsilosis respectively 
into Candida lusitaniae confirmed the role of FKS mutations 
associated with in vitro caspofungin resistance or reduced 
echinocandin susceptibility [44]. For additional informa-
tion, Arendrup [45], Arendrup and Perlin [46], and Lackner 

et al. [47] listed mutations in FKS1 and FKS2 known to 
contribute to resistance in various Candida isolates. Another 
study using fluorescently labeling caspofungin, Jaber and 
colleagues [48] observed enhanced caspofungin uptake in 
the vacuoles of echinocandin-resistant C. albicans and C. 
glabrata strains with point mutations in the FKS genes com-
pared to echinocandin-sensitive isogenic strains.

Other fungal pathogens displaying decreased echinocan-
din susceptibility have been reported such as FKS1 mutation 
(E671Q) in Aspergillus fumigatus following anidulafungin 
exposure [49]. Mutations studies in FKS1 and FKS2 have 
helped in our understanding in the intrinsic resistance 
to echinocandins in Scedosporium prolificans and Sce-
dosporium apiospermum [50], and Fusarium solani [51].

Another explanation for tolerance to caspofungin inde-
pendent of FKS1 (located on chromosome 1; Ch1) in C. 
albicans was observed in strains adapted in vitro to lethal 
doses of caspofungin [52]. Similarly in the previous study 
investigating C. albicans adaptation to toxic levels of the 
sugar L-sorbose [53], monosomy of chromosome 5 (Ch5) 
played a role in tolerance of C. albicans to caspofungin 
[52]. In addition, monosomy of the left arm and trisomy 
of the right arm of Ch5 were also detected in caspofungin-
adapted C. albicans cells [52]. In such mutants, there was 
a downregulation of FKS genes hence a decreased amount 
of β-1,3-D-glucan content and an increase in chitin content 

Fig. 2  Caspofungin’s target in Saccharomyces cerevisiae and Can-
dida albicans. a Wild-type strains Saccharomyces cerevisiae BY4741 
and Candida albicans DAY185 were stained with fluorochrome 
Aniline Blue (AB; Biosupplies Australia PTY Ltd) for β-1,3-glucan 
detection in yeast cell wall (in yellow) under UV fluorescence. b 

Schematic diagram of the yeast cell wall membrane highlighting the 
inhibitory action of caspofungin on β-1,3-glucan synthesis (red light-
ning bolt)via noncompetitive inhibition of the β-1,3-glucan synthase 
complex (Fks1p and Fks2p; green cylinder)

1103Brazilian Journal of Microbiology (2022) 53:1101–1113



1 3

1104 Brazilian Journal of Microbiology (2022) 53:1101–1113



1 3

in the cell wall [52]. Further analyses of Ch5 found genes 
encoding positive regulators of caspofungin susceptibility, 
CNB1 (the regulatory subunit of calcineurin B), and MID1 
(a putative stretch-activated  Ca2+ channel) [52]. Negative 
regulators of caspofungin susceptibility CHT2 (a GPI-
dependent chitinase), PGA4 (a GPI-anchored cell surface 
1,3-β-D-glucanosyltransferase), and CSU51 (a putative GPI-
anchored protein) were also found in the same chromosome 
[52].

Effect of caspofungin on C. albicans cell 
surface

Caspofungin and other echinocandins not only disrupt 
β-1,3-glucan synthesis in C. albicans (Fig. 2), which can 
compromise cell wall integrity, but can also kill C. albicans 
in a dose-dependent manner [54] by causing metacaspase-
dependent apoptosis [55, 56] and necrosis [55]. However, 
many studies have been focused on cell wall remodeling/
mechanical strength and the paradoxical growth (PG) of C. 
albicans and various Candida species in response to caspo-
fungin (Fig. 3) and how it could be linked to caspofungin or 
echinocandin resistance in Candida spp.

In four Candida species (C. albicans, Candida orthopsi-
losis, C. parapsilosis, and Candida tropicalis) exhibiting PG 
at approximately 16 μg  mL−1 of caspofungin, PG cells had 
a decrease in β-1,3-glucan and an elevated chitin cell wall 
content compared to control untreated cells [57] (Fig. 3). In 
the same study, PG cells were altered in their morphology 
where they formed clumps of enlarged cells, had abnormal 
septa, and lacked filamentation [57] (Fig. 3). Another fea-
ture was that the control (WT) C. albicans 1399 cells had 
the characteristic two layered cell walls, i.e., an electron-
dense outer layer and an inner layer of low electron density, 
while caspofungin-treated C. albicans 1399 PG cells had 
a decreased inner cell wall layer and a predominant more-
electron-dense layer [57]. Prior work by Nishiyama and 
colleagues [58] observed similar morphological changes 
induced by 0.1 μg  mL−1 or above of micafungin post 24 h in 
C. albicans ATCC 99,028, a strain known to be susceptible 

to micafungin. Later work by Rueda et al. [59] suggested 
that the increase in chitin in caspofungin-treated C. albicans 
may contribute to the protection of the cells from the fungi-
cidal effect of the drug. Interestingly, paradoxical growth can 
be induced by the application of 4 μg  mL−1 caspofungin for 
24 h in A. fumigatus [60]. In this case, Wagener and Loiko 
[61] proposed that an increase in chitin in fungi in response 
to echinocandins could facilitate their survival upon the 
inhibition of β-1,3 glucan synthesis. However, paradoxical 
growth was not observed in a laboratory A. fumigatus strain 
Af293 and 7 clinical A. fumigatus strains in the presence of 
micafungin or anidulafungin [62].

Candida cell wall remodeling—elevated chitin

An atomic force microscopy (AFM) study investigating the 
effect of caspofungin (at 50 ng  ml−1 for 2 h) on C. albicans 
cell wall surface demonstrated that there was a decrease in 
mechanical cell wall strength, i.e., caspofungin-induced 
softening of the cell wall due to a decrease in β-1,3 glu-
can content [63]. This would affect C. albicans’ cell shape, 
mechanical rigidity, and resistance to osmotic pressure 
leading to the induction of osmotically fragile cells or 
swollen cells [63]. Another study using the AFM approach 
combined with Fourier transform infrared spectroscopy in 
attenuated total reflection mode (ATR-FTIR) investigated 
the effect in caspofungin on Candida lusitaniae CBS 6936 
and its caspofungin-resistant mutant (bearing the mutation 
S645P in FKS1) [64]. They demonstrated that cell wall stiff-
ening occurred only at low concentration of caspofungin 
(∼0.06 μg  mL−1; 0.5 MIC) for WT cells, whereas it was 
observed at high concentration (∼6.25 μg  mL−1; 50 MIC) 
for resistant strains [64].

To restore cell wall integrity, C. albicans stimulates chitin 
synthesis to enable cells to survive lethal concentrations of 
echinocandins in vitro [65]. Lee et al. [66] observed that 
high chitin C. albicans cells were less susceptible to caspo-
fungin in mice infection and that C. tropicalis, C. parapsi-
losis, Candida guilliermondii, and C. krusei elevated their 
chitin cell wall content in response to caspofungin treatment 
[67]. Similar observations were documented in C. auris 
in response to caspofungin [43]. Protein kinase C (PKC), 
high osmolarity glycerol (HOG) mitogen-activated protein 
(MAP) kinase, and  Ca2+/calcineurin signaling pathways 
have been shown to regulate chitin synthases, CHS1, CHS2, 
CHS3, and CHS8 gene expression and chitin synthesis in C. 
albicans and various mutants grown in YPD supplemented 
with different agents such as caffeine, cyclosporin A, the cal-
cineurin inhibitor, FK506, and A23187 (Calcimycin) [68]. 
Recent work by Han et al. [69] on C. albicans SC5314 and 
its deleted mutants of β-1,6-glucan synthesis, KRE6, and 
SKN1 found that cell wall chitin levels increased through 
the post-transcriptional regulation of the chitin synthase 

Fig. 3  Paradoxical growth of Candida albicans DAY185 cells treated 
with caspofungin at different concentrations stained with calcofluor 
white (CFW). C. albicans DAY185 grown in ½ strength PDB liquid 
30 °C supplemented with caspofungin at 0, 2, 4, 10, and 100 ng/mL 
respectively were examined with an Olympus BX50 upright micro-
scope with UPlanApo × 100/1.35 oil objective equipped with a filter 
cube U-MWU2 (excitation 330–385  nm/emission 420  nm/dichro-
matic mirror 400  nm). Images were acquired with SPOT Camera 
using Spot RT analysis software. Black and red arrows highlight the 
presence of enlarged and elongated yeast cells (putative pseudohy-
phae). Note the increase in flocculation and CFW fluorescence emit-
ted by cells treated with an increasing concentration of caspofungin. 
All images were acquired after 8 ms

◂
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Chs3 leading to the cell viability maintenance via  Ca2+/cal-
cineurin and PKC signaling pathways. Furthermore, β-1,3-
glucan had no role in compensating β-1,6-glucan synthesis 
in C. albicans kre6Δ/Δ skn1Δ/Δ cells as both the WT and 
mutants grew on YPD plates containing 0.064 μg  mL−1 of 
caspofungin [69].

In S. cerevisiae, deletion of FKS1 induced a compensa-
tory mechanism, i.e., high rates of chitin synthesis due to a 
significant increase in CHS3 activity [70]. Calcofluor white 
staining of a β-1,3-glucan synthase knockout fks1::URA3 
strain of S. cerevisiae displayed an elevated fluorescence 
signal (i.e., elevated chitin content) compared to the wild 
type [71]. Lesage et al. [24] suggested that there was func-
tional link between chitin and glucan synthesis where an 
increased in chitin synthesis could compensate for defective 
β-1,3-glucan assembly for survival in the presence of caspo-
fungin such as the deletion of CHS3 or CHS4–7 leading to 
caspofungin hypersensitivity in S. cerevisiae.

Cell–cell interactions

A review by Heredia et al. [72] highlighted that there are 
three transcription factors Sko1, Rlm1, and Cas5 that coor-
dinate and regulate the caspofungin-induced cell wall dam-
age response in C. albicans. The transcription factor Sko1 
(ORF 19.1032) and its upstream regulator, the PAS-domain 
protein, and protein kinase Psk1 (ORF19.7451) were shown 
to be involved in C. albicans’ wall regulatory pathway [73]. 
Deletion mutants sko1 Δ/Δ and psk1 Δ/Δ were hypersensi-
tive to 125 ng  mL−1 caspofungin compared to its wild-type 
strain C. albicans DAY185 [73]. The same authors dem-
onstrated that up to 79 caspofungin-responsive genes were 
regulated by Sko1 including key genes involved in cell wall 
biosynthesis CRH11, MNN2, and SKN1 and in cell wall 
damage, PGA13 [73]. The latter encodes a GPI protein and 
pga13Δ mutants exhibited a higher surface hydrophobicity, 
and increased adherence and flocculation (cell–cell interac-
tions) [74]. Later work by Alonso et al. [75] highlighted 
that Sko1 mediated the hyphal formation in C. albicans by 
repressing two genes, HWP1 (Hyphal Wall Protein 1), and 
ECE1 (Extent of Cell Elongation 1) known to be involved 
in yeast-to-hyphal transition [76] as well as oxidative stress 
response via HOG1.

The role of the transcription factor RLM1 in the mainte-
nance of the cell wall integrity was shown by susceptibility 
assays of C. albicans Δ/Δ rlm1 mutants to 30 ng  mL−1 caspo-
fungin and various compounds such as calcofluor white [77]. 
In this study, the authors found that the caspofungin suscep-
tible rlm1 deletion mutants which in the presence of 1 M 
sorbitol reverted to a wild-type phenotype had an elevated 
chitin and a reduced mannan cell wall content compared to 
the wild type [77]. Microarray analysis of the rlm1 deletion 
mutants in the absence of stress showed an upregulation of 

genes linked to cell adhesion like ECE1, HWP1, and two 
genes that belong to agglutinin-like sequence (ALS) fam-
ily, ALS1 and ALS3 [77]. Within this family, eight genes 
(ALS1, ALS2, ALS3, ALS4, ALS5, ALS6, ALS7, and ALS9) 
encode cell-surface glycoproteins that play a role in adhe-
sion, biofilm formation, hydrophobicity, and pathogenesis 
in C. albicans [78–80]. Interestingly, ALS1 has been linked 
to caspofungin-induced cell flocculation/aggregation of C. 
albicans as yeast cells flocculated in growth media supple-
mented with 10 ng  mL−1 and 100 ng  mL−1 caspofungin, 
respectively [81]. Furthermore, compared to the wild-type 
strains, the als1Δ/Δ mutant cells had diminished floccula-
tion in the presence of 100 ng  mL−1 caspofungin [81]. In the 
same study, the authors linked flocculation to the regulator 
of morphogenesis, EFG1, a Candida homolog of PHD1 from 
S. cerevisiae as efg1 Δ/Δ deletion mutants were susceptible 
to caspofungin and impaired in flocculation compared to C. 
albicans wild-type strains [81]. Similarly, efg1 knockouts 
of C. parapsilosis were sensitive to caspofungin compared 
to the wild-type strain CLIB214 and the efg1/ACT1-EFG1 
complemented strain [82]. EFG1 and various transcription 
factors (TFs) have been linked to hyphal morphogenesis (the 
switch from a unicellular budding yeast to multicellular fila-
mentous hyphal growth) thus allowing C. albicans’ hyphae 
to attach and to penetrate through the epithelial cell layers 
of an infected host [83]. Past work by Noffz et al. [84] and 
Stoldt et al. [85] demonstrated that the EFG1 overexpression 
in C. albicans led to pseudohyphae development. Another 
TF is C. albicans CaSFL1 (suppressor for flocculation gene) 
which acts as a negative regulator of hyphal development 
and flocculation in C. albicans [86, 87]. Interestingly, a 
recent study demonstrated a link with SFL1 and EFG1 in 
negatively and positively regulating hyphal morphogenesis 
and microcolony formations [88].

Moreover, efg1 interacts with cas5, a transcription factor 
involved in stress responses, cell cycle regulation, and drug 
resistance [89, 90] in vivo and both regulators are critical 
for the induction of caspofungin-responsive genes such as 
ALS1 in C. albicans [91]. Apart from ALS1 and PGA13, 
additional GPI-anchored proteins were found to be affected 
by caspofungin in C. albicans [92].

One of the consequences of caspofungin inducing cell 
wall changes in various Candida species is that the addi-
tional modification to cell wall GPI-anchored proteins and 
the increase in chitin/glucan exposure decreased phagocy-
tosis of C. albicans, C. tropicalis, C. dubliniensis, C. lusi-
taniae, and C. guilliermondii by J774 macrophages [93]. In 
addition, there was no change in phagocytosis by J774 mac-
rophages with C. glabrata and C. parapsilosis in the pres-
ence and absence of caspofungin as there were no changes 
in glucan exposure in response to caspofungin treatment in 
these species [93]. It has been shown that chitin blocked 
the recognition of live C. albicans yeast cells by human 
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peripheral blood mononuclear cells (PBMCs), leading to 
significant reduction in the stimulation of TNF-α, IL-6, and 
IL-1β [94]. In contrast, an increased elicitation of TNF-α 
from macrophages in a Dectin-1-dependent manner has been 
linked to the unmasking (or exposure) of β-1,3-glucan in C. 
albicans and its cho1Δ/Δ mutant which is unable to syn-
thesize phosphatidylserine [95]. Similar observations have 
been made due to unmasking of β-1,3-glucan in C. albicans 
kre5Δ/Δ to hyperelicit TNFα from macrophages [96]. KRE5 
encodes a UDP-glucose:glycoprotein glucosyltransferase 
localized in the endoplasmic reticulum in C. albicans and 
S. cerevisiae [97]. Work by Herrero et al. [97] demonstrated 
that the lack of Kre5p in C. albicans reduced adherence to 
human epithelial cells and the KRE5 homozygous mutant 
strains were avirulent in a BALB/c mouse model of sys-
temic infection. A recent investigation in C. glabrata also 
identified that a functional homolog of KRE5, CgKRE5, and 
C. glabrata cells with the tetracycline-dependent system to 
repress CgKRE5 in the presence of 20 μg  mL−1 doxycy-
cline (DOX) had enhanced sensitivity to micafungin (at 
3 μg  mL−1) compared to those grown in the absence of DOX 
[98]. AFM work on C. albicans SC5314 (WT), the cho1Δ/Δ 
mutant, the kre5Δ/Δ mutant, and the caspofungin-treated 
WT confirmed that by inhibiting key steps in cell wall 
synthesis increased cell wall roughness and decreased cell 
wall elasticity [99]. By using AFM tips functionalized with 
sDectin-1-Fc, which is highly specific for glucans with a 
pure (1 → 3)-β-linked backbone structure [100], the authors 
demonstrated that the kre5Δ/Δ mutant had the highest fre-
quency of binding (or peak adhesion frequency) followed 
by caspofungin-treated WT cells, the cho1Δ/Δ mutant, and 
almost no binding with the WT [101]. Thus, the differences 
in β-1,3-glucan layer exposure could contribute to Candida’s 
pathogenicity, virulence, and the immune system evasion 
and/or survival.

C. albicans biofilms and caspofungin

Another aspect of C. albicans contributing to its pathogenic-
ity and virulence is its ability to form biofilms, i.e., where 
densely packed communities yeast cells adhere to surfaces 
[101–103]. In C. albicans, biofilm formation involve adher-
ence, the formation of microcolonies, and of hyphae sur-
rounded by an extracellular matrix (ECM) of polysaccha-
rides to the subsequent dispersal of planktonic cells after 
reaching maturation [104–106]. C. tropicalis biofilms are 
similar in structure to C. albicans while C. parapsilosis form 
pseudo-hyphae while C. auris and C. glabrata biofilms are 
made up of blastospores within an ECM [104, 105, 107]. 
Many genes involved in biofilm formation in C. albicans and 
other Candida species have been studied (refer to reviews 
[104, 105, 107–109]). Bachmann et al. [110] spotlighted the 
benefits of caspofungin against C. albicans biofilms in vitro. 

Later investigations by Ferreira et al. [111] and Melo et al. 
[112] observed paradoxical growth in caspofungin-treated 
biofilms, i.e., enlarged, globose cells, and a resurgence of 
growth at drug concentrations above the MIC in clinical 
Candida species.

Candida spp. biofilm formation poses a clinical problem 
in transplant, oncology, and intensive care medicine and 
echinocandins are still used in its management [113–115]. 
An in vitro study on the novel echinocandin, rezafungin 
(CD101), on C. albicans biofilms suggests that it could be 
useful in preventing and treating biofilm-associated nosoco-
mial infections [113].

Synergistic activity of caspofungin 
with other compounds

Due to increased resistance of C. albicans to caspofungin, 
there are have been various studies in the use of combina-
tion therapies which would result in synergistic action and 
greater potency than the constituent drugs used in mono-
therapy [116, 117].

Work by Troskie et al. [118] have shown the benefits of 
combining tyrocidines, a type of cationic cyclodecapeptides 
with potent antibacterial and antimalarial activities from 
Bacillus aneurinolyticus, with caspofungin against C. albi-
cans strain SC5314, which is known to form robust biofilms. 
In combination, the three major tyrocidines, TrcA, TrcB, and 
TrcC, significantly increased the C. albicans biofilm eradi-
cation activities of caspofungin [118]. In addition, the frac-
tional inhibitory concentration index (FICI) values of TrcA 
with caspofungin were more promising than TrcB and TrcC 
with caspofungin combination respectively against 24-h-old 
C. albicans biofilms [118]. Further testing in the C. elegans 
infection model, 5 days posttreatment of a single dose of 
3.0 μM TrcA and 0.19 μM caspofungin almost doubled the 
nematode survival rate of C. albicans-infected nematodes 
compared to C. albicans-infected nematodes treated with a 
single dose of 0.19 μM caspofungin only [118].

A recent review by Oshiro and colleagues [119] high-
lighted the benefits of antifungal peptides (AFPs) or 
antimicrobial peptides (AMPs) such as plant defensins, 
cathelicidins, and histatins in the inhibition and eradica-
tion of Candida spp. biofilms. It has been shown that the 
use of AMPs with caspofungin had an enhanced antifungal 
activity against C. albicans in vitro and in vivo [117]. 
One AMP of human origin, hMUC7–12 [120], and one 
of amphibian origin, DsS3(1–16) [121], when combined 
with caspofungin respectively were shown to improve the 
survival of wax moth larvae (Galleria mellonella) infected 
with C. albicans SC5314 compared to those infected wax 
moth larvae treated with PBS or hMUC7–12 (25 mg  kg−1), 
DsS3(1–16) (25 mg  kg−1), and caspofungin (0.5 mg  kg−1) 
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only [117]. The same authors observed similar results in 
infected wax moth larvae when treated with the cyclic 
peptide, colistin sulfate (10 mg  kg−1) in combination with 
caspofungin [117].

Plant defensins have also been investigated for their 
synergistical efficacy with caspofungin against C. albi-
cans. Of the two radish defensins, RsAFP1 and RsAFP2, 
the later induced mislocalization of septins in C. albi-
cans CAI4 cells expressing SEP7-GFP-tagged allele and 
blocked the yeast-to-hypha transition in a dose-dependent 
manner in C. albicans CAI4 cells [122]. Further work by 
Vriens et al. [123], using the recombinant (r)RsAFP2, het-
erologously expressed in Pichia pastoris, demonstrated 
that RsAFP2 prevented C. albicans biofilm formation and 
acted synergistically with caspofungin and amphotericin B 
in the prevention and eradication of C. albicans biofilms. 
Recent work by Cools et al. [124] demonstrated that a 
truncated peptide variant of the plant defensin HsAFP, 
isolated from Heuchera sanguinea, HsLin06_18, when 
combined with caspofungin reduced in vitro biofilm for-
mation of C. albicans SC5314 WT on polyurethane cath-
eters as well as a caspofungin-resistant C. albicans mutant 
strain M177 and, the use of a subcutaneous rat catheter 
model in immunosuppressed female Sprague–Dawley rats, 
the combination reduced biofilm formation of C. albicans 
in vivo. Furthermore, the authors observed that the caspo-
fungin facilitated the internalization and the membrane 
permabilization of HsLin06_18 into planktonic C. albi-
cans SC5314 WT cells [124].

Work by Sun and colleagues [125] demonstrated the ben-
efits of combining polyphenols such as caffeic acid phene-
thyl ester (CAPE) with caspofungin against C. albicans. 
CAPE not only deprived iron and increased ROS production 
in C. albicans YEM30 cells but when used in combination 
with caspofungin, there was a significant 16-fold decrease 
for the minimum inhibitory concentrations (MICs) of CAPE 
and caspofungin compared to the MIC values of individual 
drugs [125].

The natural plant metabolite, poacic acid (diferulate, 
8–5-DC; PA), was shown to bind to cell wall β-1,3-glucan 
in S. cerevisiae and inhibit β-1,3-glucan synthase activity 
in vitro [126]. PA also inhibited the growth of plant fungal 
pathogens Sclerotinia sclerotiorum and Alternaria solani 
and the oomycete Phytophthora sojae [126]. Work by Lee 
et al. [127] explored the effects of PA against human patho-
genic Candida species. C. guilliermondii, C. orthopsilosis, 
and C. parapsilosis were more sensitive to PA than C. albi-
cans, C. dubliniensis, C. glabrata, and C. tropicalis [127]. 
Furthermore, C. albicans strains containing an amino acid 
substitution in Fks1 Hotspot1 (S645Y or S645P) not only 
had decreased sensitivity to caspofungin but increased sensi-
tivity to PA suggesting that there is a difference in the mode 
of action of PA and caspofungin [127].

Conclusion: what else could we learn 
about caspofungin?

Recent cryo-electron tomography work by Jiménez-
Ortigosa et al. [128] has provided a preliminary structure 
of the putative C. glabrata GS complex, i.e., as clusters 
of hexamers, each subunit with two notable cytosolic 
domains, the N-terminal and central catalytic domains. 
The mechanism of action for echinocandins is its ability 
to inhibit β-1,3-glucan synthesis by non-competitive bind-
ing to GS. Fluorescence microscopy work by Utsugi et al. 
[129] demonstrated with the movement of Fks1p tagged 
with the green fluorescence protein was colocalized with 
cortical actin on the S. cerevisiae cell surface. Therefore, 
it would be interesting to see how various mutations in 
the FKS1/FKS2 and the application of caspofungin (or 
other echinocandins) in synergy with other drugs could 
affect the assembly of GS on the cell plasma membrane 
and β-1,3-glucan synthesis in C. albicans and other patho-
genic yeasts.
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