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Abstract
The production of 3-indoleacetic acid (IAA) by plant growth-promoting bacteria (PGPR) stimulates root development and 
plant growth. In addition, morphological changes such as an increased root ramification and root hair production improves 
nutrient absorption and biomass accumulation. The objective of this work was to evaluate the effect of IAA-producing strains 
on rice in an advanced stage of its vegetative cycle. Rice was inoculated with Gluconacetobacter diazotrophicus PAL 5 and its 
lao- mutant, deficient in auxin production, Azospirillum baldaniorum Sp 245, and Escherichia coli DH10b. Both the mutant 
and wild-type G. diazotrophicus stimulated root elongation, area, volume, and diameter. However, the lao- mutant strain was 
the only one capable of increasing the number of roots. In turn, inoculation with A. baldaniorum had no significant effect on 
plant development. The inoculation with E. coli led to changes in root volume, area, and diameter, and a response that may 
be related to the stress caused by its presence. We conclude that the inoculation with G. diazotrophicus stimulates the root 
system’s growth independently of their IAA production ability, suggesting that a metabolite other than IAA is responsible 
for this effect at advanced stages of the rice’s vegetative cycle.
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Introduction

Plant roots release various organic substances and molecular 
signals that attract microbial populations, especially those 
capable of metabolizing root exudates and proliferating in 
the rhizosphere [1]. Root metabolism is closely associated 
with these microorganisms [2] and, among them, there are 
several plant growth-promoting rhizobacteria (PGPR) that 
benefit plant growth and development.

One of the most commonly used mechanisms to explain 
the beneficial effects of PGPR on plants is the production of 
phytohormones, such as auxin [3]. This hormone controls 
physiological processes in plants, such as cell growth and 
division, tissue differentiation, and responses to light and 
gravity [4]. Indole-3-acetic acid (IAA) is the most prevalent 
and essential auxin for plants [3]. Inoculation studies support 
the hypothesis that the synthesis of IAA by PGPRs increases 
plant rooting. The consequent root growth allows plants to 
explore the soil better, thus benefiting the absorption of 
water and nutrients. Furthermore, IAA may significantly 
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increase root exudation, which increases root colonization 
by PGPR, improving the inoculation effect [3, 4].

Among these microorganisms are Gluconacetobac-
ter diazotrophicus [5] and Azospirillum sp. [6], which are 
nitrogen-fixing and phytohormone-producing bacteria [7]. 
Although initially isolated from sugarcane plants grown in 
Brazil [8], G. diazotrophicus colonizes other species endo-
phytically, such as rice [9]. In fact, rice has been used as 
a plant model to study interactions with G diazotrophicus 
since it is easy to manipulate and cultivate in the laboratory 
[10–12]. Furthermore, rice inoculation experiments with 
variety IAC4440 and the low IAA-producing G. diazotrophi-
cus lao- strain demonstrated the importance of auxin in alter-
ing root architecture. Under these conditions, root length 
has been stimulated by the wild-type strain if compared to 
lao-inoculated plants [13].

Nevertheless, these evaluations were made within an 
initial period of 3 and 7 days [13]. Similarly, the inocula-
tion of Azospirillum baldaniorum in Arabidopsis increased 
the number of root hairs and lateral roots compared to the 
inoculation of a mutant strain deficient in auxin biosynthe-
sis. This effect has been evaluated only seven days after 
inoculation [14]. It is possible to infer that the evaluation 
time is a restrictive factor to observe the inoculation’s actual 
effectiveness since the PGPR effect may not be expressed 
throughout the plant cycle. In fact, a study has shown that 
the population of G. diazotrophicus has decreased through-
out the commercial cycle of different sugarcane genotypes 
[15]. Possibly, the manifestation of growth promotion by G. 
diazotrophicus was more accentuated in the initial stages.

Through these observations, the hypothesis of our work is 
that bacterial auxin may have an expressive effect beyond the 
initial stages of interaction between the plant and bacteria. 
To test this hypothesis, we evaluated whether IAA-producing 
bacteria affects root morphology in a more advanced stage 
of rice’s vegetative cycle. Azospirillum baldaniorum Sp 245 
[14], G. diazotrophicus PAL 5, and its lao- IAA-deficient 
production mutant strain [13]were used as model organisms, 
allowing us to access to the effect of this hormone on root 
development.

Material and methods

Strains of bacteria and cultivation conditions

The bacterial strains used in the experiment were Glu-
conacetobacter diazotrophicus  PAL 5 (= BR11281), 
which is the type strain of its species [16]; Gluconaceto-
bacter diazotrophicus lao-, which is derived from PAL 5 
and deficient in the production of IAA due to a mutation 
in the L-amino acid oxidase (lao) gene [13]; Azospirillum 
baldaniorum Sp 245 (= BR11005), formerly classified as A. 

brasilense [17], isolated from wheat, and an IAA producer 
[18, 19]; and Escherichia coli DH10b, a strain used for clon-
ing in molecular biology assays [20]. E. coli was added as a 
negative control because it is not a classic PGPR. G. diazo-
trophicus strain PAL 5 and lao-inocula were prepared in 
liquid DYGS medium at 30 ºC for 48 h [21], with a final 
concentration greater than  108 CFU.mL−1. Additionally, the 
medium used for lao- received kanamycin at a concentration 
of 200 µg  mL−1. E. coli DH10b was grown in LB medium 
[22], at 37 ºC for 24 h, and the A. baldaniorum Sp 245 inoc-
ulum was prepared in DYGS medium for 48 h at 28ºC.

Rice experiment in nutrient solution

The experiment was carried out in a completely randomized 
design, with five treatments and six replicates. The treat-
ments consisted of inoculation with G. diazotrophicus PAL 
5, G. diazotrophicus  lao-,  A. baldaniorum  Sp 245,  E. 
coli DH10b, and a control without inoculation.

The Piauí variety, which has been used as a model for 
plant nutrition [23–27] and microbiology studies [28], was 
chosen for experimentation. The seeds were initially disin-
fected in 2% sodium hypochlorite, for 30 min, under orbital 
agitation. Then, the seeds were washed ten times in distilled 
water and allowed to germinate on wet gauze. Ten days after 
germination (DAG), the seedlings were transferred to 700-
mL pots filled with Hoagland’s solution [29] modified at 
½ ionic strength. Each pot received four seedlings. Three 
days later, the seedlings were inoculated with 5 mL of each 
strain according to their respective treatments. The inocula 
were applied to the roots any time the nutrient solution was 
renewed. The plants were cultivated in a growth chamber 
under a 12 h/12 h (light/dark) photoperiod at 25 °C and sam-
pled 21 DAG.

The following variables were measured: shoot and root’s 
fresh and dry weights, root length (mm), surface area  (mm2), 
average diameter (mm), and volume  (mm3), and the num-
ber of root tips. The root variables were measured with the 
software WinRHIZO Arabidopsis coupled to an image scan-
ner Epson Expression 11000XL LA2400, using the method 
described by [30, 31]. The rice roots were evenly distributed 
under a layer of water in a transparent tray (20 cm wide and 
30 cm long). Subsequently, the images were digitized, and 
the mentioned variables were calculated.

Data analysis

Data normality and homoscedasticity of the variances 
were verified by the Shapiro–Wilk and Bartlett tests, 
respectively. Outliers were identified based on the box-
plot analysis. One outlier was identified per treatment and 
removed. Thus, five replicates were used for subsequent 
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statistical analyses. Each of the measured variables were 
subjected to an analysis of variance (ANOVA) with the F 
test (p < 0.05), and the means were compared to the con-
trol by the t-test (p < 0.05). The data was also submitted 
to principal component analysis (PCA) on the correlation 
matrix. All analyzes were performed using the R software 
[32].

Results

The plants inoculated with either G. diazotrophicus lao- or 
PAL 5 showed significantly greater root length (Fig. 1A), 
surface area (Fig. 1B), volume (Fig. 1C), and average diam-
eter (Fig. 1E) compared to the uninoculated plants (Fig. 2). 
In addition, lao- also stimulated an increase in the number 
of root tips (Fig. 1d), pointing out to the existence of an 

Fig. 1  Length (a), surface area 
(b), volume (c), number of tips 
(d), and average diameter (AvD) 
(e) of roots of rice plants inocu-
lated with A. baldaniorum, E. 
coli DH10b, G. diazotrophi-
cus lao- ( mutant deficient in 
the production of IAA) and G. 
diazotrophicus PAL 5 (IAA-
producing wild strain). “Con-
trol” stands for the uninoculated 
treatment. T-test (*p < 0.05; 
**p < 0.01; ***p < 0.001;***
*p < 0.0001) for the means of 
effects between the control and 
different treatments, ns = not 
significant
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IAA-independent mechanism stimulating root growth. The 
E. coli DH10b inoculation stimulated an increase in root 
diameter, volume, and surface area (Fig. 1E, C, B), indi-
cating that rice plants can respond to the stimulation of a 
non-PGPR species. Finally, none of the root morphological 
variables were affected by A. baldaniorum Sp 245 inocula-
tion (Figs. 1 and 2). No differences were observed among 
all treatments for root and shoot biomasses and root:shoot 
ratio (Fig. 2A–E).

The principal component analysis (PCA) explained 68.1% 
of the total data variability in the first two components 
(Fig. 3). The first component explained 40.6% of the varia-
tion and represents a combination of root growth variables 
(root length, volume, diameter, and area, number of tips, 
and root dry weight), which had the highest weight in this 
component. The control was negatively correlated to these 
variables while the inoculations with G. diazotrophicus PAL 
5 and lao- were positively correlated (Fig. 3). The second 

Fig. 2  Shoot (a) and root (b) 
fresh weight, shoot (c) and 
root (d) dry weight, and root/
shoot ratio (e) of rice plants 
inoculated A. baldaniorum, E. 
coli DH10b, G. diazotrophi-
cus lao- (mutant deficient in 
the production of IAA) and G. 
diazotrophicus PAL 5 (IAA-
producing wild strain). “Con-
trol” stands for the uninoculated 
treatment. T-test (*p < 0.05; 
**p < 0.01; ***p < 0.001;**** 
p < 0.0001) for the means of 
effects between the control and 
different treatments, ns = not 
significant
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component explained 27.5% of the variation and represented 
a contrast between the shoot biomass and root: shoot ratio. 
E. coli DH10b inoculation was negatively correlated with 
shoot wet and dry weights, but positively correlated with 
the root:shoot ratio (RS), showing that the plants invested 
proportionally in root than in shoot growth. Finally, the plant 
response to A. baldaniorum inoculation was highly variable, 
as indicated by the high dispersion of the points in the PCA. 
In general, this treatment showed lower root growth than the 
inoculation of the other two PGPR.

Discussion

Microorganisms have marked effects on plant establishment 
in the environment, influencing root growth and develop-
ment and improving nutrient uptake [33]. These effects are 
relevant at the beginning of a plant’s growth cycle since they 
can give plants an advantage to establish in the field. Never-
theless, plants can also benefit from microbial stimulation 
throughout their growth cycle, which may be relevant for 
their metabolism, resistance to biotic and abiotic stresses, 
and improved crop productivity. In the present work, we 
evaluated the effects of some of these microorganisms dur-
ing advanced stages of rice’s vegetative growth. We also 

took advantage of an IAA production-deficient G. diazo-
trophicus strain to evaluate the role of this hormone.

PGPR, such as Gluconacetobacter and Azospirillum, are 
associated with plants and positively impact their growth 
[34]. This stimulatory effect may be related to IAA produc-
tion, and it has been demonstrated for the first days after root 
inoculation [13, 14]. Nevertheless, in the present work, both 
G. diazotrophicus wild-type and mutant strains similarly 
stimulated rice root growth, indicating that auxins’ produc-
tion was not the primary factor promoting root growth at 
the advanced stage of rice’s vegetative cycle. In fact, lao- 
was the only strain positively affecting the number of lateral 
rice roots (p < 0.1) compared to the uninoculated treatment 
(Fig. 1D). This result contrasts with data from Rodrigues 
et al. [13], who observed a positive effect of G. diazotrophi-
cus PAL 5 three and seven days after inoculation and related 
this result to auxin production. This finding suggests that the 
auxin produced by the wild-type strain has an initial effect 
if we think mainly of this hormone’s function as a signal-
ing molecule among plant bacteria [35]. However, it may 
no longer be essential for root development at an advanced 
growth stage.

The genus Azospirillum has been reported to stimu-
late the growth of different crops, and for this reason, it 
has been used in agricultural inoculants [36, 37]. Despite 
Azospirillum’s ability to fix nitrogen, this process has 

Fig. 3  Principal component 
analysis carried out on rice 
growth variables. Shoot (FWs) 
and root (FWr) fresh weight; 
shoot (DWs) and root (DWr) 
dry weight; number of roots 
(tips); root length (length); root 
surface area (SA); root volume 
(volume); average root diameter 
(AD); root/shoot ratio (RS). The 
circles with a larger diameter 
represent the centroids for each 
of the treatments
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not been considered as its primary plant-growth promo-
tion mechanism since it does not provide significant N 
amounts for the crops. Therefore, their phytostimulatory 
effect has been considered the main factor responsible 
for plant growth promotion [36]. Species of this genus 
colonize cereals, including rice [38–40]. Unexpectedly, 
no changes in root morphology were observed upon A. 
baldaniorum Sp 245 inoculation. A possible explanation 
may be that the Piauí variety is unresponsive to inoculation 
with the tested strain. The genetic differences between cul-
tivars are relevant factors and determine, at least in part, 
the plant response to inoculation [41]. Another possibility 
may be that environmental conditions affected the plant-
bacterial interaction. In vitro tests showed that the concen-
tration of indoles produced by Azospirillum changes in the 
presence of specific N sources [42]. The presence of these 
sources also decreased cell multiplication. Therefore, we 
cannot rule out that N might have affected the stability of 
the Sp 245 strain. Besides, if we assume that the auxin 
production is involved in the plant-bacterium interaction 
[4], it is plausible to suggest that variations on its levels as 
influenced by the environment affect the plant-bacterium 
communication and, consequently, bacterial colonization.

E. coli has been used here as a neutral control since 
it has not been recognized as PGPR. E. coli is generally 
studied as a human pathogen [43], but the E. coli DH10b 
strain is non-pathogenic and commonly used in molecular 
biology procedures [20]. Even so, some lineages have been 
reported as adapted to the soil and able to colonize plant 
roots [44]. Unexpectedly, the inoculation of E. coli DH10b 
affected the root diameter, leading to a greater volume and 
area (Fig. 2). The phytostimulatory effect of clinical E. coli 
has been reported primarily by Walker and collaborators 
[45]. These authors observed that E. coli K-12 increased 
the maize’s root system, and that this increase was higher 
than the increase observed upon Azospirillum inoculation. 
Although inoculation with E. coli DH10b altered the rice’s 
root system, plant growth was limited (Fig. 1A, C). E. 
coli DH10b-inoculated plants had lower shoot biomass 
and higher root/shoot ratio, indicating root thickening at 
the expense of shoot growth (Fig. 3). We can assume that 
this strain potentially stressed the root cells, which can 
compromise the transport of water, nutrients, and, conse-
quently, shoot growth. However, further studies are needed 
to confirm this hypothesis since the statistical analysis 
have not detect a significant inoculation effect on shoot 
growth. These results show that plants can respond to the 
inoculation of microorganisms that are not PGPR. This 
effect may have been enhanced by the axenic conditions 
and the high bacterial cell concentration. It remains to be 
seen whether the same effects would be observed under 
natural soil conditions.

Conclusions

The inoculation with G. diazotrophicus stimulates the root 
system independently of their   3-indoleacetic acid pro-
duction ability, suggesting that a metabolite other than 
3-indoleacetic acid is responsible for this effect at advanced 
stages of the rice’s vegetative cycle. A. baldaniorum Sp 
245 was not effective with rice cultivar Piauí, suggesting 
a possible genotypic effect. E. coli DH10b inoculation pro-
moted root thickening, indicating a possible stress and com-
promising shoot biomass accumulation.
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