
Vol.:(0123456789)1 3

https://doi.org/10.1007/s42770-021-00624-x

BACTERIAL AND FUNGAL PATHOGENESIS - REVIEW

Microbial biofilm: formation, architecture, antibiotic resistance, 
and control strategies

Muzamil Ahmad Rather1 · Kuldeep Gupta1 · Manabendra Mandal1 

Received: 16 October 2020 / Accepted: 19 September 2021 
© Sociedade Brasileira de Microbiologia 2021

Abstract
The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major 
concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms 
form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quo-
rum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, 
signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body’s immune system, 
recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial 
biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm 
formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited 
by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control 
strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding 
recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used 
to get rid of antibiotic-resistant and life-threatening biofilms.
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Introduction

Microorganisms can live in free form or in a consortium 
of different or same species, called biofilm. Biofilms are 
an ordered and arranged group of microorganisms living 
within an extracellular polymeric substance (EPS) matrix 

produced by them and are adhered to each other on liv-
ing or non-living surfaces and show variations in terms of 
growth rate and gene expression when compared to their 
planktonic form [1–3]. To develop a relationship with the 
host, to show resistance towards hostile external conditions, 
and to cope with the known antibiotics and other environ-
mental cues, the microorganisms have evolved to form a 
protective cover around themselves [4]. Biofilm formation 
contributes towards the development of antibiotic resistance 
and the formation of persistent cells which are responsible 
for the unmanageable persistence of microbial infections 
[5]. Biofilms have various pathological manifestations and 
exist almost everywhere, inhabiting medical implants, liv-
ing tissues, water channels, pipes, hospital floors, food pro-
cessing units, and other biotic and abiotic surfaces [6, 7]. 
Changes in phenotype and gene expressions accompanied 
by the resistance to known antibiotics, metabolic activity 
and growth rate reduction, and production of virulence-
associated factors are some features of biofilm-associated 
microorganisms [1, 8]. As per the reports of the National 
Institutes of Health (NIH), about 65% and 80% of microbial 
and chronic infections, respectively, are caused by microbial 
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biofilms, infecting both tissues and medically implanted 
devices. Breast implants, ventricular shunts, tissue fillers, 
ventricular-assisted devices, contact lenses, catheters, joint 
prostheses, urinary catheters, orthopedic implants, pace-
makers, mechanical heart valves, defibrillator, vascular 
grafts, endotracheal tubes, voice prostheses, etc. are some 
examples of medically implanted devices often infected by 
microbial biofilms [2]. Some of the tissue-related infec-
tions caused by microbial biofilms include periodontitis, 
osteomyelitis, lung infection in cystic fibrosis, endocarditis, 
dental plaque, chronic tonsillitis, chronic laryngitis, chronic 
wounds, and biliary and urinary tract infections [9]. As per 
the reports of the Centers for Disease Control, 2007, there 
were about 1.7 million hospital-acquired infections, more 
than 0.5 million associated deaths, and an economic bur-
den of about US$11,000 million to cure biofilm-associated 
infections [10]. Furthermore, different sectors of the food 
industry, viz. poultry, dairy, ready-to-eat, aquaculture, etc., 
are severely affected by biofilm-producing microorganisms 
resulting in food spoilage, disease outbreaks, and deaths 
[11]. So, keeping in view the prevalence of biofilm-associ-
ated microorganisms and inefficiency of current antibiotics, 
the situation requires a transition towards the formation of 
non-toxic and potent antibiofilm agents targeting signaling 
pathways regulating quorum sensing (QS), EPS synthesis, 
biofilm-related genes, microbial motility, adhesion, disper-
sion, and many more [12–14]. The recent novel antibiofilm 
approaches include the use of ultrashort antimicrobial pep-
tide nanoparticles [15], host defense peptides (HDPs) [16], 
surface-active organosilane biocide-Goldshield (GS5) [17], 
biofilm-specific peptides [18], smart antibiofilm surfaces 
[19], nanoelements (NEs) [20], and poly(ether urethane) 
(PEU) films for disposal of antibiofilm agents like gallium 
(Ga) or zinc (Zn) [21].

Biofilm formation: surface colonization

Biofilm formation is a multi-step and complex process that 
involves the transition of bacteria from free-swimming 
planktonic form to biofilm-making sessile form. The whole 
process of formation is influenced by external conditions 
like temperature, pH, gravitational forces, hydrodynamic 
forces, Brownian movements, nature of the inhabiting sur-
faces, quorum sensing, secondary messengers, and other 
signaling molecules as well [2, 22]. As shown in Fig. 1, dif-
ferent stages of biofilm formation can be divided into four 
major steps [23].

Attachment: a surface‑sensing step

The process of biofilm formation is triggered with the adher-
ence of planktonic microorganisms to surfaces and, thus, 
considered as an important stage to develop the free-flowing 
microorganisms into an assembled community structure 
[24]. During the initial stage of biofilm formation, microor-
ganisms are loosely and reversibly attached to surfaces and 
this stage is characterized by the presence of polarly attached 
microorganisms to the surfaces. Thereafter, microorganisms 
change the orientation to lay flat on the surfaces and go for 
irreversible attachment which develops resistance to many 
physical factors hindering biofilm formation [25]. Bis-(3ʹ-
5ʹ)-cyclic dimeric guanosine monophosphate (c-di-GMP) is 
an intracellular signaling molecule that plays a vital role 
in early events of biofilm formation by restricting flagella-
mediated swimming motility and increasing biofilm matrix 
production [26]. The c-di-GMP concentration increases 
with each attachment/detachment event due to Pil-Chp 
surface–sensing system present on microbial surfaces. So, 

Fig. 1  Steps of biofilm formation. The multi-step biofilm formation 
starts with the attachment of planktonic microorganisms to the sur-
faces which is sub-divided into reversible and irreversible attachment 
followed by microbial division to form microcolonies. Microcolonies 
undergo maturation characterized by specific composition, shape, and 
architecture followed by dispersion of biofilm to repeat the cycle. A 

mature biofilm is a heterogeneous mixture of planktonic (green flag-
ellated), sessile (green), persistent (brown), dead (black) cells, water 
channels, and different types of signaling and stabilizing molecules 
like acyl-homoserine lactones (AHL), lipids, polysaccharides, pro-
teins, extracellular DNA (eDNA)
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early events of biofilm formation involve the conversion of 
surface naïve planktonic cells (bacteria that exhibit low con-
centration of c-di-GMP and have not encountered surfaces 
initially) to surface sentient planktonic cells (bacteria that 
exhibit a high concentration of c-di-GMP and have encoun-
tered surfaces initially) and irreversible attachment of cells 
to surfaces leading to biofilm formation [27].

Growth or microcolony formation

Soon after the successful adhesion of microorganisms to the 
surfaces, the adhered microorganisms start multiplication 
and aggregation within self-produced EPS leading to the 
microcolony formation in presence of a high concentration 
of c-di-GMP. Flagella and type IV pili-mediated motilities 
are important for interactions between microorganisms and 
surfaces, and cell–cell aggregations to form microcolonies, 
respectively [28].

Maturation

EPS plays a crucial role in biofilm maturation as it helps in 
microbial attachment to surfaces, stabilizing the 3-D struc-
ture of the biofilm, grouping cells together, protecting from 
various stresses like host immune system response, antimi-
crobials, oxidative damage, and metallic cations, and also 
encapsulating signaling molecules required for quorum sens-
ing, metabolic products, and enzymes [29]. A mature biofilm 
may acquire a “mushroom” or “tower” shape structure in 
which microorganisms are arranged as per aero-tolerance 
and metabolism rate [28]. Otto [30] demonstrated the role 
of surfactants and modulins in Staphylococcal biofilm matu-
ration through quorum sensing–mediated mechanisms. A 
mature biofilm is a three-layered structure: inner regulat-
ing layer, middle microbial basement layer, and outer layer 
inhabited by the planktonic form of microorganisms that are 
ready to exit the biofilm [22].

Dispersion

Finally, matured biofilm ruptures actively (motility and EPS 
degradation–dependent dispersion) or passively (physical 
factors like liquid flow-dependent dispersion) to disperse 
the microorganisms to start a new cycle of biofilm forma-
tion. Some factors which are mainly responsible for the dis-
persion of matured biofilm include outgrown population, 
intense competition, lack of nutrients [28], enzyme action 
that causes alginate digestion in Pseudomonas spp. [31], 
and variation in environmental conditions like temperature, 
oxygen deficiency, and metabolite accumulation as well as 
upregulation of genes responsible for cell motility and EPS 
degradation, and downregulation of genes important for 
polysaccharide and fimbriae synthesis [32].

Composition of biofilm: an amalgam 
of complexity, heterogeneity, and variability

Biofilm is a heterogeneous structure comprising mainly of 
microbial cells (10–25%) and self-produced EPS matrix 
(75–90%) as shown in Table 1 [33]. Furthermore, in a het-
erogeneous biofilm, the interstitial voids or water chan-
nels of biofilm are required to separate microcolonies from 
each other [34]. EPS forms a scaffold that holds the biofilm 
together and, thus, helps in cell-to-cell communication and 
provides adhesion and cohesion forces required for biofilm 
formation. EPS helps in nutrient cycling, maintaining the 
availability of deoxyribonucleic acid (DNA) for horizontal 
gene transfer (HGT), and acts as a protective barrier against 
oxidizing biocides, antibiotics, ultraviolet radiations, desic-
cation, and host immune defense system [35].

The main constituents of EPS could be categorized as 
follows.

Polysaccharides

Most of the polysaccharides are heterogeneous while some 
are homogeneous as well like cellulose, sucrose-derived 
fructans, and glucans [36]. Various interactions like van 
der Waals interactions, electrostatic attractive and repulsive 
forces, ionic attractive forces, and hydrogen bonds promote 
interaction of polysaccharides with themselves or with pro-
teins and ions required for maintaining structure and stability 
of biofilm matrix [37]. In Pseudomonas aeruginosa, three 
exopolysaccharides, namely Pel, Psl, and alginate, contribute 
predominantly to biofilm formation and maintaining bio-
film architecture [38]. The role of the polysaccharides is to 
act as a molecular glue required for bacterial adhesion to 
each other and to biotic and abiotic surfaces for colonization 
besides playing a protective role against the immune system, 
and other external stresses [39].

Extracellular proteins

Extracellular proteins in the biofilm matrix are the amal-
gam of secreted extracellular proteins, protein subunits of 

Table 1  Composition of biofilm

S. no Components Percentage (%)

1 Microbial cells 2–5
2 Water Up to 97
3 Polysaccharides 1–2
4 Proteins  < 1–2 ( includ-

ing enzymes)
5 DNA and RNA  < 1–2
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cell appendages such as pili and flagella, cell surface adhe-
sions, and outer membrane vesicle proteins. They interact 
with exopolysaccharides and nucleic acid components, thus 
help in biofilm matrix stabilization, surface colonization, 
and maintaining integrity and architecture of biofilm [40]. 
Some proteins help in biofilm matrix degradation and dis-
persal like proteases that dissolve matrix proteins [41], gly-
cosyl hydrolase dispersin B that degrade polysaccharides 
[42], and DNases that break extracellular nucleic acids [43, 
44]. Jiao et al. [45] reported a significant difference between 
the proteome composition of EPS and that of individual 
cell fraction and found a pronounced concentration of pro-
tein peptidases, cell wall, and polysaccharide metabolism 
enzymes, disulfide-isomerases, and chaperones like cold 
shock and DNA binding proteins in EPS matrix. Toyofuku 
et al. [46] demonstrated that about 30% of EPS matrix pro-
teins were membrane proteins which were found in outer 
membrane vesicles (OMVs) while some portion of proteins 
were derived from lysed cells and secreted proteins in P. 
aeruginosa.

Extracellular DNA

Extracellular DNA (eDNA) is one of the key constituents of 
the EPS matrix which is important for microbial aggrega-
tion within a biofilm. The mechanism of origin of eDNA 
is diverse as it is released through bacterial secretion sys-
tems, cell death because of phages, autolysis, quorum sens-
ing–regulated DNA release, or maybe found in association 
with DNA-containing OMVs [47–51]. In the case of human 
infections like cystic fibrosis (CF), the eDNA in P. aerugi-
nosa is derived from human polymorphonuclear leukocytes 
(PMNs) which approach the site to fight against infection 
[52]. eDNA guides motility, provides structural stability, and 
chelates pathogenicity and antibiotic resistance enhancing 
cations [53–55]. eDNA also plays a comprehensive role in 
cell adhesion, maintaining matrix structural integrity, HGT, 
and protection from host immune system and antibiotics 
[56]. Wilton et al. [50] reported that eDNA is responsible 
for matrix acidification which contributes towards increased 
resistance of P. aeruginosa against antibiotics. Also, Harm-
sen et al. [57] found the role of eDNA in attachment and 
biofilm formation in Listeria monocytogenes strains.

Surfactants and lipids

Some species like Rhodococcus spp. produce hydropho-
bic EPS and adhere to Teflon and colonize waxy surfaces 
[58]. Ron and Rosenberg [59] reported the role of biosur-
factants in the binding of heavy metals and the production 
of virulence factors. Some lipids with surface-active prop-
erties available in the EPS matrix are surfactin, emulsan, 
and viscosin. They increase the availability of hydrophobic 

substances by dispersing them out [36]. Rhamnolipids, an 
important class of surfactants studied in P. aeruginosa, ini-
tiate microcolony formation, help in shaping biofilm, and 
facilitate biofilm dispersion as well [60, 61].

Water

Water is regarded as the largest component of the EPS 
matrix of biofilm. It keeps the biofilm hydrated and protects 
it from desiccation even during environmental water con-
tent fluctuations [36]. The flow and maintenance of essential 
nutrients within a biofilm are attributed to the amount of 
water available [62].

Architecture of biofilm: the structural 
and stabilizing parameter of biofilm

The antibiotic resistance and other functional features of a 
biofilm are related to biofilm structure, the shape of a matrix, 
and the 3-D arrangement of microorganisms [63]. The het-
erogeneous local environmental conditions within biofilm 
influence gene expression and other metabolic activities of 
biofilm-forming cells [64, 65]. The water channels and pore-
less highly packed cells are the two main components of 
biofilm architecture [66]. The structural knowledge about 
biofilms is of greater importance to know about the sur-
vival and behavioral strategies of biofilms. Bridier et al. 
[64] monitored the variability of biofilm structure and for-
mation by analyzing some specific biofilm parameters, viz. 
substratum coverage, bio-volume, roughness, and thickness, 
and found significant intra- and inter-species variability. By 
using confocal laser scanning microscopy (CLSM), they 
found a marked difference in biofilm structures in terms of 
dispersion, roughness, and aggregation and analyzed that 
Escherichia coli and L. monocytogenes strains formed rough 
biofilms with variable thickness, while Salmonella enterica 
produced small scattered cell clusters. Also, Staphylococcus 
aureus strains show variability in the structure of biofilms 
as some produced flat and densely packed structures while 
others formed scattered ones. Similarly, P. aeruginosa and 
Enterococcus faecalis formed mushroom-shaped, and flat 
and compact biofilms, respectively, suggesting that the bio-
film architecture differs from microbe to microbe. Environ-
mental factors, cell-to-cell communication, and secondary 
messengers like cAMP and c-di-GMP shape biofilms to pro-
vide microorganisms better adaptability to the local environ-
ment [29]. Some other important factors which influence the 
biofilm architecture are nutrient abundance, hydrodynamic 
conditions, bacterial motility, cationic and anionic concen-
tration, and availability of proteins and exopolysaccharides 
within a biofilm. The exopolysaccharides in E. coli [67] 
and Vibrio cholerae [68] help in three-dimensional biofilm 
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formation. Alginate, a well-studied exopolysaccharide in 
P. aeruginosa, helps in forming and maintaining biofilm 
architecture [69]. The secreted protein TasA and exopoly-
saccharide in Bacillus subtilis biofilm matrix are important 
for forming fruiting-body-like biofilm and maintenance of 
matrix integrity [70]. Biofilm architecture is also altered by 
acetyl groups, the common substituents of exopolysaccha-
rides, as they are believed to be responsible for increased 
adhesive and cohesive properties of biofilm [36].

Proteins involved in maintaining 
architecture and stability of biofilm

McCourt et al. [71] described the role of surface binding 
fibronectin-binding proteins FnBPA and FnBPB in biofilm 
formation of the methicillin-resistant S. aureus (MRSA) 
strain LAC. They found that both FnBPA and FnBPB help in 
bacterial aggregation, thus assist in the initial attachment of 
bacteria on the surfaces. Liang et al. [72] carried out a study 
on the new cell surface protein BapA1 which is important 
for adhesion and biofilm formation through BapA1-medi-
ated cell–cell interactions. It contains nine putative pilin 
isopeptide linker domains required for aggregation of pilus 
in various Gram-positive bacteria like Streptococcus para-
sanguinis. They reported that the mutant generated by dele-
tion of 3′ portion of the bapA1 gene lacks a cell wall–sorting 
signal important for cell surface fibril formation, thereby 
inhibiting biofilm formation and autoaggregation of bacte-
ria. Eukaryotic microorganisms like fungi also have been 
reported to form a biofilm to resist environmental ques. Man-
fiolli et al. [73] reported that mutants of mitogen-activated 
protein kinase (MAPK) (MpkA, MpkC, and SakA) decrease 
the adherence of Aspergillus fumigatus to plates in in vitro 
conditions. They also analyzed the impact of A. fumigatus 
protein phosphatase PphA on biofilm formation and found 
that ΔpphA strain cell wall has less chitin, more β-(1, 3)-gly-
cans, more susceptible to cell wall-damaging agents, less 
adhesion, and biofilm formation. Streptococcus mutans is 
responsible for dental caries as it forms a biofilm in the form 
of dental plaque. S. mutans secrete comCDE code peptide 
signal molecule called a competence-stimulating peptide 
(CSP) that senses cell density and environmental stresses 
that directly influence biofilm formation [74]. Ye et al. [75] 
reported the role of outer membrane protein W (OmpW) in 
biofilm formation along with survivability of Cronobacter 
sakazakii under salt stress conditions and found that both 
survival rates and biofilm formation increase with the syn-
thesis of OmpW. Polysaccharide intercellular adhesin (PIA) 
involved in bacterial cell attachment is replaced by protein 
components in several virulent S. aureus strains. The suhB 
gene is important for the production of extracellular amyloid 
fibers. Overexpression of staphylococcal SuhB (SaSuhB) in 

E. coli produces extracellular macroscopic fibers made of 
recombinant SaSuhB protein which helps in cell adhesion 
as the fibers are sticky [76]. Arenas and Tommassen [77] 
discussed the adhesion of Neisseria meningitidis through a 
complex network of eDNA and positively charged surface-
exposed proteins. Similarly, Bandekar et al. [78] discussed 
the role of chromosome I encoded VC0395_0300 protein 
(Sebox3) of V. cholerae in biofilm formation by synthesiz-
ing c-di-GMP from guanosine-5ʹ-triphosphate (GTP). Gor-
donii surface protein B (GspB) in Streptococcus gordonii 
[79], accessory Sec system SecY2A2 (serine-rich repeat 
surface protein, PsrP) in Streptococcus pneumoniae [80], 
and phosphoenolpyruvate phosphotransferase system (PTS) 
in Klebsiella pneumoniae [81] play important roles in bio-
film formation by enhancing bacterial aggregation, substrate 
binding, and extracellular matrix production, respectively. 
These examples give an insight that the expression of dif-
ferent proteins plays an important role in stabilizing and 
maintaining the architecture of biofilm.

Signaling cascades and genes involved 
in biofilm formation

Extracellular quorum sensing and intracellular cyclic dinu-
cleotide signaling cascades are important in biofilm for-
mation. It has been found that the two cascades may con-
verge and regulate each other during biofilm formation, 
thus enhance biofilm formation synergistically [82]. Quo-
rum sensing is the intercellular communication that senses 
cellular density through signaling molecules like N-acyl-
homoserine lactones (AHL), the autoinducing peptide (AIP), 
and autoinducer-2 (AI-2) in Gram-negative, Gram-positive, 
and both, respectively, and plays a vital role in biofilm for-
mation [83]. Four QS systems are reported in P. aeruginosa, 
viz. las, rhl, PQS, and integrated QS (IQS). They follow the 
hierarchical order; thus, these cascades regulate each other 
through QS-related genes and other transcription factors 
[84]. c-di-GMP could regulate quorum sensing by affecting 
the expression of autoinducer synthases; likewise, quorum 
sensing regulates the level of c-di-GMP by influencing genes 
encoding proteins having phosphodiesterases A (PDEA) and 
diguanylate cyclase (DGC) activities in Thermotoga mar-
itima [85]. Li et al. [86] discussed the importance of gly-
colysis and gluconeogenesis in biofilm formation as they 
concluded that glycolysis pathway genes were downregu-
lated and gluconeogenesis genes were upregulated during 
attachment while glycolysis pathway genes were upregulated 
and gluconeogenesis genes were downregulated during the 
maturation period of biofilm formation. They also discussed 
the involvement of cAMP-PKA and MAPK signaling path-
ways and Mga1, Phd1, Sok2, and Ash1 genes in the biofilm 
formation of Saccharomyces cerevisiae. In another study, 
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it was demonstrated that mutation in PA0240-encoding 
putative porin proteins, PA3710-encoding putative alcohol 
dehydrogenase, and PA3782-encoding putative AraC-like 
transcriptional regulator downregulates biofilm develop-
ment of P. aeruginosa as analyzed through in vivo expres-
sion technology system (IVET) [87]. Manfiolli et al. [73] 
studied signal transduction pathways necessary for adhe-
sion and biofilm formation of A. fumigatus suggesting that 
MAP kinases like SakA, MpkA, and MpkC play a signifi-
cant role in biofilm formation by enhancing the adhesion 
and extracellular matrix (ECM) production. Furthermore, 
phosphatase null mutants, ΔptcB and ΔsitA, were found 
to degrade cell wall, thus concluded that phosphatases 
maintain cellular integrity and regulate phosphorylation 
of MpkA and SakA. Generally, initial microbial adherence 
and multiplication within the host depend on host environ-
mental signals/factors like pH, temperature, insulin, steroid 
hormones, monoamines, and vitamin K that mimic and act 
as exogenous quorum signaling compounds [88]. Horng 
et al. [81] demonstrated the role of phosphoenolpyruvate 
and PTS on enhancing biofilm formation in K. pneumo-
niae. They found an enzyme II complex, a homolog of PTS: 
KPN00353–KPN00352–KPN00351, and reported that 
expression of KPN00353–KPN00352–KPN00351 genes 
releases putative enzyme II complex in PTS that increases 
synthesis of capsular polysaccharide and eDNA necessary 
for biofilm formation. ARO1 gene of Candida albicans is 
important for the production of a multifunctional enzyme 
which in turn is required for the synthesis of aromatic amino 
acids through the shikimate pathway. ARO1 gene knockdown 
effects on biofilm formation in C. albicans were studied by 
Yeh et al. [89] and it was found that it is involved in cell wall 
biogenesis and maintaining integrity through activation of 
Mkc1 signaling cascade. Chambers and Sauer [90] discussed 
the role of small non-coding RNAs (sRNAs) like ArcZ tar-
geting CsgD in E. coli and Salmonella typhimurium [91], 
RsmY and RsmZ targeting RsmA in P. aeruginosa [92], and 
Qrr1–4 targeting AphA in V. cholerae [93] in biofilm forma-
tion in response to environmental factors by regulating the 
transition of planktonic to sessile form. In a polymicrobial 
association of A. fumigatus and P. aeruginosa, Zheng et al. 
[94] discussed the transition in A. fumigatus from vegeta-
tive growth to conidiation by phenazine-derived metabo-
lites synthesized by P. aeruginosa through NapA oxidative 
stress signaling cascade. Autoinducer-2 (AI-2) upregulates 
quorum sensing in Staphylococcus epidermidis by enhanc-
ing transcription levels of ica operon and bhp (a biofilm-
associated protein along with icaR). Thus, AI-2 enhances 
quorum sensing and biofilm formation through ica- and 
bhp-dependent mechanisms [95]. Wotanis et al. [96] dis-
cussed the major role of the NspS/MbaA signaling complex 
in V. cholerae biofilm formation. Polyamines secreted by 
Vibrionales as environmental signaling molecules regulate 

biofilm formation in V. cholera positively. NspS/MbaA sign-
aling cascade detects extracellular polyamine norspermidine 
which binds to NspS periplasmic binding protein, restricts 
MbaA’s phosphodiesterase activity, and increases levels of 
second messenger c-di-GMP which is known to enhance 
biofilm formation.

Antibiotic resistance of biofilm: an adaptive 
and strategic success of microorganisms

The increase of antibiotic resistance of microorganisms 
throughout the world is a worrying matter for humans, vet-
erinary, food, and other sectors [97]. Biofilms are resistant 
to antibiotics and disinfectants and impervious to phago-
cytosis, and tolerate the body’s immune system mainly 
because of self-produced EPS [98]. A multi-layer defense 
system is constituted in biofilm by the formation of per-
sister cells, development of adaptive stress responses, very 
less antibiotic penetration, limited nutrition, less growth and 
metabolic activity [99], and inactivation of antimicrobials 
within the components of the EPS matrix [100]. Ju et al. 
[101] reported about a 32,768 times increase in antibiotic 
resistance in the biofilm phenotype Salmonella serovar Dub-
lin as compared to their planktonic form. Hu et al. [102] 
demonstrated biofilm formation and subsequent increased 
antibiotic resistance of foodborne Clostridium perfringens. 
Guo et al. [103] compared the abundance of antibiotic-
resistant genes (ARGs) in naturally occurring biofilms in 
comparison to associated sediment and water samples and 
detected a high frequency of ARGs, viz. sul1, sul2, tetA, 
and tetW, in biofilms as compared to sediment and water 
samples. Aslantaş and Demir [104] studied biofilm forma-
tion and antibiotic resistance of S. aureus isolates from sub-
clinical bovine mastitis cases and reported overexpression of 
adhesion and biofilm-related genes along with resistance to 
β-lactam antibiotics. The factors which contribute towards 
antibiotic resistance of biofilm include restricted antimicro-
bial penetration, antibiotic-modifying enzymes in matrix, 
eDNA, hypoxia, reduced growth, variability in physiology, 
oxidative stress and amino acid starvation responses, efflux 
pumps, quorum sensing, persister cells, HGT, high mutation 
rate, and colony variants [100]. Some factors are discussed 
in detail in the next section.

Low metabolic activity, slow growth, and antibiotic 
resistance

It has been reported that there is an oxygen gradient within 
a biofilm. The concentration of oxygen near the surface of 
biofilm is highest and declines towards the center, creat-
ing almost anaerobic conditions in the center [105]. Totani 
et al. [106] reported that low oxygen condition promotes 
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while normoxia hinders biofilm formation. There is a simi-
lar stratification in metabolic activity, growth, and protein 
synthesis in biofilms with a high rate at the surface and no 
or very less rate in the center resulting in less penetration 
and consumption of antibiotics in the biofilm [107]. The 
phenotypic diversity of microorganisms within biofilm due 
to depleted nutrients, oxygen, and other responses promotes 
asynchronous growth and differential gene expression that 
leads to drug tolerance through regulation of genes impor-
tant for DNA repair, lipid biosynthesis, toxin efflux, and ion 
sequestration [9, 108].

Impact of horizontal gene transfer on resistance 
development

Biofilm acts as a reservoir of antibiotic resistance genes 
(ARGs, the resistome) which are found to be responsible 
for providing antibiotic resistance to pathogens through 
HGT [109] conjugation [110, 111], transformation [112], 
and transduction [113, 114]. HGT acclimates bacteria to 
the changing environment and favors biofilm formation 
and resistance to antibiotics [115]. HGT gives rise to new 
variants without inducing mutation in the variant [116]. 
Fan et al. [117] discussed that HGT maintains structural 
stability, integrity, and robustness of microbial communities 
coexisting together. HGT contributes towards several traits 
including pathogenicity and antibiotic resistance in E. fae-
calis responsible for persistent endodontic infection [118].

Persister cells and antibiotic resistance

Biofilms are characterized by the presence of persister 
cells—a specialized phenotype of bacterial cells that nei-
ther grow normally nor die even in the presence of potent 
antibiotics. Persister cells are regarded as dormant variants 
of regular cells [119]. Persister cells within the biofilm can 
survive the high dose of antibiotic treatment as well as the 
immune defense system. But upon reduction of the antibiot-
ics, persister cells can repopulate in the biofilm [120]. Per-
sister cells are genetically similar but physiologically differ-
ent from parent cells. They are formed under environmental 
stress conditions within the biofilm and show special charac-
teristics, viz. they are metabolically inert, show slow growth 
and replication, regulate the toxin-antitoxin system, show 
ineffectiveness towards antibiotics, upregulate phosphate 
metabolism, and enhance anti-oxidative and DNA repair 
system [121]. Antibiotics kill planktonic cells and some 
proportion of biofilm cells, decreasing their population, but 
show ineffectiveness towards the persister cells. As a result, 
antibiotic-resistant persister cells reproduce, disperse out of 
biofilms, and form new biofilms [122].

Role of eDNA in antibiotic resistance

Colonization of bacteria on surfaces releases proteins, exopol-
ysaccharides, and eDNA which confer stability and structural 
integrity and promote proper nutrient distribution to the form-
ing biofilm [123]. eDNA is produced by cell lysis and active 
secretions and has been reported to promote microbial adhe-
sion, inhibit antimicrobial diffusion, and chelate cations [56] 
besides suppressing innate immune response [124]. It has been 
reported that eDNA contributes to cation gradients, genomic 
DNA release, and inducible antibiotic resistance. Mulcahy 
et al. [125] demonstrated the induction of eDNA-mediated 
antibiotic resistance in P. aeruginosa biofilm by regulating 
PhoPQ and PmrAB cationic antimicrobial peptide resistance 
operon PA3552–PA3559 system. One of the reported mecha-
nisms is that eDNA attaches and chelates positively charged 
aminoglycosides and antimicrobial peptides as proved by 
Chiang et al. [126] in P. aeruginosa biofilms. Jakubovics and 
Burgess [127] discussed the role of eDNA in the promotion 
of bacterial adhesion, maintaining structural integrity, the evo-
lution of bacteria through genetic recombination and HGT, 
shielding against antimicrobials, and serving as a source of 
phosphorous.

Efflux pumps and antibiotic resistance

Efflux pumps are proteinaceous active transporters embed-
ded within cytoplasmic membranes. The resistance-nod-
ulation-division family (RND), the multidrug and toxic 
compound extrusion family (MATE), the small multidrug 
resistance family (SMR), the major facilitator superfam-
ily (MF), and the ATP-binding cassette family (ABC) are 
different classes of efflux pumps reported in bacteria by 
Kumar and Schweizer [128] and Singh et al. [129]. Efflux 
pumps induce antibiotic resistance to microorganisms by 
pushing intracellular toxins including antibiotics away from 
intracellular targets back into extracellular space [100]. 
Although efflux pumps are active in planktonic bacteria as 
well, they are upregulated in biofilms leading to multidrug 
resistance (MDR) [28, 129]. Several efflux pump genes and 
their overexpression in the biofilm have been reported like 
efflux pump gene PA1874–1877 in P. aeruginosa [130]; the 
overexpressed RND efflux pumps like BCAL1672-1676 
(RND-3) provide biofilm resistance against tobramycin 
and ciprofloxacin while BCAM0925-0927 (RND-8) and 
BCAM1945-1947 (RND-9) protect biofilms from tobramy-
cin in Burkholderia cepacia [131].

Role of antibiotic‑modifying enzymes of matrix 
on resistance development

Another important mechanism for antibiotic resistance is an 
enzymatic modification of antibiotics to a non-toxic form 
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within EPS. Such enzymes enhance virulence and induce 
resistance against antibiotics, thus regarded as exotoxins. 
Lyases, group transferases, hydrolases, and redox enzymes 
are the reported classes of antibiotic-modifying enzymes 
[132]. They modify and, thus, inactivate antibiotics by either 
cleaving chemical bonds necessary for the functioning of 
enzymes or restricting the binding of antibiotics to spe-
cific targets [133]. β-Lactamase secreted by K. pneumoniae 
biofilms destroys ampicillin and inhibits it from targeting 
cells [134]. In infected cystic fibrosis lung, over-synthesis 
of AmpC cephalosporinase has a specific role in providing 
antibiotic resistance to P. aeruginosa [135].

Escape of biofilm cells from immune system: 
an evading success

An immediate response is established in the body through 
immune cells, receptors, and several humoral factors like 
mannose-binding lectins, and antibodies of innate immu-
nity upon infection [136]. Microbial biofilms are reported to 
escape the body’s immune system. S. aureus biofilms may 
evade host immunity by macrophage dysfunction [124], 
reduce phagocytosis by leukocytes [137], and diminish anti-
body-mediated phagocytosis because of EPS matrix [138]. 
A 25% reduction of oxidative burst response of PMNs has 
been found in P. aeruginosa in biofilm when compared to 
their planktonic form [139]. Alginate (an exopolysaccharide) 
and rhamnolipids (glycolipids) have been found to protect 
the biofilm of P. aeruginosa from leukocyte phagocytosis 
[140, 141]. Mature biofilms of C. albicans are resistant to 
monocyte phagocytosis, thus show an immunosuppressive 
effect [142]. By secreting biofilm promoting compounds like 
exopolysaccharides, proteins, and other peptides, S. epider-
midis regulates host immune responses and escapes getting 
killed [143]. Rhamnolipids and alginate produced by P. aer-
uginosa help in polymorphonuclear leukocyte necrosis and 
in evading macrophages, respectively [144]. Modulation in 
the deposition of immunoglobulin G (IgG) on the bacterial 
surfaces and activation of complement protein C3b by S. 
epidermidis provides resistance to phagocytosis, thus get 
escaped from the immune system and form biofilm [123, 
145].

Biofilm control strategies: convenient 
and advanced methods to counter‑attack 
biofilm menace

Biofilm is highly resistant to conventional antibiotics, 
so there is an urgent requirement to develop alternative 
potent therapeutic solutions to overcome the problem 
and improve healthcare, food safety, and other industrial 

sectors [11]. Chen et al. [146] classified the antibiofilm 
approaches into two broad categories: (a) targeting the 
process of biofilm formation and (b) replacing material of 
the substrate. The first category uses small molecules like 
anti-virulence compounds, e.g., CCG-203592 and CCG-
205363 [147], antibiofilm compound 1 (ABC-1)—a novel 
benzimidazole molecule [148], and metal ion chelators 
including calcium chelators, e.g., trisodium citrate (TSC) 
and ethylene glycol tetraacetic acid (EGTA) [149]. The 
antibiofilm approaches also employ matrix-inhibiting 
enzymes like DNase I [150], proteinase K, and trypsin 
[151]. The second category is based on the replacement of 
substrate material, including medical devices, by biofilm 
resistant ones like using bactericidal and anti-adhesion 
coatings. Han et al. [152] used acidic electrolyzed water 
(AEW) to remove pathogenic foodborne biofilms, and they 
found that AEW triggers EPS disruption by deforming 
aromatic rings in tyrosine and phenylalanine and carbo-
hydrate C–O–C bond. van Tilburg Bernardes et al. [153] 
reviewed some recent approaches for biofilm inhibition, 
eradication, and dispersion, viz. use of antibiofilm peptides 
like peptide 1018 [154], bacteriophage therapy [33] like 
anti-E. faecalis and Enterococcus faecium phage (EFDG1) 
[155], and molecules that inhibit virulence and quorum 
sensing signals like pilicides [156], and dihydrosventrin 
(DHS) [157]. Sadekuzzaman et al. [158] discussed vari-
ous strategies for fighting against biofilms which include 
natural products like plant extracts, honey, essential oils, 
cumin oil, and cinnamon oil; bacteriophage; quorum 
sensing inhibitors; nanotechnologies like metal nano-
particles and micro- and nanoemulsions; biofilm inhibit-
ing enzymes like deoxyribonuclease 1, lactonase, lyase, 
lysostaphin (LS), and α-amylase; photodynamic therapy; 
biosurfactants; bacteriocin; ultrasonic treatment; bioelec-
tric approach; and some particular antibiofilm agents like 
capsular polysaccharides, catheter lock solution, diethyl-
amine NONOate diethylammonium, molsidomine, xylitol, 
gallium, chitosan, and povidone-iodine (PVP). Gomes 
et al. [159] discussed the combinatorial effect of chemi-
cal (sodium hypochlorite) and mechanical stress (shear 
effect) against biofilms of Acinetobacter calcoaceticus and 
Stenotrophomonas maltophilia in drinking water distri-
bution systems (DWDS). Pires et al. [160] reviewed the 
strategy of using phages with antimicrobials phage-antibi-
otic synergy (PAS) and their significant impact on biofilm 
removal. For example, the synergistic effect of using T4 
phage and cefotaxime together to remove biofilm of E. 
coli ATCC 11,303 has been demonstrated [161]. Lactic 
acid bacteria (LAB) of genera Lactobacillus, Enterococ-
cus, Lactococcus, and Streptococcus have been used suc-
cessfully against the biofilms of Salmonella spp. in poul-
try [162]. In the meat industry, cetyltrimethylammonium 
bromide (CTAB) and cellulase synergistically can remove 
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mature biofilms of Salmonella spp. efficiently [163]. Aque-
ous and saline extracts of Moringa oleifera Lam. (drum-
stick tree) seeds have been used efficiently in eradicat-
ing biofilms of Staphylococcus spp. obtained from dairy 
effluents [164]. Leary et al. [165] analyzed the effect of 
different biofilm-eradicating and sterilization treatments 
(autoclave, sonication, saline scrub, 4% chlorhexidine 
(CHC) scrub) in different combinations and found a sig-
nificant antibiofilm effect of autoclaving and CHC scrub 
combination against S. aureus and S. epidermidis biofilms 
from orthopedic implant materials. As biofilm formation 
is prominent on both biotic and abiotic surfaces like liv-
ing tissues, medical devices, and food processing surfaces, 
it becomes important to modify the surfaces and or use 
inert materials to inhibit biofilm formation. Ficai and 
Ficai [166] mentioned different means of enhancement of 
antibiofilm activity through surface modifications like (a) 
developing new materials such as metals and alloys, poly-
mers, ceramics, and composites, (b) modification of sur-
faces by physical means like reducing surface roughness 
by temperature curing, and (c) modification of surfaces 
by chemical means like antibiofilm agent immobilization, 
use of quaternary ammonium salts, chlorhexidine, nano-
particles, and surfactants. Biofilm formation was inhibited 
significantly by nanoporous (15–100 nm) anodic alumina 
surfaces in E. coli, L. monocytogenes, S. aureus, and S. 
epidermidis indicating the applications of these surfaces 
in the healthcare and food industry [167]. Topographic 
silica coatings reduced C. albicans biofilm formation as it 
was found that less biofilm formation occurred when the 
particle size of silica was in the range of 0.5–2.0 μm as 
compared to particle size in the range of 4.0–8.0 μm [168]. 
Gkana et al. [169] mentioned the potential use of organosi-
lane nanoparticles as anti-adhesion and antibiofilm surface 
agents against various foodborne pathogens. Some novel 
and innovative surface modifications employed to inhibit 
biofilm formation include auranofin releasing antibacte-
rial and antibiofilm polyurethane catheter coating [170], 
polyurethane/Hypericum perforatum extract (PHPE) com-
posite [171], and fluoro-modified polypropylene films like 
polypropylene polyheptaflourobutyl methacrylate film 
(PP-PHFBM) [172]. In a recent advancement, the microbi-
ota has been used for the eradication of microbial biofilms. 
Glatthardt et al. [173] reported antibiofilm activity of the 
bioactive molecules present in commensal S. epidermidis 
cell-free conditioned media (CFCM) against Staphylococ-
cus aureus clinical isolates. It was demonstrated that S. 
epidermidis CFCM demonstrated a significant reduction in 
biofilm formation and enhanced disruption of established 
biofilms as well. Many approaches have been studied 
against biofilm formation and eradication; the plant-based 
approach is gaining much attention due to the presence of 
numerous active molecules which may be an alternative 

to antibiotics. The different current strategies to inhibit or 
eradicate the process of biofilm formation are represented 
in Fig. 2.

Plant product–based approach

From ancient times, plants are known to have medicinal 
value and, therefore, have been used to treat different dis-
eases or in the preservation of food from spoilage. The anti-
microbial activities of different plants have been explored 
exponentially to date. But now the scientists have a keen 
interest to find out the plant products which can effectively 
control biofilm formation and/or virulence factors of patho-
genic microorganisms rather than killing directly [174, 175]. 
Several plant extracts, essential oils, and plant-based nano-
formulations have been studied extensively to combat the 
biofilm-related problems, yet many plant products remain 
unexplored. Figure 3 shows different ways the plants are 
being used effectively against biofilm.

We know that plants like humans and animals come 
across pathogenic microorganisms frequently, so plants 
have developed a sophisticated biochemical system to 
defend themselves from microbial attacks. Plants act as 
a reservoir of metabolites broadly classified as phenolic 
compounds, phenolic acids, flavonoids, and terpenes that 
execute various pharmacological activities like antiviral, 
antifungal, anti-parasitic, antioxidant, antitumor, antibacte-
rial, and anti-inflammatory. Recent studies suggest that these 
metabolites are effective against pathogenic biofilm-forming 
microorganisms even at sub-MIC concentrations [176]. As 
mentioned earlier, several factors play a vital role in biofilm 
formation and progression, so we will discuss the role of 
phytochemicals in the suppression, inhibition, or eradication 
of microbial biofilms through different mechanisms.

As discussed earlier, QS is a cell density–dependent 
phenomenon that controls the pathogenicity or virulence, 
expression of genes important for biofilm formation, and 
regulation of various physiological activities in most path-
ogenic bacteria. This change in bacterial phenotype and 
other physiological characters are responsible for provid-
ing the resistance of the microorganisms against antibiotic 
compounds. Thus, inhibition of QS could be a better option 
to inhibit biofilm formation as it does not affect bacterial 
growth, rather it suppresses the synthesis of QS molecules 
required for enhancing pathogenesis [177]. In this context, 
several studies have demonstrated that phytochemicals could 
be used as QS inhibitors because of their stability, effec-
tiveness, and harmless nature. So, phytochemicals as QS 
inhibitors could be used for biofilm inhibition, dispersal, 
and eradication without exerting selective pressures on bac-
teria to develop resistance which is not possible in the case 
of known antibiotics [178, 179]. Some known QS inhibi-
tors obtained from plants are farnesol, cinnamaldehyde, 
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resveratrol, vanillin, naringin, tannic acid, curcumin, ellagic 
acid, quercetin, kaempferol, etc. [180]. Since metals play a 
crucial role in parthenogenesis, virulence, and maintenance 
of biofilm, the use of phytochemicals as metal-chelators 
would be an effective tool to minimize biofilm formation 
at sub-lethal concentrations. Lin et al. [181] demonstrated 
the use of 1, 2, 3, 4, 6-penta-O-galloyl-b-d-glucopyranose 
(PGG) as an iron-chelating agent for the inhibition of biofilm 

formation in S. aureus. A calcium-chelating phytochemical, 
alizarin, was studied by Lee et al. [182] to demonstrate its 
role in inhibiting biofilm formation in S. aureus by quench-
ing calcium ions. Plant extracts and/or phytochemicals 
employ different mechanisms to inhibit biofilm formation. 
Some of the studies demonstrated the role of medicinal 
plants to inhibit or reduce the production of biofilm which 
include the following: inhibition of virulence factors and 

Fig. 2  Antibiofilm strategies. 
The different novel strategies to 
deal with biofilm menace could 
be broadly divided into three 
broad categories: biological, 
chemical, and physical strate-
gies

Fig. 3  Plant-based antibiofilm 
strategies. The figure men-
tions the different ways plants 
are being used nowadays to 
inhibit, reduce, or eradicate 
biofilm formation. As indicated 
in the figure, the plants act as 
inhibitors of quorum sensing 
(QS), biofilm-related enzymes, 
extracellular polymeric sub-
stance (EPS) matrix synthesis, 
virulence factors, secondary 
messengers, signaling cascades, 
biofilm promoting genes, and 
other biofilm-related factors. 
From the figure, it is clear that 
plants could be used effectively 
against microbial biofilms
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other regulatory genes (vicR, relA, brpA, and comDE) by 
Kaffir lime leaf extract in S. mutans [183]; curcumin from 
Curcuma longa inhibited elastase/protease activity, pyocy-
anin biosynthesis, production of acyl-homoserine lactone 
(HSL), and downregulated QS genes in P. aeruginosa [184]; 
reduction of swimming, swarming, and twitching motility 
of Yersinia enterocolitica by naringin from orange extract 
[185]; decreasing the adhesive capability of S. aureus to 
abiotic surfaces by taxodione derivative obtained from Sal-
via austriaca [186]; reducing levels of a secondary mes-
senger, bis-(3′-5′)-cyclic dimeric guanosine monophos-
phate synthesis, by Zingiber officinale crude extract in P. 
aeruginosa [187]; reducing the synthesis of pyocyanin and 
2-heptyl-3-hydroxy-4(1H)-quinolone by cinnamon bark oil 
in P. aeruginosa and E. coli [188]; breakdown and reduc-
tion of EPS by AgNPs and extract of Heliotropium crispum 
nanoformulation against P. aeruginosa and Acinetobacter 
baumannii [189]; decreasing hydrophobicity index of E. fae-
calis and Aeromonas hydrophila by AgNPs and Momordica 
charantia fruit extract nanoformulations [190]; decrease in 
hydrophobicity, glucan synthesis, and cell-to-cell adhesion 
of S. mutans by Emblica officinalis extract [191]; reduction 
of EPS synthesis by decreasing production of glycosyltrans-
ferase by Achyranthes aspera L. extract in S. mutans [192]; 
attenuation of QS and QS-related virulence factors of P. 
aeruginosa by Cuphea carthagenensis extract [178]; pre-
venting expression of QS-regulated genes LasIR and RhlIR 
in P. aeruginosa PAO1 by iberin isolated from Armoracia 
rusticana extract [177, 193]. Syzygium cumini– and Psidium 
guajava L.–based silver nanoparticles are some other plant-
based nanoformulations that have been reported to exhibit 
potent antimicrobial and antibiofilm efficiencies [194, 195].

About 70% of the population in India and a good per-
centage of the population in other developing countries, 
in the range of 40% (Columbia) to 90% (Ethiopia), rely on 
the traditional medicinal system as a curative approach or 
for improving health conditions [196]. Plants have been 
used in the traditional systems to cure various health issues 
since time immemorial and are regarded as the important 
source of new drugs. The use of plants as traditional and 
complementary medicine has gained interest as a safe 
alternative to maintain health and cure diseases [197]. The 
development of resistance of pathogenic microorganisms 
towards known antibiotics is pushing the researchers to 
introduce novel and efficient antibiofilm therapy to deal 
with the biofilm menace. The use of plants and/or phy-
tochemicals as antibiofilm agents is advantageous over 
known antibiotics in a way that they are less expensive, 
have less chance of side effects, and are readily available 
[198, 199]. According to Kim Lewis et al. [200], the plant-
derived compounds have less chance to induce resistance 
in microorganisms due to the reason that plants may use 
a different chemical strategy for the control of microbial 

infections, perhaps to decrease the selective pressure for 
developing antibiotic resistance. But, phytochemicals may 
also inhibit growth, in which case there would be no such 
advantage over known antibiotics. Besides, plants are 
believed to have evolved with the mechanisms of synthe-
sizing QS-interrupting molecules for quorum quenching 
to treat microbial infections involved in biofilm formation 
[201].

Conclusion and future perspective

Over time, different strategies have been developed to 
inhibit the planktonic growth of microorganisms. But 
the rise of antibiotic ineffectiveness, multidrug-resist-
ant microorganisms, and recalcitrant infections directed 
researchers to understand different aspects of microbial 
growth and resistance to environmental cues. Most chronic 
infections are associated with microbial biofilms due to 
their potentiality to resist the known antibiotics and sur-
vive even in harsh environmental conditions. Our knowl-
edge regarding biofilms has increased progressively since 
they were noticed and defined. The major achievements 
include elucidation of mechanisms of biofilm formation 
at the molecular level, the role of secondary messengers, 
homoserine lactones, secreted proteins, eDNA, and other 
metabolites in the regulation of biofilm-related genes, and 
maintaining the structural integrity of biofilm. The impact 
of various parameters affecting biofilm formation and 
maintenance has been studied extensively like the effect 
of metal ions, environmental cues, and other physiological 
parameters on the development and maturation of biofilms, 
and the importance of EPS in nutrient cycling, gene trans-
fer, and protection against antibiotics and immune system. 
Furthermore, the discovery of methods and mechanisms 
employed by biofilms to overcome potent antibiotics and 
the use of ecofriendly biological, physical, and chemical 
methods to destabilize the biofilm communities are also 
worth mentioning.

Although people are trying to combat the problems cre-
ated by biofilms, we have not yet come up with any novel 
antibiofilm strategy. We should focus on the strategies which 
are efficient, ecofriendly, persistent, and cost-effective as 
well. In this regard, researchers are trying to develop potent 
antibiofilm agents from natural products and/or an amal-
gam of phytochemicals with other physical, chemical, or 
biological methods to show synergistic effect and do not 
contribute towards the enhancement of microbial resistance. 
In addition to this, development of standardized antibiofilm 
protocols, the requirement of in vivo validations, and fur-
ther understanding of mechanisms, signaling cascades, 
gene regulation, and involvement of signaling molecules 
including secondary messengers, etc. in the establishment, 
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development, maturation, and dispersal of biofilms are the 
need of the hour.
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