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Abstract
In the present scenario of a major demand for new compounds with antimicrobial activity, bacteriocin and bacteriocin-like
inhibitory substances (BLIS) are promising tools against deteriorating and pathogenic microorganisms, thus having potential
applications in both the food industry and infectious disease control. In the present report, we describe the genetic and phenotypic
characteristics of BLIS produced by Enterococcus faecium E86, a strain previously isolated and sequenced by our group,
focusing on the structural genes of two bacteriocins identified: enterocin TW21 and enterocin P. Transcription of all four genes
associated with the biosynthesis and immunity of enterocin P and enterocin TW21 were confirmed by RT-PCR. However,
Sanger sequencing confirmed a truncation of the structural gene of enterocin TW21 due to one base pair deletion (A/T). Thus,
although E. faecium E86 was shown to carry two bacteriocinogenic gene clusters, only one cluster encodes a functional
bacteriocin, enterocin P. Enterocin P was able to inhibit different strains of Listeria monocytogenes and vancomycin-resistant
enterococci (both Enterococcus faecalis and Enterococcus faecium), showing intense bacteriolytic activity, in most cases.
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Introduction

Members of the genus Enterococcus are usually referred as
ubiquitous bacteria, which are widespread in various habitats
[1], and two major species, Enterococcus faecalis and
Enterococcus faecium, are frequently found in food and clin-
ical samples [2, 3]. Although these species have been recog-
nized as important causes of challenging to treat healthcare-

associated infections due to acquisition of antimicrobial resis-
tance [4], in foods such as cheese, sausages, and fermented
products, some enterococci may contribute to texture, taste,
aroma, and food safety by producing diverse aromatic com-
pounds, enzymes, and bacteriocins [2, 5]. Studies also suggest
probiotic benefits of E. faecium isolated from naturally
fermented foods [6, 7]. Accordingly, at least two strains of
the genus have already been introduced in the market as
probiotics: E. faecium SF68® (NCIMB 10415; Cerbios-
Pharma SA, Barbengo, CH) and E. faecalis Symbioflor 1
(SymbioPharm, Herborn, DE).

Bacteriocins are proteinaceous multi-functional com-
pounds ribosomally synthesized by prokaryotes, which clas-
sically have antimicrobial activity against microorganisms of
the same species or species related to the bacteriocin-
producing strain [8, 9]. Bacteriocinogenic clusters usually in-
clude genes encoding the bacteriocin precursor peptide, pro-
cessing enzymes, and transport, regulatory, and immunity
proteins. In some cases, such clusters also harbor genes in-
volved in amino acid modification [10, 11]. Currently, bacte-
riocins can be classified in six different classes, according to
their structure: class I, also called lantibiotics, usually
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composed of thermostable, small peptides (< 5 kDa) carrying
post-translationally modified amino acids, such as lanthionine
and β-methyllanthionine [12]; class II, thermostable, small
peptides (≤ 10 kDa) that do not undergo extensive post-
translational modifications [13]; class III, proteins larger than
25 kDa, mostly heat-sensitive [14]; class IV, circular and ther-
mostable bacteriocins, presenting carboxy and amino termini
that are linked by an amide bond type, after cleavage of the
leader peptide [15, 16]; class V, circular or linear peptides,
with a characteristic binding of the cysteine thiol group to an
α-carbon, mediated by post-translational modifications [17,
18]; and class VI, also called thiopeptides, small macrocyclic
peptides (≤ 5 kDa) with vast post-translational modifications
resulting in a central nitrogen-containing six-membered ring
[19, 20]. It is important to highlight that there is no consensus
in the literature on the classification of this group of sub-
stances. Thus, other research groups have proposed different
classifications [21, 22].

These compounds have many biotechnological applica-
tions, especially in the food industry as biopreservatives
[23]. Studies have shown that bacteriocins increase the shelf
life of foods and beverages and reduce the risk of transmission
of pathogens through the production chain. These natural an-
timicrobial compounds allow the use of less chemical addi-
tives, which is a common requirement from consumers now-
adays [13, 24, 25]. Besides that, bacteriocins may be applied
to different products since they differ in aspects such as solu-
bility, stability, and spectra of action [13, 26].

Bacteriocins produced by enterococci, commonly called
enterocins, are usually stable over a wide range of pH and
temperature and may have a very diverse spectrum of action,
including other enterococci and lactic acid bacteria (LAB), as
well as pathogenic species of the genera Listeria ,
Staphylococcus, and Clostridium, besides the species
Clostridioides difficile [5, 27]. Bacteriocins of different clas-
ses have been isolated and characterized in Enterococcus spp.,
most of them belonging to class II, and produced by
E. faecium or E. faecalis, from both clinical and food origin
[13, 28].

Some examples of this group would be enterocin P and
enterocin TW21. Enterocin P is a class IIa bacteriocin, and
its producing strain, E. faecium P13, was isolated from a
fermented sausage. Its genetic group comprises two genes that
encode the bioactive peptide (entP) and its immunity protein
(entiP). The mature peptide is composed of 44 residues and
has a theoretical molecular mass of 4493 Da. Its spectrum of
action is wide and includes bacteria belonging to the genera
Enterococcus spp., Lactobacillus spp., Pediococcus spp., and
some food pathogens (Bacillus cereus, L. monocytogenes, and
Staphylococcus aureus) [29]. Enterocin TW21 also belongs to
class IIa and has a genetic group composed of two genes: the
structural one (entTW21) and other related to immunity
(entiTW21) [30]. The mature peptide has 48 residues and a

molecular mass of 5300.6 Da [31]. Its spectrum of action
comprises species such as Lactobacillus sakei, E. faecium,
C. perfringens, and L. monocytogenes, among others [32].

In 2008, Miguel and collaborators [33] reported on an iso-
late, recovered from meat pie and identified as E. faecium
E86, capable of producing a bacteriocin-like inhibitory sub-
stance. Afterward, Farias and collaborators (2019) [30] se-
quenced and assembled the genome of E. faecium E86 and
found two bacteriocin gene clusters (encoding enterocin P and
enterocin TW21), with the structural gene of TW21 appearing
to have a premature stop codon due to a base pair deletion.
Considering the potential of E. faecium E86 as a
biopreservative producer, the present report describes genetic
and phenotypic characteristics of the bacteriocins produced by
this strain. Moreover, our results demonstrate the relevance of
an accurate genetic characterization of bacteriocinogenic
genes to assign the activity of bacteriocins.

Material and methods

Bacterial isolates and growth conditions

Strain E. faecium E86, the focus of the present study, was
previously isolated from meat pie by our research group
[33]. Listeria spp. [provided by the Listeria Collection
(CLIST) of the Laboratory of Bacterial Zoonoses (Fiocruz)]
and vancomycin-resistant enterococci (VRE; belonging to our
bacterial collection) were used to evaluate the antimicrobial
action of the enterocins produced by E. faecium E86. Listeria
monocytogenes isolates (total of 25), belonging to the main
serotypes involved in foodborne infections (1/2a, 1/2b, 1/2c,
and 4b), were recovered from different ready-to-eat foods.
Listeria innocua 2 was used as a control for the enterocin
inhibitory activity test since this strain was shown to be highly
susceptible to the products of E. faecium E86 [33].
Enterococcus isolates (total of 14) are representative of clini-
cal samples of cases of infection or colonization in humans.
E. faecalis ATCC 10100 was used as a van operon negative
control. Listeria spp. and Enterococcus spp. isolates were
grown in brain heart infusion [BHI (Difco, Detroit, USA)]
and MRS [Man, Rogosa, and Sharpe (Difco)] culture media,
respectively, whether or not added with agar [Merck,
Darmstadt, DE; 1.5% (w/v) or 0.7% (w/v), depending on the
need of the experiment].

Sequencing of the enterocin TW21 structural gene

Genomic DNA from E. faecium E86 was obtained as pre-
viously described [30] and subjected to polymerase chain
reaction (PCR) for the amplification of the enterocin TW21
structural gene. PCR was carried out as recommended [34]
by using an annealing temperature of 58 °C. The amplicons
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were purified by using the ExoSAP-IT enzyme (Promega,
Madison, USA). Purified DNA (100 ng) and 5.0 pmol of
each of the following primer oligonucleotides were used
for the DNA sequencing employing the Sanger method:
TW21Sanger-F (5’TAAAAAAGGGAGGCAATTAT
ATGAA3’) and TW21 Sanger-R (5’TCAAAAAG
TTTTTCTTTTTTATCTTCC3’). Sequencing was per-
formed by Macrogen Inc. Both strands were sequenced.
Nucleotide sequence analyses were performed using the
Clustal Omega program (https://www.ebi.ac.uk/Tools/
msa/clustalo/) [35].

Transcriptional analysis of the genes involved in the
biosynthesis of the bacteriocin(s) present in the
E. faecium E86 genome

E. faecium E86 was grown in 5 mL of MRS for 6 and 10 h at
37 °C. Total RNA was extracted using the RNeasy Mini Kit
(Qiagen, Hilden, DE) as described [36], with the use of 20mg/
mL lysozyme (Sigma-Aldrich, St. Louis, USA) and 5.000 U
mutanolysin (Sigma-Aldrich) for cell disruption. The cDNA
synthesis was performed with 500 ng of the DNase I-pre-
treated RNA as substrate, using the Revert Aid H Minus
First Strand cDNA Synthesis kit (Thermo Fisher Scientific,
Waltham, USA). Pairs of primers for the genes involved in
enterocin P (entP, 120 bp; entiP, 182 bp) and enterocin TW21
(entTW21, 138 bp; entiTW21, 274 bp) biosynthesis were ap-
plied to RT-PCR analyses, as described in Table 1. 16S
rRNA-encoding genes were adopted as internal controls using
the primers 16FX and 16RX [38]. The PCR reactions were
carried out as described in the last item, except for the anneal-
ing temperature, which was 50 °C for the 16S gene primers
and 55 °C for the other primers. Genomic DNA, RNA, and
16S rRNA cDNA were used as templates in these reactions as
positive control, negative control, and internal control,
respectively.

Test of the antimicrobial activity of strain E. faecium
E86 on solid medium

The antimicrobial activity of E. faecium E86 against 25
L. monocytogenes and 14 VRE isolates was tested by the
agar-spot assay [39]. Ten microliters of the producing strain
broth growth (7.0 log CFU) were inoculated as a spot on the
surface of a MRS agar plate, which was then covered with 3
mL of BHI (L. monocytogenes) or MRS (VRE) soft agar con-
taining 6.0 log CFU/mL of each target strain. Plates were
incubated at 37 °C for 24 h, and the size of the growth inhi-
bition zones was measured. These experiments were per-
formed in triplicate. The strains L. innocua 2 and E. faecalis
ATCC 10100 were also tested for comparison.

Partial purification of E. faecium E86 enterocin P

The enterocin P was partially purified by ammonium sul-
fate precipitation followed by cation exchange chromatog-
raphy [40] from a 1-liter culture of E. faecium E86, grown
in MRS, using optimized conditions for the bacteriocin
production as previously described [33]. This enterocin
preparation was dialyzed against ultrapure water and quan-
tified by the agar diffusion assay to determine the arbitrary
units per mL (AU/mL) [41], using 100 μL of twofold serial
bacteriocin dilutions prepared in MRS broth and 100 μL
(106 cells) of a L. innocua 2 suspension as the indicator
microorganism. AU/mL represented the reciprocal of the
highest bacteriocin dilution showing at least 50% inhibi-
tion of the bacterial growth, after incubation at 37 °C for 18
h, when compared with the control with no bacteriocin
added, multiplied by 10. The final pH of the enterocin
preparation was in the range of 5.5–6.0.

Activity kinetics of enterocin P against
L. monocytogenes and VRE isolates

The activity kinetics of the partially purified enterocin P (640
AU/mL) was determined by the microtiter plate assay [42]
using as target the following strains (OD600 of ~0.2): (i) two
L. monocytogenes isolates displaying the highest and lowest
sensitivity to the bacteriocin in the agar-spot assay, respective-
ly, and (ii), for VRE, the most sensitive strains of each species
(E. faecium and E. faecalis) included in the study, according to
the agar-spot assay results. Strains L. innocua 2 and E. faecalis
ATCC 10100 were also tested for comparison. The OD600 of
the medium without inoculum was discounted for the final
results. Also, at the beginning and at the end of the experiment
(0 and 24 h), viable cell counts of the Listeria spp. and
Enterococcus spp. strains were performed, respectively, in
BHI and MRS agar plates, to evaluate the inhibitory effect
of the bacteriocin. These experiments were performed in
triplicate.

Results

Confirmation of the mutation in the entTW21 gene

Sanger sequencing confirmed the deletion of a base pair (A/T)
in the enterocin TW21 encoding gene found in E. faecium 86
when compared with the nucleotide sequence of the gene
already described in the literature (Fig. 1) [31]. Due to this
fact, from now on enterocin P will be considered the sole
bacteriocin responsible for the antimicrobial activity exerted
by this strain.
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Transcription analysis of bacteriocinogenic clusters

Results from RT-PCR experiments for entP, entiP, entTW21,
and entiTW21 showed that these genes are expressed in
E. faecium E86, since cDNA synthesized fromRNA extracted
within 6 h of cultivation resulted in amplicons with the ex-
pected size for each gene studied. In contrast, cDNA synthe-
sized from the RNA extracted within 10 h of cultivation

indicated the transcription of the entP, entiP, and entTW21
genes only. At this incubation time, no amplification of the
entiTW21 gene was observed, which may be due either to its
non-transcription or to the fact that there was no enough
cDNA to be detected by the analysis. Importantly, for all
genes tested, there was a weaker amplification at 10 h of
growth in comparison to the amount detected in cultures after
at 6 h of incubation (Fig. 2).

Table 1 Oligonucleotide primers used in the RT-PCR experiments

Genes Oligonucleotides Sequence (5’–3’) tm
(°C)

Used pairing temperature
(°C)

Amplicon size expected
(bp)

Reference

entP entP F TATGGTAATGGTGTTTATTGTAAT 53 55 120 [37]
entP R ATGTCCCATACCTGCCAAAC 53

entiP entiP F TAGCCACCCCAGAAATTAAA 57 55 182 This work
entiPR TTCAGCAAGCAACTCCAATA 57

entTW21 entTW21 F TGCTGCAACTTATTATGGAAA 56 55 138 This work
entTW21 R ACTCCACCTAGCACTTTCGT 56

entiTW21 entiTW21 F TTTGACTTAATTGCGAATGC 56 55 274 This work
entiTW21 R GCATAGACATGGCACCATAA 57

16S rRNA 16S primer 10 FX GACTACCNGGGTATCTAATCC 59 50 800 [38]
16S primer 804 RX AGAGTTTGATCCTGGCTNAG 58

tm, average denaturation temperature; bp, base pairs

a

b

Fig. 1 Sequence alignments. a Alignment of the DNA sequences of the
structural gene encoding enterocin TW21 in strain E. faecium E86 (E86;
accession no. SIHT00000000.1) and in the reference strain (Ref.;
accession no. JX880073.1) retrieved from the GenBank data base. The
base pair deletion found in strain E86 is highlighted in yellow. The same
sequence and consequently deletion were observed after sequencing, in

the present study, the amplicon corresponding to the structural gene of
enterocin TW21 found in strain E86. b Alignment of the amino acid
sequences encoded by each gene. The arrow indicates the peptide bond
that is cleaved during processing of the precursor peptide of enterocin
TW21 to generate the mature and bioactive bacteriocin of 48 amino acids
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Sensitivity of L. monocytogenes and VRE to
enterocin P

All L. monocytogenes and Enterococcus strains tested were
sensitive to the bacteriocin expressed by E. faecium 86, ac-
cording to the agar-spot assay (Tables 2 and 3). However, the
inhibition capacity varied among the target strains, with inhi-
bition halos ranging from 10.3 to 31 mm.

Bacteriolytic activity of enterocin P against
L. monocytogenes and VRE

The mode of action test aimed to verify the bactericidal (bac-
teriolytic or not) or bacteriostatic activity of a partially purified
enterocin P preparation. The results are shown in Fig. 3.

Against L. monocytogenes (Fig. 3a), enterocin P displayed
a strong or weak bacteriolytic activity, depending on the iso-
late, within 4 h of incubation, after which the culture OD

remained almost the same. The initial viable cell counts for
the three strains were 1.0 ± 0.1 × 109 CFU/mL.
L. monocytogenes CLIST 2968, which was the most sensitive
L. monocytogenes strain evaluated in the agar-spot test,
reached 1.8 ± 0.2 × 106 CFU/mL at the end of the experiment
(24 h). In contrast, final counts for L. monocytogenes CLIST
3236, the less sensitive strain, reached 9.5 ± 0.5 × 108 CFU/
mL. The bacteriocin also caused a sharp reduction in the cul-
ture OD of L. innocua 2 during the first 4 h of incubation, after
which the strain resumed the growth, reaching viable cell
counts of 2.0 ± 0.2 × 109 CFU/mL at 24 h of incubation.

In the presence of 640 AU/mL enterocin P, all enterococci
showed a continuous growth reduction until 14 h of incuba-
tion, suggesting a bacteriolytic activity against these strains
(Fig. 3b). The initial viable cell counts for the three strains
were 1.1 ± 0.2 × 109 CFU/mL. After that, E. faecium CL-
6258 counts remained low, with viable cell counts of 2.9 ±
5.0 × 103 CFU/mL at 24 h. Both E. faecalis strains tested, in

A

200 bp

100 bp
120 bp

B

200 bp

100 bp

182 bp

a b c d e fa b c d e f

a b c d e
C D

200 bp

100 bp

274 bp

138 bp

300 bp

200 bp

a b c d e f f

Fig. 2 Detection of the entP (120 bp; a), entiP (182 bp; b), entTW21 (138
bp; c) and entiTW21 (274 bp; d) genes by PCR and their transcription by
RT-PCR. The analyses were done with cDNA obtained from the RNA
extracted after 6 and 10 h of incubating E. faecium E86 strain cultures,
and the amplicons were detected by electrophoresis on 1.8% agarose gels
in TAE buffer, at 90 V for 1.5 h. a 100-bp DNA Ladder ready-to-use
(Sinapse Inc). b blank (samples without nucleic acid); c positive control

of the reaction (amplification of the gene from DNA); d negative control
of the reaction (DNA of E. coli strain DH5α); e cDNA obtained from
RNA extracted after 6 h of culturing E. faecium E86; f cDNA obtained
from RNA extracted after 10 h of culturing E. faecium E86. The numbers
to the left of the figure indicate the size of some DNA fragments present
in the molecular size marker. The number to the right of each figure
corresponds to the size of the expected amplicon
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contrast, started a slight regrowth after this time, and their
viable cell counts at 24 h were close to 1.0 ± 1.5 × 108

CFU/mL.

Discussion and Conclusion

The demand for new compounds exhibiting antimicrobial ac-
tivity has greatly motivated the study of bacteriocins and BLIS
during the last decades aiming applications in both the food
industry and the medical field. Some bacteriocins produced by
Enterococcus spp., known as enterocins, can inhibit various
human and animal pathogens, such as C. difficile, VRE, and
L. monocytogenes, among others [5]. Early results from our
group have shown that strain E. faecium 86 carries two
bacteriocinogenic clusters [30].

However, DNA sequencing and in silico analyses of the
entTW21 structural gene present in the genome of this strain
have indicated an adenine deletion in the coding region of the
gene. The presence of this mutation leads to a change in the

reading frame for the translation event and to the formation of
a premature termination codon (TGA; in nucleotides between
positions 27 and 29 of the sequence presented in Fig. 1). As a
consequence, a truncated peptide without its antimicrobial
function is synthesized.

A preliminary analysis of the expression of the genes
involved in bacteriocinogenic clusters (entP, entiP,
entTW21, and entiTW21 genes) showed that all these genes
are transcribed and, therefore, are expected to be translat-
ed. The presence of RBS regions preceding these genes
corroborates the hypothesis of their possible translation
[29–31]. The choice of 6 and 10 h of growth for this anal-
ysis was based on their correlation, respectively, to the log
phase of the microorganism growth and to the apex of the
antimicrobial activity detected [33]. Importantly, the tran-
scription of the entiTW21 gene was no longer observed at
10 h. Such an event may have occurred as a result of cell
autoregulation.

Therefore, genomic analysis of E. faecium E86 associated
with molecular analysis lead to the conclusion that the

Table 2 Listeria strains used in the present study and respective sizes of zones of inhibition produced by strain E. faecium E86

Indicator strains Serotypes Inhibition zone (standard deviation)*

L. monocytogenes CLIST 3236 1/2b 10.3 (0.6)

L. monocytogenes CLIST 480 4b 10.3 (0.6)

L. monocytogenes CLIST 529 4b 10.3 (0.6)

L. monocytogenes CLIST 3980 1/2a 11 (0.0)

L. monocytogenes CLIST 654 1/2b 11.7 (0.6)

L. monocytogenes CLIST 636 1/2b 12 (0.0)

L. monocytogenes CLIST 2546 1/2a 17 (1.0)

L. monocytogenes CLIST 1400 4b 19 (0.0)

L. monocytogenes CLIST 3982 4b 19.7 (0.6)

L. monocytogenes CLIST 653 1/2b 20 (0.0)

L. monocytogenes CLIST 3652 1/2b 20.3 (0.6)

L. monocytogenes CLIST 305 1/2c 22 (0.0)

L. monocytogenes CLIST 484 1/2a 22 (0.0)

L. monocytogenes CLIST 965 1/2b 22 (0.0)

L. monocytogenes CLIST 3986 1/2c 22 (0.0)

L. monocytogenes CLIST 3988 1/2c 22 (0.6)

L. monocytogenes CLIST 3602 1/2c 23 (0.0)

L. monocytogenes CLIST 2547 1/2a 23 (0.0)

L. monocytogenes CLIST 3984 1/2b 23 (0.0)

L. monocytogenes CLIST 2876 4b 24 (0.0)

L. monocytogenes CLIST 2557 1/2b 25 (0.0)

L. monocytogenes CLIST 1071 4b 25 (0.0)

L. monocytogenes CLIST 3981 1/2b 26 (0.0)

L. monocytogenes CLIST 1064 1/2c 27 (0.0)

L. monocytogenes CLIST 2968 1/2b 31 (0.0)

L. innocua 2 - 25 (0.0)

*Results represent the approximate mean value of the diameters of the inhibition zones and the standard deviation in millimeters, obtained in three
independent experiments.
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enterocin TW21 precursor peptide is synthesized in a truncat-
ed manner and that the inhibitory action of this strain results

from the activity of the other bacteriocin produced by it, which
proved to be identical to enterocin P [29].

Table 3 Enterococcus strains used in the present study and respective sizes of zones of inhibition produced by strain E. faecium E86

Indicator strains Resistance genotype Inhibition zone (standard deviation)*

E. faecium CL–6770 vanA 18 (1.0)

E. faecium CL–8527 vanA 18.3 (0.6)

E. faecium CL–720ª vanA 19 (1.0)

E. faecium CL–6179 vanA 21.3 (1.0)

E. faecium RS73 vanA 22 (0.0)

E. faecium RS70 vanA 22 (2.0)

E. faecium RS71 vanA 24 (0.0)

E. faecium CL–6258 vanA 25 (0.0)

E. faecalis RS72 vanB 17 (1.0)

E. faecalis CL–9325 vanA 17 (1.0)

E. faecalis CL–8187 vanA 18 (1.0)

E. faecalis CL–5241 vanA 18.7 (0.6)

E. faecalis CL–5865 vanA 20 (0.6)

E. faecalis CL–8286 vanA 20.3 (1.0)

E. faecalis ATCC 10100 - 19 (0.0)

*Results represent the approximate mean value of the diameters of the inhibition zones and the standard deviation in millimeters, obtained in three
independent experiments.
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Fig. 3 Mode of action of
enterocin P (640 AU/mL) against
Listeria strains (b) and
Enterococcus strains (b), grown
in BHI and MRS broth,
respectively, for 24 h at 37 °C.
The results represent the average
and standard deviations of three
independent experiments. Bac,
bacteriocin
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Regarding the spectrum of action, enterocin P expressed by
E. faecium E86 was able to inhibit the growth of diverse
L. monocytogenes and VRE strains, showing a typical spec-
trum of action of class IIa enterocins [5, 28, 43, 44]. In addi-
tion, the results consolidate the data found by Cintas et al.
(1997) [29] and Miguel et al. (2008) [33] on the antimicrobial
activity of enterocin P against these bacterial genera.

Finally, the mode of action of a given bacteriocin is an
important property when it is considered to be applied as a
biopreservative or an alternative drug in clinical settings. The
mode of action of enterocin P on L. innocua 2 and
L. monocytogenes CLIST 2968 showed a marked bactericidal
(and bacteriolytic) activity as early as the first 4 h of the ex-
periment. This suggests that the presence of virulence genes,
which differentiates these species [45], is not related to their
susceptibility to enterocin P. However, only a bacteriostatic
activity was observed against L. monocytogenes CLIST 3236,
and after 24 h of incubation, the viable cell count of this strain
was equal to the initial counting. The result correlates to the
lower sensitivity of this strain as detected by agar-spot assays.
This phenomenon can be explained by four characteristics that
may vary among representatives of this species: (1) a more
positively charged cell wall, which occurs by the D-
alanization of the teichoic and lipoteichoic acids; (2) a cell
membrane with a more neutral charge; (3) increased mem-
brane fluidity, which is caused by increased unsaturated
phosphatidylglycerol and short acyl chains; and (4) a large
reduction in gene mptA expression, which codes for the
Man-PTS IIAB subunit. Also, differences in bacterial metab-
olism may lead to changes in the cell membrane and cell wall
that directly influence susceptibility to antimicrobials [46].

The mode of action of enterocin P against representatives
of the genus Enterococcus showed a marked bactericidal (and
bacteriolytic) activity along at least 10 h of incubation. For the
three strains tested, a reduction of more than 90% of viable
cells was observed after 24 h of experiment. The occurrence of
a vancomycin resistance phenotype (in E. faecalis CL-8286
and E. faecium CL-6258) was irrelevant to the performance of
the bacteriocin in comparison to a vancomycin-susceptible
reference strain (E. faecalis ATCC 10100). This observation
is consistent with the fact that the full vancomycin resistance
occurs by changing the terminal amino acids D-Ala-D-Ala of
the peptidoglycan cell wall precursor, with no effects at the
membrane level, where enterocin P acts [47]. It is important to
highlight that the resumption of bacterial growth by many
strains (Enterococcus spp. or Listeria spp.) was probably
due to the depletion of enterocin. Future studies with purified
bacteriocin may help to understand this phenomenon.

The molecular characterization of the bacteriocinogenic
clusters present in E. faecium E86 strain performed in this
work demonstrates the complexity associated with the study
of bacteriocins. The simple detection, by PCR, of a bacteriocin
structural gene is not enough to assume that this substance is

produced and responsible for a given antimicrobial action. In
the case of enterocin P, such activity varied among different
Listeria isolates but was consistent against VRE strains.
Moreover, the identification of the still little known TW21
enterocin opens the possibility of further studies regarding
its structure, mechanism of action, and biotechnological appli-
cation, if an intact version of the gene is assembled by heter-
ologous expression. The study of this strain is an example of
the potentialities of enterocin application, which may contrib-
ute to the development of new strategies to combat microor-
ganisms in both the clinical and food conservation context.
With an appropriate technological development, this bacteri-
ocin has a potential against infections caused by Listeria and
VRE; on the other hand, due to the low cost of its purification,
it could easily be incorporated as dairy products preservative
[25, 48].
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