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Abstract
Many growing cities of Sub-Saharan Africa (SSA) are marred by the inefficient collection, management, disposal and reuse 
of organic waste. The purpose of this study was to review and compare the energy recovery potential as well as bio-fertilizer 
perspective, from the organic waste volumes generated in SSA countries. Based on computations made with a literature 
review, we find that the amount of organic wastes varies across countries translating to differences in the energy and bio-
fertilizer production potentials across countries. Organic wastes generated in SSA can potentially generate about 133 million 
GWh of energy per year. The organic waste to bio-fertilizer production potentials range from 11.08 million tons to 306.26 
million tons annually. Ghana has the highest energy and bio-fertilizer potential among the SSA countries with a total per 
capita of 630 MWh/year and 306.26 million tons, respectively. The challenges and technical considerations for energy and 
bio-fertilizer approaches in the management of organic waste in SSA have also been discussed. This study is of help to the 
readers and strategic decision makers in understanding the contribution of bioenergy and bio-fertilizer to achieving sustain-
able development goals, namely, 7 (Affordable and Clean Energy) and 13 (Climate Action) in SSA.
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Introduction

On average, about 48.7% of waste generated in countries of 
Sub-Saharan Africa (SSA) is organic [1]. Organic waste is 
defined as waste (material) that comes from living organ-
isms, either a plant or an animal, and can be decomposed by 
microorganisms [2, 3]. Organic wastes include the organic 
fraction of municipal solid waste (OFMSW), livestock 
and human manure, agricultural or crop primary equiva-
lent waste, and wastewater [4]. In major towns and cities of 
SSA, decomposing heaps of organic wastes can be seen in 
open places around buildings, drainage system, institutions, 
playing grounds, roads side, and uncompleted buildings [5]. 
Thus, major cities and towns of SSA are marred by the inef-
ficient collection, management, and disposal [5–7], which is 
of concern to society.

Waste conversion technologies to energy and bio-ferti-
lizer have been presented as sustainable ways to manage 

organic waste [8–11]. Figure  1 shows the processes of 
organic waste conversion, in which there are three widely 
used technologies [12]. These are thermal conversion, bio-
logical conversion, and landfilling with gas recovery. In 
SSA, organic waste thermal conversion technologies account 
for 1%, biological conversion also stands at 1%, and landfill-
ing accounts for 38%, while the remaining 60% of waste is 
reported to be indiscriminately dumped [13]. A review of 
the literature, such as the work of [10] and [14], suggests that 
the energy contained in the organic portion can be extracted 
in two ways to produce heat or electricity. The first is a bio-
logical method of converting organic waste components with 
and without oxygen to produce compost and energy using 
anaerobic digestion (AD) and composting processes (Fig. 1). 
The other is thermo-chemical conversion that generates 
heat energy and syngas. Literature on waste transformation 
processes shows that because of the high moisture content 
and biodegradable organic matter in municipal solid waste 
(MSW), AD is the most preferred technology [12, 14, 15].

A schematic of an organic waste-fed AD plant as designed 
and studied by [15] is shown in Fig. 2. In the context, sep-
arated organic wastes are fed into the pre-digestion units 
(A) to enhance their biodegradability. Then, the pretreated 
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organic waste feedstock is transferred into the digester (B). 
Various sensors measuring pH, pressure, and temperature 
can be installed on different points of the digesters for moni-
toring and controlling the process. In the digestion unit, the 

organic waste is continuously digested to produce bioenergy 
(biogas) and bio-fertilizer (liquid and solid digestate). The 
majority of the digestate leaving the digester is fed back into 
the pre-digesters for feed preparation (process 5). The other 

Fig. 1   Waste to energy tech-
nologies for recycling organic 
waste. Reprinted from [12] with 
permission

Fig. 2   A schematic view of a typical waste to energy and bio-ferti-
lizer plant. A pre-digestion unit, B digester, C separation unit, D wet 
chemical scrubber, E vapor-compression refrigerator, F chilling unit, 

G blower, H pressure regulator, I genset, J freshwater cooler, K heat 
exchanger, L pump and pipeline, M pump and pipeline. Reprinted 
from [15] with permission
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fraction of the digestate was dewatered in the centrifuge 
separator (C) and sundried for use as bio-fertilizer.

In that same study of Aghbashlo, the evolved biogas 
(through pipeline 3) in Fig. 2, constituted methane, carbon 
dioxide, oxygen and other trace elements such as hydrogen 
sulfide. Aghbashlo et al. [15] noted that traces of hydrogen 
sulfide and the evolved carbon dioxide were removed in a 
wet chemical scrubber (D) using sodium hydroxide solu-
tion. The vapor-compression refrigerator (E) provided the 
cooling water required for the dehumidification of the moist 
biogas. Thereafter, the moisture content of the sulfur-free 
biogas was decreased using a chiller (F) in order to meet 
the fuel purity requirement of the engine. Since the lower 
heating value of the evolved biogas was lower than that of its 
petroleum-derived counterpart, it was compressed using the 
blower (G). The regulator (H) was used to lower the pressure 
of the biogas. The desulfurized and dehumidified biogas was 
then charged into turbocharged gensets (with a maximum 
power of 1042 kW). The freshwater cooling system (J) was 
used to cool down the turbocharged intake air in order to 
make the combustion process more efficient. In addition, 
the raw water was heated up through the heat exchanger (K) 
to sustain the metabolic functions of the mesophilic bacte-
ria and archaea in the digesters. Reference [15] states that 
for each 30 tons of fresh organic waste fed in the digester, 
up to 1042 kW can be generated. The advantages of the 
AD plant on the environmental categories of which human 
health (reducing pathogens), ecosystem quality (recycling 
nutrients), climate change (reducing greenhouse gas emis-
sions), and resources (businesses in nutrients, manure solids 
and energy markets) were reported to be economically viable 
and environmentally sustainable. It can thus be pointed out 
that this approach is one of the technologies that can be 
considered in SSA so that cities can benefit from the gener-
ated electricity and bio-fertilizer contained in organic waste.

Various studies in SSA cities have focused on the issues 
and challenges of managing solid waste [14, 16–20], ascer-
taining  that few studies have been conducted to assess 
organic waste to energy and bio-fertilizer recovery poten-
tial, especially in low income countries of SSA in contrast 
to high-income countries. This article addresses this gap by 
conducting a comprehensive review of different countries’ 
total organic waste, biogas production potential, converted 
net energy potential, and bio-fertilizer production potential 
in the context of SSA. The introduction presents scenarios 
in waste conversion technologies. “Overview of Sub-Saha-
ran Africa, its present energy needs, fertilizer demand and 
future requirement” provides a brief overview of Sub-Saha-
ran Africa, current energy needs and bio-fertilizer demand 
as well as its future requirement. “The potential of organic 
waste to energy and bio-fertilizer in sub-Saharan Africa” 
discusses in detail the biomass waste potential for energy, 
and the research and development undertaken in selected 

SSA countries. Finally, barriers and some technical con-
siderations are presented in “Challenges and technical con-
siderations for energy and bio-fertilizer approaches in the 
management of organic waste in SSA”.

Overview of Sub‑Saharan Africa, its present 
energy needs, fertilizer demand and future 
requirements

Sub-Saharan Africa comprises all of Africa except the five 
Arab-dominated states of North Africa (Algeria, Morocco, 
Egypt, Tunisia and Libya) and Sudan, which is considered a 
north-central state [21]. As of 2020, the population of sub-
Saharan Africa was close to 1.14 billion people, making it 
the highest growth rate worldwide [22]. Most of the SSA 
countries have average access rates of about 20%, and two 
out of three persons have no access to modern energy [18]. 
Aryampa et al. [19] points out that only 280 million of the 
population had access in 2015. Dlamini et al. [18] also noted 
that close to 500 million people have no access to electric-
ity, and rely heavily on firewood, and agricultural residues 
to meet their energy needs.

In addition, the International Energy Agency [23] esti-
mates that electricity demand in sub-Saharan Africa has 
grown by about 35% since 2000 and predicts that the total 
demand for electricity in Africa will increase by an aver-
age of 4% per year through 2040. To meet this growing 
demand, African Development Bank Group [24] argues that 
the region needs to significantly increase its installed capac-
ity since about half a billion people are expected to remain 
without access to electricity by 2040, and full availability 
of electricity in the region is not anticipated to be achieved 
by 2080 [23].

Moreover, the energy crisis impacts food security since 
agriculture and food industries use energy for various pur-
poses [25]. Energy use includes electricity for automated 
water irrigation, fuel consumption for farm machinery, and 
energy required at various stages of food processing, packag-
ing, transportation and distribution. Higher energy and ferti-
lizer prices inevitably translate into higher production costs, 
and ultimately into higher food prices [25]. The World Food 
programme reports that dependency on fossil fuels coupled 
with failure to promote diversified energy systems has forced 
millions around the world, especially in SSA, to become 
food insecure [25]. African Development Bank Group [24] 
also notes that higher-yielding agriculture in SSA is cur-
rently in a disadvantaged state because of a daunting set of 
barriers, including the high cost of fertilizer use to achieve 
agricultural crop potential. With the planet having only a 
finite amount of resources, SSA countries need to increase 
access to energy and fertilizer production using indigenous 
renewable energy resources, following a growing global 
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trend. To mention just one example, a review of literature 
by Chimuka et al. reveals that AD technology has the poten-
tial to reduce energy problems in the towns and cities of 
Sub-Saharan Africa as well as high costs of fertilizer use 
and environmental burden. Also, Medoc et al. [26] argued 
that replacing mineral fertilizer, especially in low income 
countries of SSA, with local fertilizer (AD bio-fertilizer) as 
a soil conditioner, can help farmers enjoy financial benefits.

The potential of organic waste to energy 
and bio‑fertilizer in sub‑Saharan Africa

 The conversion of organic wastes to energy and bio-ferti-
lizer is centered on generated and collected bio-waste vol-
umes [26]. This section presents studies on the conversion 
of organic waste in nature to energy and bio-fertilizer in 
Sub-Saharan Africa. Table 1 presents different countries' 
total organic waste, biogas production potential, converted 
net energy potential, and bio-fertilizer production potential 
based on other papers [27, 28], as well as computations 
made with a literature review by the author. Organic wastes 
generated in SSA can potentially generate about 12.8 bil-
lion m3 of biogas, equivalent to 133 million GWh of energy 
annually [29]. Detailed comparisons and discussions of 
energy production and bio-fertilizer production potentials 
from organic wastes are presented next.

From Table 1, it can be seen that Nigeria generates about 
542.5 million tons of organic waste [33]. This waste has 
a per capita energy production potential of 181.29 MWh/
per capita/year or 169541.66 MWh [29]. The equivalence 
of this energy potential to common fuel sources in Nigeria, 
including firewood, kerosene and liquefied petroleum gas 
can be estimated to 41.52 million tons, 14.17 million tons, 
and 13.15 million tons, respectively [27]. In context, a popu-
lation of about 114,317,707 consumes on average 877 kWh 
in a developing country [34], and a family of five consumes 

about 0.08 kW per capita for cooking [35]. Using studies of 
[34] and [36], the 169,541.66 MWh potentially produced 
from organic waste is adequate to support the cooking needs 
for a family of five, support about six fluorescent light bulbs, 
a television and a refrigerator (freezer) for the population of 
114,317,707 in Nigeria. The bio-fertilizer (dry by-product of 
AD) of the organic wastes as researched by [27] in Nigeria, 
can yield about 88.19 million tons of dry bio-fertilizer. This 
is approximately 13 times the quantity of synthetic fertilizer 
bought in Nigeria between 2001 and 2012, during which the 
Federal Government of Nigeria spent USD 410,828,025.48 
on fertilizer subsidies [37]. IPE [38] also demonstrated how 
such a well-planned system is a need of time in countries 
like Nigeria and analyses the contribution of biogas and 
bio-fertilizer to achieving sustainable development goals, 
namely, 2 (Zero Hunger), 7 (Affordable and Clean Energy) 
and 13 (Climate Action).

Longfor (2020) analyzed organic waste based on energy 
potential in Cameroon [30]. The results showed that all 10 
regions of Cameroon have electricity generating potential 
through the recycling of organic wastes dumped in various 
cities of up to 297.45 MWh/per capita/year (560 TWh/a), 
a result lower than 181.29 MWh/per capita/year in Nigeria 
[29]. Uganda, with a total energy demand of 173,287 GWh 
[39], is presented with a rare opportunity of 119.51 MWh/
per capita/year (Table 1), and dry bio-fertilizer of about 
58.14 million tons annually, which could lift millions out of 
energy poverty as well as an opportunity for an integrated 
waste management system for bio-fertilizer [40]. The situa-
tion in South Africa, one of the largest and most urbanized 
SSA countries [17], is not different from that of Nigeria, 
Cameroon and Uganda since organic waste is often land-
filled, dumped and burned in open places [41]. Whereas a 
country such as Uganda has more than double the estimated 
300 AD plants operating in South Africa [42], it has a per 
capita energy potential of 183.67 MWh/a higher than that 
of Uganda (Table 1). The first large-scale waste to energy 

Table 1   Estimated energy and bio-fertilizer production potential from organic waste for each SSA country. SSA Sub-Saharan Africa

Country Organic waste 
(million tons/a)

Biogas potential
(billion m3/a)

Net energy potential (MWh/per 
capita/year)

Bio-fertilizer (dry) potential
(million tons/a)

Reference

Nigeria 542.50 15.65 181.29 88.19 [27]
Cameroon 890.10 25.68 297.45 144.70 [29, 30]
Zimbabwe 634.22 18.30 211.94 103.10 [28, 31]
Gabon 1182.07 34.10 395.02 192.16 [29]
South Africa 549.62 15.86 183.67 89.35 [28, 29]
Uganda 357.63 10.32 119.51 58.14 [15, 29]
Ghana 1883.98 54.35 629.58 306.26 [29, 32]
Others 20,046.45 578.3 6570.32 3258.79 [29]
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and bio-fertilizer plant in Africa was opened in Athlone in 
Cape Town in South Africa, transforming 50 tons of organic 
waste per day [43]. Nyika et al. [44] pointed out that such 
development has not only unlocked the value of organic 
waste through electricity generation and natural fertilizers, 
but has also caused 93% diversion of waste at the Cape Town 
landfill, and other SSA countries can benchmark for technol-
ogy transfer.

Ghana has the highest energy production and bio-ferti-
lizer potential from organic waste of all the SSA countries 
with a total per capita of 630 MWh annually and 306.26 
million tons, respectively (Table 1). This is probably due to 
the higher OFMSW and residues of primary crops gener-
ated in Ghana and other West African countries [29]. This 
statement is in agreement with the findings of [29], where 
the net energy production potential for OFMSW in West 
Africa was about 26 million GWh/a higher than the 18 mil-
lion GWh/a of East African countries, 9 million GWh/a of 
Central Africa, and 3 million GWh/a of South Africa. In 
that same study, primary crop residues showed a net energy 
potential of about 42 million GWh/a in West Africa, which 
was higher than the 18.5 million GWh/a of East African 
countries, the 7 million Gwh/a of Central Africa, and the 8.5 
million GWh/a of South Africa.

Challenges and technical considerations 
for energy and bio‑fertilizer approaches 
in the management of organic waste in SSA

Environmental barriers and health risks

Despite the important environmental benefits of convert-
ing waste to energy and bio-fertilizers, this review recog-
nizes a few potential negative environmental aspects. These 
include odor problems that occur primarily at the stages of 
organic waste storage, fermentation preparation, and diges-
tate dewatering [45]. According to Tsai et al. [46], terpenes 
and sulfur-containing compounds are the leading causes of 
odors. A review by [45] notes that long-term exposure to 
these compounds can cause asthma or asthmatic symptoms 
such as dyspnea, coughing, wheezing, chest tightness, and 
difficulty breathing, as well as affect the central nervous 
system, causing symptoms such as headache and dizziness, 
nausea, fatigue, agitation, and disorientation. The other bar-
rier is the need of many water resources for the technology/ 
anaerobic digesters [47–49]. AD requires abundant water 
resources, with a ratio of 1:1 of the water and substrate to be 
loaded into the digester [49]. For that reason, biogas produc-
tion might not be a problem during the rainy season, but it 
may be a problem in the dry seasons, especially where the 
distance to water supply is large and in SSA regions with 
limited water availability.

Studies of [50, 51] reveal that in many parts of SSA, the 
use of products recovered from organic waste streams is per-
ceived by the public and farmers as associated with potential 
risks to health. [52], also notes that digestate to be used as 
a bio-fertilizer may contain high concentrations of patho-
gens, and its land application may play a role in pathogen 
transmission to humans through the food chain, with ready-
to-eat crops being potential critical vectors as they may be 
eaten without further treatment or processing. Implementa-
tion of organic waste to energy and bio-fertilizer approaches 
in SSA could be determined by whether the perceptions of 
risks among local stakeholders outweigh the perception of 
benefits. The digestate may also contain metals, particularly 
heavy metals, in varying concentrations [53]. When applied 
to farmland, high levels of these metals in soil can lead to 
phytotoxicity, which ultimately ends up in the human diet 
through crop uptake [54]. The ingestion of heavy metals is 
associated with health risks, and reports show that coun-
tries like Bangladesh have high levels of lead and Arsenic in 
their cereals and pulses [54]. To overcome this, international 
threshold standards for heavy metal concentrations in diges-
tate have been set, and for operators who cannot meet this 
standard, digestate resources cannot be spread on farmland.

Unstable production of biogas due to influent 
substrate complexity and inhibition

According to [55], feeding of complex organic matrices such 
as agricultural wastes in conventional anaerobic digesters 
leads to low conversion performances. OFMSW is very 
heterogeneous and is often mixed with agricultural wastes, 
which contain lignocellulosic structures and are recalcitrant 
to anaerobic microbial degradation. [55–58] point out that 
some feedstock also has inhibitory effects on AD microbes 
and thus reduces the biogas yield. An example of an inhibi-
tor is limonene from citrus peel. Limonene occurs naturally 
in citrus peel, and a study by [59] showed that the com-
pound can inhibit the AD process at concentrations of 65 g/L 
to 88 g/L. In this regard, [56] reports the main approaches 
being considered for the enhancement of AD processes of 
these wastes include: feedstock pre-treatment, co-digestion, 
optimization of the process parameters as well as bioreac-
tor configurations, and application of genetic technologies.

Collection, storage and logistic issues during waste 
transportation

According to [60], there is a high degree of correlation 
(about 90%) between the  performance of waste man-
agement logistics and variables such as commitment, 
intensity of traffic, tonnage of loading, pick-uptime, and 
volume of waste that are a characteristic of most SSA 
countries. Difficulties including the costs of fuel, vehicle 
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maintenance, and wages also technically hinder the col-
lection of organic wastes [30]. According to [60], the 
volume of waste and commitment of staff are crucial to 
waste management logistics, and one factor that strongly 
affects waste logistics is traffic. Thus, traffic that is usu-
ally experienced daily in the cities and towns of SSA 
countries needs to be mitigated to have effective waste 
management logistics. The commitment of waste man-
agement logistics staff is important, so skilled personnel 
with a passion for the job can be used. Governments can 
introduce a Public–Private Partnership (PPP) programme 
that can facilitate repairs and proper maintenance if the 
cost is too high to bear [60].

Implementation of the energy policy

Although many countries have recognized the significance 
of converting organic waste to energy as a way out to their 
current energy crisis, there is a slow implementation of 
supportive policies [59, 60]. There is also a dearth of polit-
ical willingness for governments to pursue the implemen-
tation of energy policies on conversion of organic wastes 
[61, 62]. Besides, there is a lack of budget or funding allo-
cated to promote organic waste to energy initiatives as 
well as an absence of enforcement mechanisms in those 
countries [63]. For these policies to be fully implemented, 
there must be less reliance on state controlled monopoly 
and privately owned initiatives need to be well-thought-
out. There should be a conducive environment to promote 
local entrepreneurs in the sector. To accelerate the waste to 
energy development policies, a feed-in tariff system can be 
implemented in sub-Saharan African countries. Countries 
in Europe (UK, Spain, Germany) [64] and Asian countries 
(Malaysia, Thailand, and Indonesia) [65] already have a 
functional feed-in tariff system on which the countries in 
SSA can benchmark to implement a subsidized policy to 
promote waste to energy.

Investment and financing

Many SSA countries face daunting challenges in invest-
ing and financing renewable energy technologies [66]. 
For  example, Longfor [30] demonstrates that organic 
waste conversion would require an investment worth USD 
110.84 million, equivalent to 0.32% of gross domestic 
product (GDP) of Cameroon in 2017. Regulatory policies, 
including the net metering system and feed in tariff, can be 
adopted to develop and scale AD based plants as proposed 
by [30]. Economic policies such as tax incentives, declin-
ing sales and value added tax may also apply in Cameroon. 
In USA, the federal government has reinstated a tax credit 

incentive that allows house owners to obtain 30% credit 
for installing wind turbines at their homes [67]. Such fiscal 
incentives can be adopted where households benefit from 
some credits for installing small scale biogas plants that 
convert both wastewater and other biomass wastes into 
electricity.

Inadequate technical capability and information

A number of SSA countries have no accurate data on organic 
waste resources [63, 68]. The available ones are not related 
to art technology such as satellites [69]. The absence of local 
technical skills in the national institution for technical labor 
in partnership with the private sector. Governments need to 
put in place effective monitoring and evaluation strategies 
to promote energy and bio-fertilizer technology.

Mismatch between theory and practice 
among stakeholders encouraging the development 
of organic waste conversion

Ddiba et al. [20] demonstrates some degree of differences 
between theory and practice in the conversion of organic 
waste to energy and bio-fertilizer approaches. In the con-
text of theory, resource recovery from organic wastes, for 
instance, enables local authorities to recycle organic waste 
to produce electricity that can be used for public lighting 
or to heat the water in a community, city hall or school. 
It therefore enables the operating costs of public adminis-
tration to be reduced [70]. The same is true for industries 
where AD helps firms lower their energy bill and the cost 
of waste treatment [70]. From this perspective, AD enables 
the local production and consumption of energy using the 
region’s organic waste resources. While these examples 
for recovering resources from organic waste streams exist, 
some stakeholders do not acknowledge the benefits of local 
AD installation as a viable approach, which is problematic 
[71]. Garcia et al. [72] reveals the importance of raising 
awareness, fostering collaboration, as well as mechanisms 
for public participation to enable current practices and 
information about energy and bio-fertilizer concepts from 
organic wastes. This therefore emphasizes the significance 
of incorporating information gathered from communities of 
practice into the theoretical concepts of resource recovery 
when implementing these technologies in SSA.

Conclusions

 In this review, the findings demonstrate the great energy 
recovery and bio-fertilizer production potential of recycling 
organic waste streams generated and disposed of in different 
SSA cities and towns. The energy and nutrients that can be 
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generated from these wastes can lead to significant economic 
and a few environmental benefits in the SSA. Policy makers 
need to implement policies that aim to accelerate the diffu-
sion of organic waste recycling technologies in SSA. This 
is because government policies and laws, financial support, 
and improved technologies can strengthen the develop-
ment of waste to energy (AD) technology in these develop-
ing countries. This paper will benefit readers and strategic 
decision makers in identifying and understanding poten-
tial resources embedded in organic waste streams. Further 
research is needed to review the integration of wastes such 
as agricultural residues from farmlands, solid wastes from 
commercial sites, and industrial wastewater for optimized 
resource recovery in SSA.
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