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Abstract
The frequent occurrence of crude oil leakage accidents and the massive discharge of industrial oily wastewater not only 
caused huge damage and pollution to the ecosystem but also wasted a lot of precious resources. Therefore, it is urgent to solve 
the worldwide problem of oil/water separation. As a leader in advanced fiber materials, nanofibrous materials prepared by 
electrospinning have the advantages of high permeability, high separation efficiency, large specific surface area, adjustable 
wettability, simple preparation process, and low cost, making it attracted more attention of researchers in oil/water separa-
tion. This article mainly reviews the recent progress of various electrospun nanofibrous materials for oil/water separation 
field. The preparation and synthesis of nanofibrous adsorbents, nanofibrous membranes, and nanofibrous aerogels in recent 
years based on different applications, design principles, and separation approaches are systematically summarized. Finally, 
this review discusses the challenges and future development directions in oil/water separation.
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3D  Three-dimensional
ACNTs  Acid treated carbon nanotubes
BAF-a  Bifunctional benzoxazine
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F-PS  Foam-expanded polystyrene
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GSH  Thiolated graphene
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NFAs  Nanofiber-based aerogels
OCA  Oil contact angle
P2VP  Poly(2-vinylpyridine)
P4VP  Poly(4-vinylpyridine)
PAA  Polyacrylic acid
PAN  Polyacrylonitrile
PDA  Polydopamine
PFTS  1H, 1H, 2H, 

2H-perfluorooctyltriethoxysilane
PI  Polyimide
PMMA-b-PNIPAAm  Poly(methyl methacrylate)-block-

poly(N-isopropylacrylamide)
PP  Polypropylene
PS  Polystyrene
PSBR  Polystyrene polybutadiene rubber
PU  Polyurethane
PVA  Polyvinyl alcohol
PVC  Polyvinyl chloride
PVDF  Poly (vinylidene fluoride)
SiNFs  Silicone nanofilaments
TCMS  Trichloromethylsilane
THF  Tetrahydrofuran
Ti(OBu)4  Tetrabutyl orthotitanate
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UECS  Ultra-light electrospun cellulose 
sponge

WCA   Water contact angle
ZIF-8  Zeolitic imidazolate framework-8

Introduction

During the development and transportation of oil, the fre-
quent occurrence of oil spills causes a lot of energy loss and 
ecological pollution [1–3]. Additionally, industrial waste-
water from many industries such as papermaking, textile 
processing, and food also cause serious pollution. Therefore, 
researchers pay more attention to the treatment of oily waste-
water and environmental protection issues [4–6]. Statistics 
show that a large amount of oily wastewater are discharged 
into rivers, lakes, and the ocean [7–9]. After oil flows into 
the sea, a series of complex changes occur, such as diffusion, 
evaporation, dissolution, emulsification, microbial oxidation, 
photochemical oxidation, and sedimentation. Although there 
are differences in size and sequence of these changes, most 
processes are carried out interactively [10, 11]. As a result, 
oil spills have a catastrophic impact on the environment 
and humans, and it increases the difficulty of treating oily 
wastewater. The current oil spill treatment methods (such as 
skimming and ultrasonic separation) have the disadvantages 
of high energy consumption, low separation efficiency, and 
poor recycling performance, which cannot meet the demands 
of complex environment [12, 13]. Therefore, developing effi-
cient oil/water separation methods is urgent.

As a simple and efficient spinning technology, electro-
spun fibrous materials from various polymer solutions has 
been widely used in many fields [14–16]. Compared with 
other preparation methods of fibrous materials, electrospin-
ning has the advantages of simple and efficient prepara-
tion process, low cost, and controllable fibrous structures 
[17–19]. In the spinning process, the metal needle is used 
as the spinneret and conductive device. When the voltage is 
applied, the charge accumulates on the surface of the solu-
tion, and the repulsive force is generated when the solution 
reaches the same polarity. When the charge repulsion force 
is bigger than the surface tension of the solution, a Taylor 
cone is generated, and the solution jet is ejected. Then, the 
solvent evaporates while the jet travels towards the collector, 
and fibers are deposited on the receiving plate [20–22]. The 
fibers obtained by electrospinning usually have large specific 
surface areas and the structure and chemical components of 
fibers are easy to control. At present, electrospun nanofibers 
have been used and developed into functional materials in 
the fields of filtration [23, 24], biomedicine [25, 26], elec-
tricity [27–29], photocatalysis [30, 31], and so on.

With the in-depth research, the special wettable nanofi-
brous materials can make oil or water freely penetrate 

through the materials because of their different wettability 
[32]. Therefore, it plays a great role in the field of the separa-
tion of oily wastewater. Using materials with the selectivity 
of oil/water for separation is a highly promising separation 
method [33–35]. Materials with different selectivity for 
water and oil (such as hydrophobicity and lipophilicity) can 
be obtained by adjusting the structure and components of the 
solid surface for oil/water separation. Our group has made 
some achievements in special wettable fibrous membranes. 
We have prepared fibrous membranes by melt blow spin-
ning, solution blow spinning, and electrospinning method, 
and modified the membranes by dip coating, hydrothermal 
method, etc. Then, the hydrophobic/lipophilic membranes 
achieved with excellent performance in oil/water separation 
flux and separation efficiency [4, 5, 36]. Recently, electro-
spinning has been widely used as an efficient fiber prepara-
tion technology, which can effectively prepare multifunc-
tional nanofibrous materials with controllable components 
and structures [37, 38]. In addition, the properties of the 
material can be improved through the composite of multiple 
components, such as porous structure and high surface area 
ratio [38–40]. Thus, electrospinning provides more methods 
for preparing special wettable materials.

In this review, we summarize the latest developments in 
the design, preparation, and application of nanofibrous mate-
rials by electrospinning in oil/water separation. Based on 
the different uses of electrospun nanofibrous materials, this 
review is divided into three main research directions: nanofi-
brous adsorbents (including polymer adsorbents, composite 
adsorbents, and biomass adsorbents) for the cleanup of the 
oil spill, nanofibrous membranes (including hydrophobic-
lipophilic membranes, hydrophilic-oleophobic membranes, 
and switchable wettability membranes) for the separation of 
oil/water mixture, and nanofibrous aerogel for the separation 
oil/water emulsion (Fig. 1). We discuss the recent related 

Fig. 1  Electrospun nanofibrous materials for oil/water separation
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work, focusing on the optimal design and properties of these 
materials. Last of all, the challenges and development pros-
pects of electrospun nanofibrous separation materials are 
discussed.

Theoretical Basis

Wetting Phenomenon and Models

The wettability is an important characteristic of the oil/water 
separation functional materials, and the state of wettability 
can be expressed by the contact angle. The free energy and 
the rough structure are two main factors affect the wettability 
of the surface, so the surface with special wettability can be 
constructed by changing the two factors [41]. For smooth 
surfaces, the free energy and roughness of the material sur-
face can determine its wettability. As an important parameter 
to measure the wettability of a solid surface, the contact 
angle can be expressed by the Young’s equation (Fig. 2a) 
[42]. 

Among then, θ represents the contact angle under the 
Young’s model, and �SV , �SL , and �LV are the surface tensions 
of the solid–vapor, solid–liquid, and liquid–vapor interfaces, 
respectively. Young’s model describes the wettability of an 
ideal solid surface. However, many actual solid surfaces are 
rough and defective. To clarify the influence of roughness 
on the contact angle between the surface and droplet of the 
material, the Wenzel model was proposed. In fact, the liquid 
can fully contact with the solid rough surface and penetrate 
into the grooves, and it can be expressed by the Wenzel 
equation (Fig. 2b) [43]:

(1)cos� =
�SV − �SL

�LV

Among them, r represents the roughness factor (≥ 1), 
which is the ratio of the actual area to the apparent area, 
and �W represents the apparent contact angle. The analysis 
shows that the roughness will enhance the hydrophilic or 
hydrophobic of the surface. When the roughness of the 
solid surface increases, the surface ( �W  < 90°) becomes 
more hydrophilic. Conversely, the hydrophobic surface 
( �W > 90°) becomes more hydrophobic with the increase 
of the roughness.

In the Wenzel model, the groove is filled by the droplet 
completely. However, when there are some small protru-
sions on the surface and air enters the grooves, the Wenzel 
model cannot explain it well. Therefore, Cassie–Baxter 
proposed a new theoretical model to demonstrate the phe-
nomenon, and it can be explained by the following equa-
tion (Fig. 2c) [44]:

where �SL represents the contact angle of the solid–liquid 
phase, �LV is the contact angle of the liquid–vapor phase, fSL 
and fLV are the surface fraction of the solid–liquid phase and 
liquid–vapor phase, respectively. Obviously, �C is increased 
relative to the smooth surface of the same material composi-
tion due to gas filling.

When the surface of the material is rough, a little liquid 
added to the droplet will make the contact angle increase, 
which is called the advancing contact angle. If a small 
amount of liquid is taken out, the droplet becomes flat-
ter without moving the perimeter, and the contact angle 
becomes smaller which is called the receding contact 
angle. In addition, the advancing angle and receding angle 
exist at the same time while the surface is oblique. Fur-
thermore, the actual wetting condition is very complicated 

(2)cos�W = rcos�

(3)cos�C = fSLcos�SL + fLVcos�LV

Fig. 2  The wetting models of 
a liquid droplet on the solid 
surface in the air: a Young’s 
model, b Wenzel’s model, and 
c the Cassie–Baxter model. 
The wetting models of a liquid 
droplet on the solid surface 
under water: d Young’s model, 
e Wenzel’s model, and f the 
Cassie–Baxter model
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and there are many factors can influence it. Therefore, the 
above-mentioned models are not sufficient to explain all 
the wetting states.

While oil droplets are deposited on underwater surfaces, 
a triple interfacial phase among solid, water, and oil occurs. 
The following Young’s equation can explain the behavior 
(Fig. 2d) [45]:

where �SW , �SO , and �OW are the surface tension of solid-
water, solid-oil, and oil–water, respectively. �O and �W are 
the contact angle of oil and water in air, respectively. The 
Wenzel and Cassie–Baxter equation can also express the 
underwater oil contact angle (Fig. 2e, f) [46]:

where �OW(W) and �OW(C) are the Wenzel’s and Cassie–Bax-
ter’s underwater contact angle, respectively. r is the rough-
ness of the surface, and f represents the fraction of the sur-
face contacted with oil.

Mechanism of Oil/Water Separation

If the material is used for oil/water separation, the oil and 
water need expressing different wettability on the solid sur-
face. When there is a pressure difference on both sides of the 
membrane, the material become wet due to a specific phase 
in the oil/water mixture, thus achieving the selective moving 
of oil or water. Moreover, pore size and intrusion pressure 
are two important factors to consider in oil/water separa-
tion. Intrusion pressure ( ΔPC ) represents the maximum 
static pressure that the material can resist, as demonstrated 
in Young–Laplace formula [47]:

where �L is the surface tension of the liquid, � represents the 
contact angle of liquid from inside, and R is the radius of the 
pore. When � < 90°, the liquid can penetrate to the pores of 
the material. However, a certain pressure is needed to allow 
the droplets to penetrate the material when � > 90° [48]. To 
separate water and oil selectively, it must be ensured that 
the intrusion pressure of one phase of is positive, and the 
other phase of oil/water mixture has a high intrusion pres-
sure. Moreover, the wettability of the solid material can be 
controlled by adjusting the surface tension of the materials.

Oil/water mixtures are normally separated by the 
materials with selective wettability. The interface of 

(4)cos�OW =
�SW − �SO

�OW
=

�OAcos�O − �WAcos�W

�OW

(5)cos�OW(W) = rcos�OW

(6)cos�OW(C) = f cos�OW + f − 1

(7)ΔPC = −
2�Lcos�

R

solid–water–oil three-phase occurs when a special wettable 
material is used for oil/water separation. For hydrophobic-
lipophilic materials, the oil droplets can penetrate to the 
solid surface quickly, and squeeze the air out of the grooves. 
The oil are penetrate the grooves and repel the water phase, 
making the material remain hydrophobicity [49]. In addition, 
the excellent adsorption capacity for oil is also attributed to 
the capillary force generated by the micro-nano structure 
of the surface, which can make the oil/water mixture effec-
tively separated. In addition, when the ΔP of the lipophilic 
surface is negative, the surface can be quickly wetted by the 
oil. The hydrophilic surface in the air usually exhibits oleo-
phobicity underwater because of the surface tension of oil is 
lower than water. Therefore, a superhydrophilic and under-
water oleophobic surface can allow water to pass through, 
then a water layer formed and repel oil to removing water. 
Moreover, superhydrophilic and underwater superoleopho-
bic materials express better oil/water separation performance 
because they are not easily contaminated by oil. Meanwhile, 
the separation of emulsions can also be achieved by sieving 
or demulsification of the above two separation materials. 
When sieving is used to separate emulsions, the aperture 
of the superwetting film needs to be smaller than or pro-
portional to the size of the emulsion droplet. The surfaces 
with superhydrophobic/superoleophilic properties are com-
monly used to separate water-in-oil emulsions, while water-
removing separation materials are commonly used to treat 
oil-in-water emulsions. In general, the separation efficiency 
of the emulsion through screening will be lower than that of 
immiscible oil/water mixtures due to the smaller pore size 
and reduced flow rate.

Nanofibrous Adsorbents for the Cleanup 
of Oil Spill

Oil spill adsorption materials stand out by their simplicity 
and high efficiency and have developed into a key research 
object in the field of oil spill emergency treatment technol-
ogy [50–52]. At present, most of the oil adsorption materials 
in the market are melt-blown polypropylene (PP) nonwo-
vens. However, due to the relatively thick diameter of fibers 
and the low porosity of the material, it has the disadvantages 
of low oil absorption and poor oil/water selective wettabil-
ity [53]. Therefore, the design and preparation of floating 
oil adsorption materials with a high oil absorption ratio and 
high oil/water selective wettability have important practi-
cal and economic significance. Many factors are affecting 
the adsorption rate and dynamic equilibrium of adsorption 
materials, mainly including surface energy, porosity, spe-
cific surface area, viscosity, and surface energy of oils [54, 
55]. In the first place, to realize oil spill adsorption, the oil 
spill adsorption material should be hydrophobic-lipophilic 
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[56]. Secondly, porosity not only affects the oil adsorption 
efficiency of oil spill adsorption materials but also affects 
oil absorption [57]. In addition, the specific surface area of 
oil spill adsorption material directly determines the contact 
area between oil spill adsorption material and oil, and has a 
great impact on oil absorption rate and adsorption capacity. 
Therefore, an excellent oil spill adsorption material should 
have reasonable porosity and specific area structure while 
having appropriate surface energy [58, 59]. Recently, elec-
trospun nanofibrous adsorbents exhibit excellent oil absorp-
tion capacity because of the high specific surface area and 
high porosity [60, 61]. By adjusting the physical and chemi-
cal structure of electrospun fibrous materials, preparing oil 
absorbent materials with a high oil absorption capacity, and 
great oil/water selective wettability are expected to play 
an important part in oil spill treatment. Compared with PP 
nonwovens, electrospun nanofibrous adsorbents show bet-
ter adsorption capacity, but they are still limited. A large 
amount of nanofibrous material is consumed in cleaning up 
the oil spill, causing serious economic problems, and recov-
ery of oil from adsorbents is also a challenge.

Polymer Adsorbents

At present, preparing high molecular polymers into 
nanofiber adsorbents by directly electrospinning has become 

an effective method for absorbing oil spills [62, 63]. An 
important parameter for oil spill cleaning is the oil/water 
selectivity of the adsorbents. The hydrophobic-lipophilic 
porous fibrous material prepared by the electrospinning 
exhibits excellent oil absorption performance, and the oil 
absorption capacity can be several times that of PP non-
woven fabric. Furthermore, the structure and adsorption 
performance of the fiber can be controlled by adjusting the 
composition and concentration of the spinning solution.

Polystyrene (PS), as a polymer with good spinnability and 
fiber-forming properties, is widely used in the preparation 
of superhydrophobic materials [64]. PS fibers with different 
micro-nano structures can be prepared in one step by adjust-
ing the properties of the PS solution and spinning parameters 
[65]. Isik et al. adjusted the morphology and porosity of PS 
fibers to obtain porous foam-expanded polystyrene (f-PS) 
fibers with the best adsorption capacity (Fig. 3a, b) [66]. The 
morphology of the fibers can be regulated by adjusting the 
ratio of N, N-dimethylformamide (DMF): tetrahydrofuran 
(THF) and the concentration of the solution. The experimen-
tal results show that the fiber membrane obtained by elec-
trospinning PS dissolved in a mixture of DMF: THF = 1:3 
has the highest porosity. By observing the state of water 
droplets and oil droplets on the top of fibrous membrane, 
it can be concluded that the f-PS fiber membrane exhibits 
good hydrophobicity with a water contact angle (WCA) of 

Fig. 3  a Effects of DMF:THF ratio and f-PS solution concentration 
on fiber morphology. b Water contact angle of f-PS under different 
DMF:THF ratio and the digital image of water and oil droplets on the 
top of f-PS fibrous sorbent. Reproduced with permission of Ref. [66], 

Copyright of ©2018 Elsevier. c Preparation process of PVA fibrous 
membrane. d Column of the relationship between PVA solution con-
centration, fiber diameter and adsorption capacity. Reproduced with 
permission of Ref. [67], Copyright of ©2021 MDPI
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120° and lipophilicity with oil contact angle (OCA) of 10°, 
and has a good adsorption capacity of 124 g  g−1. Moreover, 
PVA has the advantages of degradability, low cost, good 
lipophilicity, etc. The PVA fibrous membrane with excellent 
adsorption capacity can be produced by electrospinning by 
adjusting the concentration of the PVA solution (Fig. 3c, d) 
[67]. In addition, there are many high molecular polymers 
prepared by direct electrospinning into fibrous materials for 
oil spill treatment which all show good adsorption proper-
ties, such as polyimide (PI) [68], polyvinyl chloride (PVC) 
[69], and poly (vinylidene fluoride) (PVDF) [70].

Composite Adsorbents

Although the fibrous membrane obtained by direct electro-
spinning is simple, the performance of the obtained mem-
brane cannot meet the more complex requirements [71]. For 
example, the reusability of PS fibrous adsorbent is poor, 
and the strength of the fiber decrease after oil adsorption. 
Therefore, combining a single-component polymer material 
with other organic or inorganic materials to form a com-
posite material by electrospinning can selectively enhance 
the hydrophobicity, mechanical strength, and chemical 
resistance of the composite material [72, 73]. Not only 
multi-component composite can be carried out in solution 
configuration, but also single-component fibers can be post-
processed to composite with other materials, such as dip 
coating, spray coating, in-situ growth, etc. The compounding 
makes the material more applicable and has a wider range 
of applications. When selecting the combined components, 
adding polyurethane (PU) [74], PVC [75], and PVDF [76] 
as reinforcing agents can improve the mechanical properties 
and durability of single-component fibers. In addition, some 
inorganic materials (such as  SiO2 and  Fe3O4) can be added 
to increase the strength, hydrophobicity, and recyclability 
of the fiber [77, 78].

Directly electrospinning after preparing two or more 
components into a mixed solution is a simple and effec-
tive preparation method. Akanbi et al. prepared PS and 
PU hybrid nanofibrous sorbent by electrospinning, which 
enhanced the mechanical strength and adsorption properties 
of the fibers (Fig. 4a) [74]. The adsorption capacity used 
to adsorb motor oil and sunflower oil are 144.52 g  g−1 and 
110.89 g  g−1, respectively. In addition, polymer materials 
can also be combined with inorganic nanoparticles. Ding 
et al. obtained a superhydrophobic composite fiber by elec-
trospinning a mixed solution of PS and  SiO2 nanoparticles 
with WCA of 153° (Fig. 4b, c) [79]. It shows excellent 
adsorption performance for a variety of oils with an adsorp-
tion capacity of 122.7 g  g−1, which is much higher than com-
mercial PP fiber adsorbents (Fig. 4d). Furthermore, it is also 
possible to combine organic and inorganic substances by 
other methods. Gao et al. prepared  SiO2/PVDF composite 

fibrous membranes by a combination of electrospinning and 
electrostatic spraying (Fig. 4e) [80]. The addition of  SiO2 
microspheres increases the rough structure of the fibers, 
and increase the hydrophobicity of the membrane surface. 
Moreover, the composite adsorbent can successfully separate 
oil in corrosive environments, including acid, alkali, and salt 
solutions (Fig. 4f).

Biomass Adsorbents

Biomass materials is the most abundant renewable resource 
on the earth and has the advantage of excellent environmen-
tal friendliness [81, 82]. However, a large amount of biomass 
materials not been effectively used. In order to make full use 
of biomass resources, researchers are committed to devel-
oping biomass adsorbents with special wettability, which 
can selectively adsorb oil pollutants [83]. Because of the 
chemical stability, good biodegradability, and biocompat-
ibility of cellulose, it is considered to be a good choice for 
the preparation of oil/water separation materials [84–86].

Cellulose is the most abundant renewable organic poly-
mer resource in nature, and it has been widely used in nano-
medicine, medicine, energy, environment, biology, and 
agriculture. Further effective use of cellulose resources and 
expansion of its applications are the hotspots of domestic 
and foreign research. Xu et al. prepared an ultra-light elec-
trospun cellulose sponge (UECS) by electrospinning and 
freeze-drying (Fig. 5a) [56]. The three-dimensional (3D) cel-
lulose sponge exhibits good hydrophobicity (WCA = 141.2°) 
and compressibility (Fig. 5b, c). Therefore, this sponge has 
excellent adsorption capacity for various oils and organic 
solvents, and the adsorption capacity can reach 232 times 
of its own weight.

There are some common cellulose materials in our 
daily life, including cotton, straw, and wood, etc. Recently, 
Yang et al. used natural loofah to prepare a 3D ultra-light 
electrospun fibrous sponge [87]. First, polyacrylonitrile 
(PAN) nanofibers were prepared by electrospinning, and 
the chopped electrospun PAN nanofibers and natural loo-
fah were bonded through polyvinyl alcohol (PVA) to obtain 
a uniform suspension. Then, a hydrophobic 3D nanofiber 
sponge was obtained by freeze-drying. During the prepa-
ration process, the content of the loofah was adjusted to 
construct a spider web structure with enhanced adsorption 
capacity (Fig. 5d). As shown in Fig. 5e, f, the obtained PAN/
loofah ultra-light sponge can effectively adsorb various oils.

In summary, electrospun nanofibrous absorbents greatly 
improves the efficiency of cleaning up oil spills. Compared 
with other materials such as metal materials [88] and powder 
materials [89], it has the advantages of adjustable structure, 
recyclable using, and high adsorption performance, which 
provides a more effective method for oil spill cleanup.
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Nanofibrous Membranes for the Separation 
of Oil/Water

Currently, there are three types of the oil/water separation 
methods: chemical method, biological method, and physical 
method [12, 13, 90]. The advantages and disadvantages of 
different separation methods are shown in Table 1. Due to 
the advantages of simple operation, low energy consump-
tion, wide applicability, and high separation efficiency, 

membrane separation is considered as the most promising 
method for treating oil/water mixture or emulsion among 
these methods [91–93]. The main factors affecting the per-
meation flux of the oil/water separation efficiency of fibrous 
membranes are the wettability, porosity, and thickness of 
the fibrous membrane. By controlling the geometric struc-
ture and chemical composition of the membrane surface, 
fibrous membranes with different infiltration properties ca n 
be selectively prepared [94–96]. Generally, these separation 

Fig. 4  a Preparation of PS/PU composite fibers and the diagram 
of tensile strength test. Reproduced with permission of Ref. [74], 
Copyright of ©2021 Elsevier. b SEM images of PS/SiO2 compos-
ite nanofibers. c The influence of  SiO2 content on the water contact 
angle of PS/SiO2 composite fibrous sorbent. d Photograph of PS/SiO2 
composite fiber membrane adsorbing soybean oil. Reproduced with 

permission of Ref. [79], Copyright of ©2019 The Korean Fiber Soci-
ety. e Preparation diagram of  SiO2/PVDF composite fibers. f Water 
contact angle of  SiO2/PVDF membrane under different pH, and the 
separation of chloroform/various corrosive solutions. Reproduced 
with permission of Ref. [80], Copyright of ©2018 Korean Society of 
Industrial Engineering Chemistry
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membranes are divided into three types: hydrophobic-lipo-
philic membranes, hydrophilic-oleophobic membranes, and 
intelligent switchable wettability membranes.

Hydrophobic‑Lipophilic Membranes

Although the oil spill absorbent material has a high oil 
absorption capacity and can achieve rapid in-situ adsorp-
tion of large-scale oil on the sea. However, it is difficult to 

effectively remove the small amount of water contained in 
the oil. At present, among the commonly used oil removal 
methods, membrane separation plays an important part in 
oil/water separation research because of its advantages of 
simple operation, low energy consumption, and no second-
ary pollution [101–103]. To achieve the separation of a 
mixture system with more oil and less water, the membrane 
material is required to have good hydrophobic-lipophilic 
properties [104, 105]. The preparation of a hydrophobic 

Fig. 5  a Scheme of the preparation steps of UECS. b The WCA 
image of UECS. c Photographs of the elasticity of UECS under dif-
ferent forms of deformation. Reproduced with permission of Ref. 
[56], Copyright of ©2018 Elsevier. d The formation mechanism of 

PAN//loofah spider-web structure. e Photos of oil absorption process 
of PAN//loofah sponge. f The histogram of adsorption capacity of 
PAN/loofah sponge for different oils. Reproduced with permission of 
Ref. [87], Copyright of ©2021 Wiley
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surface must meet the following two conditions, one is to 
have a low surface free energy, and another one is to have a 
rough surface structure [36, 106]. Currently, the preparation 
of superhydrophobic materials can be divided into two main 
types: one is to construct a micro-nano multi-level rough 
structure of the material with low surface energy; the other 
is to modify the surface with low surface energy substance 
after constructing a micro-nano multi-level rough structure 
of the material [107]. Superhydrophobic fibrous membranes 
with macro-porous structures have good flux in separating 
oil/water mixtures or emulsions, but may suffer from serious 
fouling problems. In contrast, superhydrophobic membranes 
with hierarchical surface structures were shown to have bet-
ter antifouling ability. According to reports, various superhy-
drophobic fiber membranes have been effectively prepared 
through these two approaches.

With the rise of researches on bionic biomaterials, the 
special wettability of organisms in nature has been con-
tinuously explored [108]. For example, the self-cleaning 
properties of lotus leaves (Fig. 6a) [109], the moisture 

resistance of water strider legs (Fig. 6b) [110, 111], and 
the hydrophobicity of shark skin (Fig. 6c) [112, 113]. 
Inspired by these creatures, the researchers imitated the 
rough structure of these creatures to build the surface of 
superhydrophobic materials. Our group has also made 
some membranes with biomimetic structures to construct 
superhydrophobic surfaces, such as the protruding struc-
ture of bionic lotus flowers and pine needle-like nanorod 
in the fibers [5, 36]. These special biomimetic structures 
provide new ideas for the preparation of superhydrophobic 
surfaces. In order to increase the rough structure of the 
fiber, Ma et al. loaded zeolitic imidazolate framework-8 
(ZIF-8)@thiolated graphene (GSH) on PI nanofibers by a 
hydrothermal method [114]. The constructed nano-level 
rough layered structure made ZIF-8@GSH/PI composite 
fiber membranes exhibits superhydrophobicity (WCA ≈ 
153.25°) (Fig. 7a). Furthermore, the highest oil separation 
flux of 5625 L  m−2  h−1 was obtained for dichlorometh-
ane/water mixture, and the fluxes of trichloromethane, 
dichloroethane, chlorobenzene, tetrachloromethane/water 

Table 1  Comparison of different oil/water separation methods

Methods Advantages Disadvantages References

Chemical condensation Simple operation
High separation efficiency

High usage of chemicals, easy to produce scum [12]

Biological oxidation High separation efficiency
Wide application range

Complex device, large land occupation, long process-
ing period

[97]

In-situ combustion Effectively inhibit the spread of crude oil Large energy consumption, waste of resources, secondary 
pollution

[98]

Flotation separation Large processing capacity
High separation efficiency

Expensive equipment, difficult to apply on a large scale [99]

Membrane separation Simple operation
Low energy consumption Strong applicability
High separation efficiency

Easily blocked, high cost [100]

Fig. 6  Digital images and SEM images of a lotus leaf.  Reproduced 
with permission of Ref. [109], Copyright of ©2011 Beilstein-Institut 
Zur Forderung der Chemischen Wissenschaften. b water strider legs, 
Reproduced with permission of Ref. [110], Copyright of ©2010 

American Chemical Society. Reproduced with permission of Ref. 
[111], Copyright of ©2004 Springer Nature. and (c) shark skin. 
Reproduced with permission of Ref. [113], Copyright of ©2013 
Wiley–VCH Verlag
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mixtures are 5043, 4613, 4835, and 4196 L  m−2   h−1, 
respectively. The separation efficiency was all more than 
99%. Moreover, the separation efficiency for stable water-
in-kerosene emulsions is also as high as 99.96% (Fig. 7b). 

In addition, the hydrophobicity of the material can 
be enhanced by adjusting the substance of low surface 
energy on the fiber. Sun et al. prepared PAN/ZnAc com-
posite fiber membranes via electrospinning and then car-
bonized them by calcination to achieve porous carbon 
fiber membrane [37]. Finally, the prepared carbon fiber 
membrane was pretreated with HCl and then immersed in 
a 1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane (PFTS) 
solution for fluorination treatment to obtain carbon fiber 
membrane (CMFHF). The adhesion of fluorine-containing 
substances greatly reduces the surface energy of the fiber 
and increases its hydrophobicity (Fig. 7c). As shown in 
Fig. 7d, the CMFHF can successfully separate oil/water 
mixtures and emulsions with excellent separation flux and 
efficiency. In addition, CMFHF also exhibits good corro-
sion resistance, which solves the problem that fiber mem-
branes are difficult to apply in harsh environments.

Hydrophilic‑Oleophobic Membranes

Hydrophilic oleophobic separation membrane can filter 
oil components in water, which is a common and effective 
method for oily wastewater treatment. Since the surface ten-
sion of water is usually higher than that of oil (γoil < 35.0 mN 
 m−1, γwater = 72.8 mN  m−1), it is theoretically more difficult 
to prepare oleophobic membranes [48]. At present, research-
ers can prepare superhydrophilic-underwater oleophobic 
electrospun fibrous membrane through hydrophilic modi-
fication of the fiber surface and construction of micro/nano 
multi-level rough structures [115, 116]. The hydrophilic-
oleophobic membrane is not easy to be polluted due to its 
repellency to oil, and will not cause clogging and scaling 
problems which makes the fibrous membrane have better 
recyclability.

Recently, Qing et al. prepared PVA nanofibrous mem-
brane by electrospinning and then grown  SiO2 nanoparticles 
on PVA nanofibers in-situ (Fig. 8a, b) [117]. Stable  SiO2 
nanoparticles form a nano multistage rough structure on 
PVA fibers, which makes the composite membrane show 

Fig. 7  a Preparation diagram of ZIF-8@GHS/PI nanofibrous mem-
brane. b Preparation of the oil/water mixture and emulsion separation 
by ZIF-8@GHS/PI nanofibrous membrane. Reproduced with permis-
sion of Ref. [114], Copyright of ©2020 American Chemical Society. 

c Preparation process of the preparation process of CFMHF. d Images 
of the oil/water mixture and emulsion separations by CFMHF. Repro-
duced with permission of Ref. [37], Copyright of ©2021 Elsevier
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superhydrophilicity and underwater oleophobicity with the 
underwater oil contact angle of 161.8° (Fig. 8c). Moreover, 
the n-heptane, kerosene, and toluene/water mixtures can 
be separated by the  SiO2@PVA nanofibers membrane suc-
cessfully (Fig. 8d, e) with the excellent separation efficiency 
(> 95%) and separation flux (~ 1500 L  m−2  h−1) (Fig. 8f, g).

In addition to the method of constructing micro/nano 
multilayer rough structure, hydrophilic-underwater oleo-
phobicity fibrous materials can also be prepared by low-
temperature plasma treatment and surface coating of hydro-
philic materials. Huang et al. obtained a flexible nanofibrous 

composite membrane of superhydrophilicity and core–shell 
structure [118]. Acid-treated carbon nanotubes (ACNTs) 
were decorated on electrospun PU nanofibers, and then 
dopamine (DA) was self-polymerized onto the surface of 
ACNTs@PU fibers to form polydopamine (PDA) with 
core–shell structure PDA/ACNTs@PU nanofibers (Fig. 9a). 
The coating of PDA increased the hydrophilicity of the 
fiber and showed underwater superoleophobicity for differ-
ent oils (Fig. 9b, c). In addition, the combination of multi-
ple interfacial hydrogen bonds between ACNT, PDA, and 
PU nanofibers improves the mechanical properties of the 

Fig. 8  a Preparation diagram of the SUS SiO2@PVA membrane. b 
SEM image of  SiO2@PVA nanofibers. c Underwater oil contact angle 
of  SiO2@PVA nanofibrous membrane. The separation process of d 
oil/water mixture and e oil/water emulsion by  SiO2@PVA nanofi-
brous membrane. f The separation flux and efficiency of kerosene-in-

water emulsion of  SiO2@PVA nanofibrous membrane. g The separa-
tion flux and efficiency of different oil-in-water emulsions of  SiO2@
PVA nanofibrous membrane. Reproduced with permission of Ref. 
[117], Copyright of ©2020 Elsevier
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fibers (Fig. 9d). ACNTs@PU nanofiber membranes exhibit 
excellent underwater superoleophobicity and conductivity 
(Fig. 9e). Moreover, the obtained PDA/ACNTs @PU fibrous 
membrane can successfully separate oil-in-water emulsion 
by pressure-driven (0.05 MPa). The water separation flux 
of heptane-in-water, toluene-in-water, and cyclohexane-in-
water emulsion are 4108, 5293 and 7240 L  m−2  h−1, respec-
tively. Meanwhile, all the separation efficiency are higher 
than 99.7% (Fig. 9f).

Switchable Wettability Membranes

A smart surface is defined as a surface that is sensitive to 
external stimuli and can produce a special response. Smart 
materials with switchable wettability have stimulated the 
interest of many researchers, especially in oil/water separa-
tion [119, 120]. The intelligent membrane for separation has 
the characteristics of stimulus–response and wettability. It 
can realize the reversible transformation of hydrophilicity 
and hydrophobicity under certain external stimuli, including 
temperature, light, pH, and electric field [121–124]. There-
fore, it shows great advantages in high-efficiency on-demand 
oil/water separation applications.

Thermally responsive membranes have received wide-
spread attention due to their simple and easy-to-obtain 

characteristics. Li et al. prepared a temperature-sensitive 
poly(methyl methacrylate)-block-poly(N-isopropylacryla-
mide) PMMA-b-PNIPAAm smart membrane by electrospin-
ning [125]. The membrane exhibits temperature-controllable 
wettability due to the addition of the thermally responsive 
component PNIPAAm (Fig. 10a). In order to study the 
change process of the thermal response of the fibrous mem-
brane, it can be observed that the fibrous membrane exhibits 
hydrophilicity and underwater oleophobicity at the tempera-
ture below lower critical solution temperature (LCST). Sub-
sequently, the membrane was heated in-situ to a temperature 
higher than the LCST, the membrane becomes hydrophobic 
and lipophilic. The water reserved in the membrane is gradu-
ally replaced by oil, and the oil penetrates through the mem-
brane (Fig. 10b, c). In addition, compared with membranes 
cast by polymer solutions, electrospun fibrous membranes 
have controllable oil/water wettability and are more suitable 
for treating industrial oily wastewater. When the temperature 
decreases from 50 to 15 °C, the underwater oil contact angle 
of the electrospun fibrous membrane increases from 37° to 
153°, which is higher than the variation range of the cast 
membrane (55°-142°). In addition, the fibrous membrane 
exhibits excellent water flux (9400 L  m−2  h−1) and oil flux of 
petroleum ether (4200 L  m−2  h−1) with the high separation 
efficiency (> 98.5%).

Fig. 9  a Preparation diagram of PDA/ACNTs@PU nanofibers. b 
The change of WCA of PU fibers after gradual modification. c The 
underwater oil contact angle of PDA/ACNTs@PU fibrous membrane 
to different oils. d Photos of PDA/ACNTs@PU fibrous membranes 
under different tensile strengths. e The electrical conductivity and 

underwater oil contact angle of PDA/ACNTs@PU fibrous mem-
branes under different tensile strengths. f Optical microscope images 
before and after the separation of oil/water emulsion. Reproduced 
with permission of ref. [118], Copyright of ©2020 Elsevier
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Polymers containing poly(4-vinylpyridine) (P4VP), 
poly(2-vinylpyridine) (P2VP), and polyacrylic acid 
(PAA) usually exhibit pH-sensitive switchable wettability 
due to their conformation and charge are affected by pH. 
Recently, Ma et al. used PI (containing PAA component) 
as a substrate for the first time to prepare a pH-responsive 
flexible and magnetic smart nanofiber membrane [126]. 
Then the fibrous membrane was immersed into a pre-gel 
solution of tetrabutyl orthotitanate (Ti(OBu)4), myristic 
acid (MA), and  Fe3O4 to obtain a magnetic pH-responsive 
 Fe3O4/MA–TiO2/PI smart fibrous membrane (Fig. 10d). 
In the air,  Fe3O4/MA–TiO2/PI exhibits superhydropho-
bicity (WCA = 150°, pH = 7) and lipophilicity (Fig. 10e). 
However, when the membrane was immersed in water 
with a pH of 12, the membrane becomes superoleopho-
bic (Fig. 10f). In addition, the magnetic properties of the 
membrane make it easier to recover after oil/water sepa-
ration. Therefore, this environmentally friendly and low-
energy smart membrane provides a better choice for oil/
water separation.

Nanofibrous Aerogels for Emulsion Oil/
Water Separation

Emulsion pollutants are widely present in the fields of 
petroleum and natural gas, energy and chemical engineer-
ing, environmental science, etc., and stable emulsions are 
not conducive to industrial production and resource recy-
cling [127]. On the one hand, the water content of the oil 
increases the load, corrosion, and fouling of the storage 
tanks of the transportation pipeline. It also affects the qual-
ity of the oil and the operation of the machine. On the 
other hand, the discharge of oily sewage would cause pol-
lution to the environment [128, 129]. Therefore, it is also 
necessary to separate oil/water emulsions. Because of the 
increasingly complex development of the petroleum indus-
try, the existing form and structure of emulsion are becom-
ing more and more complex, and there are many kinds 
of emulsifiers, which leads to the increasing difficulty of 
emulsion demulsification [130]. Thus, it is urgent to find a 

Fig. 10  a PMMA-b-PNIPAAm macromolecule. b Temperature 
response switchable wettability PMMA-b-PNIPAAm membrane. c 
Water passes through the membrane when the temperature is below 
LCST, and oil passes through the membrane when the temperature is 
above LCST. Reproduced with permission of Ref. [125], Copyright 

of ©2016 Elsevier. d Preparation diagram of  Fe3O4/MA-TiO2/PI and 
the separation performance under different pH. e OCA of  Fe3O4/MA-
TiO2/PI membrane in the air. f The underwater OCA of different oils 
(in the water of pH = 12). Reproduced with permission of Ref. [126], 
Copyright of ©2019 Royal Society of Chemistry
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demulsification method with strong applicability. As a new 
type of 3D porous material, aerogels have attracted wide 
attention in many fields [131–134]. Aerogels are expected 
to further improve the separation flux due to the high tortu-
osity, high porosity, and large specific surface area. Com-
pared with the pressure-driven separation membrane, the 
gravity-driven separation membrane reduces the energy 
consumption. Meanwhile, the fibrous aerogel has higher 
separation flux and separation efficiency than the reported 
two-dimensional membranes that can be gravity-driven for 
the separation of water-in-oil emulsions [135, 136].

Si et al. proposed a novel method for preparing super-elas-
tic and superhydrophobic nanofibrous aerogels by electro-
spinning and freeze-drying [137]. The preparation process is 

shown in Fig. 11a. Firstly, PAN nanofibers,  SiO2 nanofibers, 
 SiO2 nanoparticles, and bifunctional benzoxazine (BAF-a) 
prepared by electrospinning were uniformly mixed to form 
a homogeneous nanofiber dispersion. Then the dispersion 
was freeze-dried to make nanofiber aerogel, and the aerogel 
was thermally cross-linked to obtain a fibrous, isotropically-
bonded elastic reconstructed (FIBER) aerogel (Fig. 11b). 
Among them, the rigidity of  SiO2 nanofibers plays a sup-
porting role in the aerogel. BAF-a can adhere  SiO2 nanopar-
ticles to the surface of the fiber and endow the aerogel with 
low surface energy. Moreover,  SiO2 nanoparticles construct 
micro-nano particles in the aerogel. The hierarchical struc-
ture makes the prepared aerogel have excellent hydrophobic-
ity, lipophilicity, and elasticity (Fig. 11c-e). Furthermore, the 

Fig. 11  a Preparation diagram of FIBER aerogel. b Image of a 
FIBER aerogel (2.5 L). c SEM images of FIBER aerogel. d Compres-
sive stress versus strain curves for FIBER aerogels along the loading 
direction. Insets: Photos of the FIBER aerogels under a compressing 
and releasing cycle. e Water and oil droplets on the surface of FIBER 

aerogel. f Digital and optical images of water-in-oil emulsion by grav-
ity-driven separation using FIBER aerogels. g Oil recovery apparatus 
for collecting oil from water-in-oil emulsions. Reproduced with per-
mission of Ref. [137], Copyright of ©2015 American Chemical Soci-
ety
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superhydrophobic and superlipophilic properties of FIBER 
aerogels make it possible to quickly separate emulsions by 
gravity-driven with the excellent flux (8140 ± 220 L  m−2  h−1) 
and the separation efficiency of 99.995% (Fig. 11f). In addi-
tion, the FIBER aerogels used with a peristaltic pump can 
continuously collect oil from water-in-oil emulsions more 
quickly and efficiently (Fig. 11g).

Recently, Shen et al. prepared nanofiber-based aerogels 
(NFAs) with a separation efficiency of up to 100% due to 
the good mechanical properties and chemical resistance of 
PI [138]. As shown in Fig. 12a, PI nanofibers were firstly 
prepared by electrospinning and made into a homogeneous 
nanofiber dispersion. After freeze-drying, the PI-NFAs were 
fumigated in DMF steam to form cross-linked intersections. 
Afterward, the treated PI-NFAs were immersed in a heptane 
solution containing trichloromethylsilane (TCMS) and water 
for different times to coat the surface of the fiber with sili-
cone nanowires to improve the hydrophobicity of the aero-
gel. Finally, it was freeze-dried again to obtain cross-linked 
PI-NFAs. The decoration of silicone nanofilaments (SiNFs) 
makes the SiNFs/PI-NFAs exhibit superhydrophobicity, 

and the dyed water droplets on the top of a SiNFs/PI-NFAs 
reflects the low adhesion of the aerogel (Fig. 12b–d). Fur-
thermore, it can be observed from the microscope picture 
that the SiNFs/PI-NFAs can successfully separate all water-
in-oil emulsion by gravity-driven with high flux (Fig. 12e).

In general, different micrometer-sized water droplets can 
be effectively separated even if the size of the water droplets 
is smaller than the pore size of the fibrous aerogel. It can be 
explained that the separation process of fibrous aerogels is 
based on coalescence separation rather than sieving surface 
filtration. This process mainly intercepts emulsified droplets 
through droplet coalescence in many tortuous microchan-
nels. Therefore, fibrous aerogels are expected to achieve 
higher separation fluxes at low driving pressures.

Conclusion and Perspective

In this paper, the mechanisms and applications of elec-
trospun nanofibrous materials for oil/water separation 
are reviewed. Different design principles and separation 

Fig. 12  a Preparation diagram of the SiNFs/PI-NFAs. b, c SEM 
images of SiNFs/PI-NFAs at different magnifications. d The adhesion 
of water droplets on the surface of SiNFs/PI-NFAs, and the dynamic 
measurement photos of water droplets and oil droplets on the surface. 

e The microscopy images of emulsion before and after separation by 
SiNFs/PI-NFAs. Reproduced with permission of Ref. [138], Copy-
right of ©2021 American Chemical Society
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approaches of nanofibrous adsorbents (polymer adsor-
bents, composite adsorbents, and biomass adsorbents), 
nanofibrous membranes (hydrophobic-lipophilic mem-
branes, hydrophilic-oleophobic membranes, and switch-
able wettability membranes), and nanofibrous aerogels 
are systematically summarized. In addition, their oil/water 
separation performance are systematically compared, as 
shown in Table 2. Although electrospinning nanofibrous 
materials have made great progress in oil/water separation, 
and various nanofibrous materials have been prepared for 
oil/water separation treatment in different environments, 
but it still facing many challenges. First, it is necessary to 
construct a suitable multi-level rough structure on the sur-
face of nanofibers to achieve the nanofibrous materials of 
special wettability. However, the prepared functional layer 
is easily damaged under the influence of external factors, 
which fundamentally shorten the service life of the sepa-
ration material. In addition, compared with commercial 
oil/water separation materials, the electrospun nanofibrous 
materials currently still have poor mechanical properties, 
which limits their practical applications. Therefore, the 
stability of composite materials needs to be considered. 
Secondly, the preparation process of some current electro-
spun nanofiber materials is complicated and the cost is rel-
atively high. Therefore, it is of great significance to study 
electrospun nanofibrous materials with simple preparation 
process and low cost. Moreover, further research is neces-
sary to advance the preparation of electrospun nanofibrous 

functional materials for industrialization. In addition, elec-
trospun fibrous membranes should be used in more com-
plex environments, such as the handling of trace oils in the 
aerospace field. Finally, the current report mainly focuses 
on the preparation of a variety of separation materials 
with different wettability. Since the process of oil/water 
separation with nanofiber materials is a multiphase flow 
separation process, it involves microfluid mechanics, inter-
face chemistry and engineering science, etc. However, few 
related theoretical studies can reveal the basic principles 
of this process in-depth and systematically. Therefore, the 
preparation and performance of electrospun nanofibrous 
materials in oilwater separation are still being explored, 
and it is believed that greater breakthroughs can be made 
in the next few decades.
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Table 2  Comparison of various nanofibrous materials for oil/water separation via electrospinning

Type Materials WCA(°)/OCA (°) Oil adsorption 
performance (g 
 g−1)

Separation flux (L  m−2  h−1) Separation 
efficiency 
(%)

References

Nanofibrous sorbents PS 120/10 95–124 – 99 [66]
PVA – 11.7–12.7 [67]
PI – 57.4–76.3 – – [68]
PVC 130/0 16–38 – – [69]
PVDF 155 ± 4.9/0 93–149 – – [70]
PS/PU 135/0 110.9–144.5 – – [74]
PVC/PS – 37–149 – – [75]
SiO2/PS 153/0 122.7 – – [79]
PAN/loofah 130/0 122.7–176.9 – – [87]

Nanofibrous membranes ZIF-8@GSH 153.25/0 – 4196–5625  > 99 [114]
CFMHF 155.9/0 – 2800–3590  > 98 [37]
SiO2@PVA 0/161.8 – 1500  > 95 [117]
PDA/ACNTs@PU 0/> 150 – 4195–7240 99.9 [118]
PMMA-b-PNIPAAm 0/153 (T < 15℃)

130/37 (T > 50℃)
– 9400 (water)

4200 (oil)
99 [125]

Fe3O4/MA–TiO2/PI 150/5 (pH = 7)
5/150 (pH = 12)

– 6038 ± 100 (water)
4281 ± 100 (oil)

99 [126]

Nanofibrous aerogels FIBER aerogel 138/0 – 8140 ± 220 99.99 [137]
SiNFs/PI-NFAs 151.7/0 – 75,000–120,000 99.49 [138]
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