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Abstract
In recent years, flax fiber as a green and renewable resources have attracted considerable attention to be used as reinforce-
ment in composites, using various technology. This review presents a summary of recent developments of flax fiber-based 
functional composites toward energy, biomedical, and environment. Firstly, we analyze the design and fabrication strategies, 
which are used for preparation of flax-based functional composites. The most promising applications of flax fiber-based com-
posites are discussed subsequently. It is believed that flax fiber as a functional composites will play a crucial role in the field of 
energy, biomedical, and environment mainly attributed to its unique properties, such as specific mechanical properties, good 
biocompatibility, eco-friendliness, cost-effectiveness, and amenability to various functional design and manufacturing needs.
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Introduction

Flax (Linum usitatissimum), as an ancient natural fibers [1], 
has brought great changes to human life, enabling a wide 
range of applications across different disciplines such as lit-
erature, art, science, and engineering [2–4]. Figure 1 shows 
the structure of a single flax fiber which is composed of 
cellulose, lignin, hemicellulose, pectin, wax and a certain 
amount of water [5–8]. It is structured in two cell walls, a 
primary cell wall and a secondary cell wall containing three 
layers S1, S2 and S3, the most important being the S2 layer 
whose thickness is 5–15 μm. This layer consists mainly of 
cellulose embedded in a matrix of hemicellulose and pec-
tin. Therefore, flax fiber itself is a composite material with 

cellulose microfibrillar as reinforcement, lignin and hemicel-
luloses as matrix.

Flax fiber is one of the first to be extracted for spinning 
and weaving into textiles [9]. In 5000 BC, flax fabric had 
been detected in graves of Egypt [10]. With the continu-
ous progress of textile technology, the flax fiber products of 
making upholstery tow [11], insulating materials [12], yarn, 
and other textiles [13] were gradually developed. Flax fiber 
is also being used to produce other fibrous products such as 
car-door panels [14] and retaining mats [15]. In addition to 
the textile products mentioned above, flax fiber had recently 
attracted considerable attention as a renewable resources to 
improve the performance of the composites by various tech-
nique, specifically targeted towards in energy, biomedical, 
and environment field. Due to their special characteristics 
namely environmentally friendly, widely available, cost 
effective and biodegradable [16, 17], flax fiber also were 
selected to produce the automotive industries and infra-
structures. In addition, the mechanical robustness of fibers 
is essential when they are considered as reinforcement in the 
fiber polymer composites. Compared with other natural and 
plant-based fibers, flax fiber-reinforced composites perform 
very similar to glass fiber-reinforced composites, in some 
terms. This might be generally attributed to the light weight 
and strong mechanical nature of this materials. Table 1 com-
pares the mechanical properties of difference types of natural 
fibers and synthetic fibers. The flax fiber with specific tensile 
strength, as a flexible material, can be potentially an replaced 
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for the conventional glass fiber, in many of different rein-
forced composites [18]. Modified flax fibers have been also 
selected to make the biocompatible the therapeutic apparels 
[19, 20]. In Paladini et al. work, they fabricated a natural 
flax-based wound dressing by combining silver nanoparti-
cles, which show a desired antibacterial capability against 
Staphylococcus aureus and Escherichia coli [21].

Of note, with the crisis of energy and environment, flax 
fiber, as a renewable resource, have recently attracted consid-
erable attention mainly attributed to its inexpensive and nat-
urally abundanc, specifically in energy storage and conversa-
tion devices [26–29]. In He et al. work, the carbonization/

activation technique were used to create a flexible porous 
high nitrogen-containing carbon fiber sheets which shown 
the excellent electrochemical performance in flexible super-
capacitor [30]. Compared with traditional composites, natu-
ral fiber reinforced bio-based high-molecular polymer com-
posites solve the issues of non-renewable energy and reduce 
other environmental impacts [31].

 Recently a lot of efforts are put into analyzing the con-
ventional applications of flax-based functional compos-
ite [32, 33]. However, on development of flax fiber-based 
functional composites for the purpose of energy, biomedical 
and environment applications has not been systematically 

Fig. 1  Schematic of flax fiber-based function materials and its emerg-
ing applications in energy, biomedical, and environment at a low cost. 
Modification of physical and chemical properties of flax fiber allows 

the applications in wound healing, oil/water separation, buildingma-
terials and supercapacitors. Images reproduced with permissions [20, 
21, 30, 34–39]
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discussed in detail. Understanding the fundamental proper-
ties and corresponding function of flax-based composites is 
a essential task, prior to design and manufacturing of any 
related device or component. The objective of this review is 
to explore the natural fiber made from flax and their appli-
cations in development of different functional composites 
and products (as shown in Fig. 1). This review will inspire 
research in flax-based functional composite and inspire new 
ideas to explore value-added high-value utilization of flax.

Modification of Flax Fiber for Functional 
Composites

Flax fiber is an interesting alternative to the conventional 
fiber materials (e.g., cotton, glass, and synthetic fiber) 
because of its excellent mechanical properties [40]. Flax 
fibers, as a kind of biomass composites, have a variable 
biopolymer composition, which contains various percent-
ages of cellulose, hemicellulose, lignin and pectin et al. 
[41, 42]. However, due to higher water absorption of flax 
fiber, it is not a suitable material for bonding with polymer 
matrix [43]. Therefore, the flax fibers should be modi-
fied using various technologies, to be improved in inter-
facial adhesion with the polymeric matric. So far tens of 
chemicals and treatments methods have been adopted to 
this aim; alkali [44, 45], silane [46, 47] and, acetylation 
[48] treatment, as well as the physical methods (plasma 
exposure [49], grinding and ball milling [50], and irradia-
tion [51] are of the most typical technologies to this aim.

Alkali Treatment

In order to remove hemicelluloses and lignin, the alkaline 
solution is always selected to remove the impurities, and 
enhance the mechanical and adsorption properties of flax 
fiber [52]. In Samyn et al. work, an alkaline pre-treatment 
with sodium hydroxide were done in order to remove the 
impurities of the flax fiber and to enhance the formation of 
-OH groups on its surface [53]. This pre-treatment could 
significantly improve the adsorption performance of the 
fiber and also favour the grafting of silane into or onto the 
surface of the flax fiber.

Silane Treatment

In order to further improve the interface adhesion between 
fiber and polymer matrix, coupling agents can be used 
as an effective strategy. Silane coupling agents have been 
considered as of the most effective binders which have 
been widely applied in natural fiber/polymer compos-
ites [54]. In a report from Fathi et al. carboxyl groups 
(COOH) was grafted on the surface of flax fiber. Alco-
holic (OH) groups were successfully converted by using 
TEMPO oxidation technology. Then the flax fibers were 
soaked in the neat silane for 0.5 h at room temperature. As 
concluded from results the TEMPO oxidation technique 
enhances the bonding efficiency of silane groups onto the 
fiber surface. The surface modification of flax fiber also 
significantly enhanced compatibility between the flax fib-
ers and the bio-epoxy resin.

Table 1  Mechanical properties of natural fibers and synthetic fibers [22–25]

Fiber type Density (g  cm−3) Elongation at break (%) Tensile strength (MPa) Tensile 
modulus 
(GPa)

Ramie 1.5 3.6–3.8 400–938 44–128
Sisal 1.45 2.0–2.5 511–700 3.0–98
Flax 1.5 1.4–1.5 345–1500 10–80
Jute 1.3–1.45 1.5–1.8 270–900 10–30
Cotton 1.5–1.6 7.0–8.0 287–597 2.5–12.6
Kenaf / 2.7 427–519 23.1–27.1
Hemp 1.48 1.6 270–900 20–70
Coir 1.15 15–40 131–175 4–6
E-glass 2.5 2.5 2000–3500 70
S-glass 2.5 2.8 4570 86
Aramid 1.4 3.3–3.7 3000–3150 63–67
Carbon 1.4 1.4–1.8 4000 230–240
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Acetylation Treatment

Moreover, acetylating process and microwave energy were 
also used to enhance the sorption properties of flax fiber in 
the application of oil–water separation [48]. In their work, 
the flax fiber was immersed into the mixture of acetylat-
ing liquid solution or treated by a microwave radiation in a 
microwave oven. Their results demonstrate that the modi-
fied flax fibers by the acetylating process have a remark-
able hydrophobic nature and a well formed porous structure, 
mainly attributed to its interaction with the acid anhydride 
group, rendered by ethanoic anhydride. Also, the microwave 
effect can enhance the formation of porous structure and, 
therefore improves the potential of the oil sorption.

Plasma Treatment

On the other hand, the plasma method are considered as a 
kind of dry and clean technique compared with the methods 
mentioned above [49]. The plasma method is a physical pro-
cedure to modify the fiber surface by forming strong bonds 
between new functional groups of flax fiber and polymer 
matrix under atmospheric condition. In Bozaci et al. work, 
argon and air atmospheric pressure plasma systems with 
different plasma powers were used to improve the interfa-
cial adhesion performance between flax fiber and polymer 
matrix [49]. After both plasma treatments, the new func-
tional group (O–C=O) were proved to be generated on the 
flax fiber surface, and the surface of flax fiber showed more 
roughness which is a proof of better adhesion between air 
plasma-treated flax fiber and unsaturated polyester.

Grinding and Ball Milling

In addition, flax fibers can be processed into desiccant 
material to form a bio-desiccant coating for an air-to-air 
exchanger via the ball-milled and mechanically ground 
technology [50]. The ball-milled flax fibers were screened 
to improve  the size  and  uniformity  (≤ 125  μm), using 
a 120 mesh US standard sieve. These efforts proved that 
ball-milled flax fibers-coated exchanger had latent effec-
tiveness values of ~ 10, which is around 40% greater than 
the similar products, coated with starch particles and silica 
gel. The enhanced surface and textural properties, along 
with the complex compositional structure of flax fibers, 
and its greater propensity to swell in water, account for the 
improved performance over starch particles. Thus, flax fibers 
can be considered as an alternative cost-effective, biodegrad-
able, and sustainable bio-desiccant in buildings.

Irradiation Treatment

For improving the interfacial adhesion between flax fiber 
and polymer matrices, Youssef et al. has designed and fab-
ricated a low density polyethylene/flax bio-composites by 
combining chemical modification and radiation-induced 
grafting strategies [34]. The flax fibers treated with octade-
cylphosphonic acid were irradiated by using a 60Co source 
with a 10 kGy of dose at room temperature. Their results 
demonstrated that the uniaxial tensile performances of the 
bio-composites are enhanced which maybe further enhanced 
by electron-induced reactive processing. In another research, 
gamma irradiation also was selected to enhance the mechan-
ical performance and thermal resistance of polylactic acid/
flax composites in the presence of cross-linking promoter 
[51].

Finally, functional nanoparticles have been proven to be 
an effective materials for fabricating multiscale composites 
with the better mechanical and interfacial properties [55, 
56]. In Wang et al. work, a flax fiber sheet was grafted with 
multiwalled carbon nanotubes, and nano-TiO2 particles [57]. 
Then, the flax composites were obtained with the modified 
flax fiber sheets and epoxy resin by the hand lay-up method. 
The results show that the multiwalled carbon nanotubes can 
significantly improve the tensile strength and interlaminar 
shear strength of flax composites than those grafted with the 
same content of nano-TiO2 particles.

In a word, for the modification of flax fiber as a functional 
composite, the interfacial adhesion of flax fiber with most 
polymeric matric in composite are a critical factor, which 
determines the mechanical property in practical applica-
tion. Based on all these reasons, different fabricate technique 
can lead to the flax fiber-based functional composite with 
various mechanical resistivities, to be applicable in differ-
ent field.

Fabrication of the Flax Fiber‑Based 
Functional Composites

Flax fibers, as a functional material, can exist in a variety of 
forms in composites, not just monofilaments [58]. Mono-
filament fibers are further processed into mats [35], rovings 
[59], yarns [60], and fabrics [61] in composites. Therefore, 
the flax fiber-based functional composites can be prepared 
with different methods such as, coating [62], carbonization 
[28], textile technology [63], 3D printing [64], and compres-
sion molding [65]. The above mentioned techniques can be 
also adopted to compose various flax fiber-based functional 
materials, for numerous applications inenergy [26], biomedi-
cal [66, 67], and environment applications [68].
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Coating

To obtain flax-based antibacterial materials, the flax fabrics 
are usually coated with bioactive molecule, antimicrobial 
agent or nanoparticles, which is a relatively mature tech-
nique for fabricating the antimicrobial flax-based materials. 
The coating system as a template was selected for in situ 
adhesion or deposit onto/into the flax fabrics. Then, flax-
based antibacterial textiles  and webs can be fabricated 
through various coating solution, such as hydrogel [62], 
solution loaded nanoparticles [21] through different cur-
ing strategies. Silver nanophases, as an effective antibacte-
rial agent, always are used for biomedical applications and 
wound healing. In a research conducted by Paladini et al. 
the silver-doped hydrogel were formed on the surface of 
the flax fabrics [62]. In a similar work, silver coatings were 
adhered onto the flax textile via in situ photo-reduction [21]. 
These results manifest that the silver photo-deposition strat-
egy can be easily translated from laboratory to large scale, 
without influencing the performance of the silver coating 
deposited. Finally application of silver in deposition treat-
ment provides a promising feature of potential biomedical 
applications in for wound dressings and healing purposses.

Carbonization

Flax fiber, as a cellulose based material, has a unique 
3D microporous structure, a superior electrical conduc-
tivity and chemical resistance and  is counted as a dis-
posable compound. Unlikely coating, the carbonization 
technique was carried out in a tube furnace at a higher 
temperature for certain amount of time with argon or  N2 
as a carrier gas. Then, carbon-based materials with good 
electrical conductivity, large-scale, and low-cost produc-
tion capability can be achieved from the flax fiber, via 
through carbonization. In a work reported by Zhang et al. 
the carbonized flax fabric with macro-pores structure was 
selected to create nano-structural materials, along with 
an in situ growing of CNTs micropores and mesopores for 
ion transport application (Fig. 2A) [28]. Using flax fabric 
directly instead of cellulose fibers can significantly avoid 
dispersion issues and make no concerns about polymer 
binding during processing, thus provides a higher electri-
cal conductivity and chemical stability.

Textile Technology

Compared to the synthetic fibers,  flax fibers demon-
strate a higher mechanical endurance demonstrate [69]. 
Textile technology, such as micro-braiding [70] and co-
wrapping [71], have been developed to produce similar 
hybrid yarn structure (Fig. 2B). The micro-braided yarns 

were fabricated by a tubular braiding loom with several 
spindles that hold bobbins with braider filaments. The co-
wrapped yarns were fabricated by a hollow spindle spin-
ning loom. In a study by Zhai et al. the micro-braided 
(Fig. 2B-i) and co-wrapped flax/polypropylene (PP) yarns 
(Fig. 2B-ii) were obtained by varying different PP param-
eters (PP braiding angles and PP wrapping turns, respec-
tively) [63]. In general, micro-braided and co-wrapping 
techniques open up a broad prospect for the design and 
fabricate thermoplastic bio-composites.

3D Printing

More recently, studies on substitution of flax fiber for syn-
thetic fiber in composite materials has attracted extensive 
attention in academic circles [72, 73]. Recent progress in 
3D printing enables more advanced design and manufac-
ture of fiber-embedded composites [74, 75]. In a report 
from Jiang et al. the short flax elastomer composites have 
been fabricated by 3D printing (Fig. 2C) [19]. Specifically, 
in 3D printing process, the liquid-phase “ink” is dispensed 
via various nozzles under controlled flow rates and depos-
ited along digitally defined paths to build 3D structures 
by a layer-by-layer strategy. Results show that the short 
flax fibers can obviously improve the mechanical prop-
erty of the composite. Their method extends the design 
and structural complexity for elastomer composites with 
natural fiber-embedded. In addition, Jiang et al. also report 
the development of printable highly transparent flax fiber-
reinforced composites [64]. Their excellent printability in 
3D printing processes allowed fabrication of composite 
structures using plant-based materials. The findings of this 
work demonstrate a novel and sustainable method to build 
engineer transparent composites with excellent mechani-
cal and processing characteristics for functional devices, 
such as wearable electronics and soft robotics in multiplex 
geometries.

Compression Molding

Compression molding is known as the oldest technology for 
fiber-based composites [76, 77]. Recently, the need for mass 
production of the robust and, high stiffness and lightweight 
composites, especially for automotive applications, has again 
brought up this process to the center of attention. In Ismail 
et al. work, the wet lay-up strategy was selected to make the 
hybrid composites by high pressure curing for 24 h (Fig. 2D) 
[65]. To withstand a higher impact on synthetic laminate, 
each panel should contain six layers of fibers. Le et al. fab-
ricated a moisture-induced self-shaping flax-reinforced poly-
propylene bio-composite actuator by hot-press using the film 
stacking technique, combining different numbers of active 
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and passive layers [78]. Their results indicate that moisture-
induced bending actuation can be obtain via the water uptake 
and swelling of flax fiber, which can be considered as a driv-
ing force. Moreover, moisture induced bio-composite actua-
tors withstand immersion. As a result, they keep their flexure 
shape without suffering from significant stress relaxation.

Application of Flax Fiber‑Based Functional 
Composites

Flax fibers as reinforcement have been reported widely 
in composition with various polymers [79–82]. Due to 
their lighter weight and higher mechanical properties, flax 

Fig. 2  Fabrication of flax fiber-based functional composite. A Carboni-
zation. Images reproduced with permission [28]. B Textile technology, i 
micro-braiding and ii co-wrapping techniques). Images reproduced with 

permission [63]. C 3D printing. Images reproduced with permission 
[64]. D Compression molding. Images reproduced with permission [65]
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fiber-reinforced composites are similar to glass fiber-rein-
forced composites, in terms of properties and functional-
ity. In addition, as a general behavior for every reinforced 
composite the size distribution and physical properties of 
the filler materials (here flax) determines the strength and 
the functionality of the final product. Flax fiber-based com-
posites are flexible, so can be easily folded or bended. This 
behavior makes them a potential candidate for the bonding 
polymer matrix which should be essentially strong but pli-
able. Thanks to all these favorite features, flax fiber-based 
composites have been increasingly utilized as a powerful 
platform for developing many different types of functional 
composites.

Biomedical

Unremitting and intense wounds are able to be rapidly 
tainted and sullied by organism like microbe and multidrug 
resistant bacteria. Bacteria uses the nutrients and oxygen 
existed in the host cells. This a very typical and obvious rea-
son for prolonging the wound healing. Toxins and enzymes 
secreted from the wound site also trigger a bioburden [83, 
84]. Paladini et al. fabricated, wound-dressing biomaterials 
by storing flax substrates with a hydrogel inserted into sil-
ver particles [62]. Presence of the di-phenylalanine hydrogel 
provides an efficient matrix to entrap the particles, leading to 
the promotion of a rapid wound healing without drying the 

Fig. 3  Flax fiber-based functional composite for antimicrobial appli-
cation. A Scanning electron micrograph of the flax. i Untreated group, 
ii Fmoc-F2 coated group, iii coating with Fmoc-F2 + 0.01 wt% Ag, iv 
coating with  Fmoc-F2 + 0.1 wt% Ag, v coating with Fmoc-F2 + 2 wt% 

Ag. Images reproduced with permission [62]. B Surface inhibition 
of growth of fungal colonies on cotton fabric (i), flax fabric-M type 
(ii), and the control (iii). Images reproduced with permission [20]
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wound. Specifically, silver nanoparticles have shown great 
antimicrobial activity towards viruses [85, 86], fungi and 
multidrug resistant bacteria [87, 88] due to the high surface 
to volume ratio [89]. Figure 3A shows that a complete inhi-
bition in bacterial adhesion occurs for a group containing 2 
wt% Ag. On the other hand, there is no evidence on forma-
tion of a biofilm in a group with 0.1 wt% of Ag. However, 
the coated group without silver has formed biofilms on the 
surface of fibers. 

In another research polyhydroxybutyrate (PHB) synthe-
sis genes of ralstonia eutropha were combined with flax 
genomes [20]. This synthesized PHB advances the prolif-
eration of human fibroblast and has antimicrobial activity 
in vitro (Fig. 3B). Due to the great property of PHB-fabric, 
it has been proved that the novel fabrication method is 
successful in preclinical trials. In conclusion, the natural 
texture of the flax plants that produces PHB, let to desired 
achievements in wound dressing and was occasionally 
used to prevent chronic skin ulcers. It is worth mention-
ing that a small amount of flex can create a huge amounts 
of fibers, so the expenses of wounds treatment is impres-
sively controlled. However, as of yet, the mechanism and 
the reason of the antimicrobial nature of flax fiber has not 
been fully recognized, at the molecular level. Presumably, 
this effect might be due to a combined action of many 
components, found in flax fiber such as phenolics, terpe-
noids, sugars and fatty acids.

Supercapacitors

World widely, there is a rapid increasing demand for eco-
friendly and renewable materials, as the current energy 
resources are substantially harmful to public health, wild-
life and global warming emissions [90, 91]. He et al. have 
selected an inexpensive woven textile made of natural flax 
fibers, as the raw material for preparation of binder-free 
and adaptable component of supercapacitors (Fig. 4A-i) 
[92]. The specific capacitance of the carbon fiber cloth 
directly carbonized from the linen fabric is fairly low 
(0.78  F   g−1), but the relaxation time of the electrode 
(39.1 m  s−1) is short and shows a great stability, maintain-
ing almost the whole capacitance. The specific capacitance 
of MCFC1 can reach 683.73 F  g−1 at 2 A  g−1 and still 
retains 269.04 F  g−1 at 300 A  g−1, which more confirms 
that the biomass-derived flexible carbon cloth, coated with 
 MnO2 nanosheets has an excellent capacitance properties. 
(Fig. 4A-ii). This low-cost, environmentally friendly, and 
convenient manufacturing process may contribute to the 
advancement of energy storage devices in the future.

 Zhang et al. reported a ‘supercapacitor electrode’ about 
the application of flax fiber textiles in flexible energy stor-
age devices (Fig. 4B) [28], where  a CF-CNT hybrid with 
a porous hierarchical 3D structure was prepared, in which 

the size of pores (micro pores versus meso pores) could 
be adjusted by changing the content of CNTs. The hybrids 
show great a performance in electrochemical properties, 
exhibiting high cycling retention and a capacitance of 
191 F  g−1 at 0.1 A  g−1. Owing to an entirely an layered 
structure of carbon, it is possible to manufacture the super-
capacitors with a compelling flexibility, cost effectiveness 
and self-supporting structure.

Moreover, by controlling the activation level of  NH3, 
a flexible, porous and high nitrogen-containing carbon fiber 
sheet could be prepared, out of biomass flax (Fig. 4C-i) [30]. 
In this process  NH3 acts as both a nitrogen source, and acti-
vator. The assembled carbon fiber sheets activated by  NH3 
shows outstanding flexibility, indicating the efficacy of  NH3 
in treatment of biomass. Besides, the assembled symmet-
ric and flexible cells demonstrate exceptional energy densi-
ties up to 174.7, 97.7 μWh  cm−2 respectively occurring at 
power densities of 500, 10,000 μW  cm−2 (Fig. 4C-ii). The 
porous structure of N-doped carbonized flax sheet also cre-
ates a great potential for being applicable in flexible energy 
storage devices.

However, eco-friendly synthesis and moderate activation 
protocols for enhancing their electrochemical performances 
are still challenging.

Oil/Water Separation

Separating the oil and water is a global challenge due to the 
severe water contamination caused by oil spill accidents, 
food, textile, and petrochemical industries [93–95]. Flax 
fiber contains a certain amount of cellulose, leading to the 
hydrophilicity [96]. Still, oil can be soaked up on the fiber 
surface, through the lumen, wax and lignin.

To overcome this issue, flax fibers were fabricated to sep-
arate immiscible water and oil [37]. To this aim flex fibers 
were used with plasma modified of poly (acrylic acid) (PAA) 
and self-assembled  TiO2 nanoparticles (Fig. 5A). Plasma 
treatment imposed a significant change in surface energy, as 
the characterized contact angle decreased toward water and 
increased toward oil. This manipulation of surface energy 
could drive a significant level of separation. The modified 
flax fiber has a stable separation performance between oil 
and water, in a salty and alkaline media, in multiple cycles 
(Fig. 5B), and even could behave as an oil barrier with great 
wettability.

The acetylation and microwave vitality can also modify 
the flax fibers, resulting in a promising future of oil spill 
cleaning [48]. The interaction with the anhydride groups 
of acetic anhydrides creates a hydrophobic nature on the 
surface and forms a porous structure hydrophobicity and 
porosity. Acetylation promotes the absorption, making 
fibers competitive with other synthetic fibers. Acetylated 
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fibers demonstrate an excellent oil sorption performance 
(24.54 g  g−1), compared with both original(13.75 g  g−1) 
and microwave treated fibers (17.42 g  g−1), with exother-
mic absorption behavior. The rapid removal, biodegradable, 
costless, and great sorption potential of acetylated fibers 
make it a really suitable alternative adsorbent for oils from 
oil/water systems.

In another work, the flax cellulose nanofibrils obtained by 
using chemical modification on the commercial filter papers 
as a surface barrier for oil/water preparation [42]. Result 
demonstrates that the pristine filter paper cannot separate 

the oil/water mixture, mainly due to the large pore size, 
however, the flax cellulose nanofibrils modified filter paper 
can effectively separate the oil/water mixture (Fig. 5C). The 
modified filter paper can effectively separate the oil/water 
mixture, and the separation efficiency of FF8-CNF grafted 
filter paper for castor oil and pump oil are reported 95.3%, 
92.2%, respectively (Fig. 5D). However, there is no signifi-
cant differences in separation efficiency of FF3-CNF, FF8-
CNF and FF13-CNF modified filter paper, perhaps because 
the CNF modified filter paper are basically excellent in 
a separation of for oil/water mixture.

Fig. 4  Flax fiber -based functional composite for supercapacitors. 
A Schematic of the carbon/MnO2 cloth hybrids preparation (i) and 
capacitance performances at different current densities (ii). Images 
reproduced with permission [92]. B The specific capacitance ver-

sus current density (i) and the last cycles of charge–discharge 
curves CF-CNT-2) (ii). Images reproduced with permission [28]. 
C  NH3 activation/doping process parameters (i) and high energy 
and power density (ii). Images reproduced with permission [30]
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However, it is found that the interface between the flax 
fiber and composite matrix changes in by aging in wet envi-
ronments. This deformation directly affects the tensile prop-
erties of the composites, so leaves a fundamental challenges 
for further observation and analysis.

Building Materials

Flax fibers as reinforcement agent or filler are known to be 
superior versus many of the other counterparts, on account 
of their natural origin, biodegradability, low density and high 
stiffness [97, 98], while they are finding novel applications 

Fig. 5  Flax fiber-based functional composite for oil/water separation. 
A, B Modification process and mechanism of flax fiber and the oil/
water separation performance between untreated and modified flax 

fiber. Images reproduced with permission [37]. C, D The separation 
performance between pristine filter paper and flax cellulose nanofi-
brils modified filter paper. Images reproduced with permission [42]
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in management of energy resources and consumptions 
[99–101]. Yan et al. examined fabricated a flax texture for-
tified epoxy composite tube as a restriction used with con-
cerete [102]. Prefabricated linen/epoxy composite pipes are 
also lightweight permanent formworks for fresh concrete, 
and protect the wrapped concrete from harsh environments, 
like deicing salt. There are more researches focusing on the 
applications of flax fiber as various structural elements, e.g. 
PLLA/flax mat/balsa bio-sandwich during transportation 
[103] and flax composite pipe wrapped concrete as bridge 
piers [104].

Flax fiber belongs to cellulose and burns very easily. There-
fore, to be used in to construction and automobile industry, it 
is necessary to increase the ignition point of the materials or 
give them a certain amount of flame-retardant properties. With 
the continuous improvement of people's safety awareness, fire-
resistant and flame retardant materials will become the hot and 
difficult points in the future material research and study.

Conclusions and Perspectives

With its unique advantages, flax fiber has become a 
promising functional material. Such advantages include 
the hydrophilicity, sustainable, low-cost and mechanical 
strength provided by the flax fibers. The highly mechani-
cal strength of flax fiber makes it an effective reinforce-
ment in composite, and promise the next-generation of 
materials for application in energy, biomedical, and envi-
ronment  societies. More importantly, flax fiber-based 
composites are made by facile techniques such as coating, 
carbonization, textile technology, 3D printing, and com-
pression moulding, and are applicable in plenty of fields 

and devices, for instance, wound-dressing, supercapaci-
tors, oil/water separation or building materials.

However, the limitations associated with these functional 
composites are not none (Fig. 6). As a medical wound dress-
ing, further clinical trials are needed to verify the biosafety 
and efficacy of flax fiber-based functional composite. Flax 
fibers are incompatible as a reinforcing agent for composite 
materials, resulting in unfavorable fiber/matrix interfacial 
bonding and reduced adhesion between the fiber and the 
polymer matrix. Chemical modifications of the matrix and 
fiber is a solution to some existing challenges, and enhance 
the mechanical properties of flax fiber composites. Modifi-
cation are implemented using both chemical and physical 
strategies. Grafting a chemical binding groups on the sur-
face of the flex fibers can improve the interfacial interactions 
between flax fiber and polymer matrix. Moreover, adopting 
an appropriate manufacturing processes and physical/chemi-
cal modifications can improve the mechanical properties of 
flax composites. However, the high initial cost of some strat-
egies is a serious drawback for commercialization. Further 
consideration needs to be given to faster, cheaper and envi-
ronmentally friendly methods of modification.

In summary, flax fiber-based functional composite have 
been used in the fields of energy, biomedical, and environ-
ment. due to their numerous advantages mentioned above. 
Fabrication of flax fiber-based functional composite for new 
applications may greatly benefit our society. Future work 
on flax fiber-based composites should be focused on under-
standing the environmental assessment, durability, further 
improving the mechanical properties. Additionally, novel 
manufacturing processes and surface modification methods 
should be further developed.
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