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Abstract
As a potential electrochemical energy storage device, zinc–air batteries (ZABs) received considerable interest in the field of 
energy conversion and storage due to its high energy density and eco-friendliness. Nevertheless, the sluggish kinetics of the 
oxygen reduction and oxygen evolution reactions limit the commercial development of ZABs, so it is of great significance to 
develop efficient, low-cost and non-noble metal bifunctional catalysts. Electrospun one-dimensional nanofibers with unique 
properties such as high porosity and large surface area have great advantages on possessing more active sites, shortening the 
diffusion pathways for ions/electrons, and improving the kinetics via intercalation/de-intercalation processes, which endow 
them with promising application in the field of energy storage devices, especially ZABs. This review firstly introduces the 
electrospinning technique. Then, the oxygen reduction/evolution reaction triggered by electrospun nanofibers with self-
supported structures are presented, followed by the application of electrospun nanofibers for liquid and flexible solid-state 
ZABs. Finally, the remaining challenges and research directions of ZABs based on electrospun nanofibers electrocatalysts 
are briefly discussed.
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Introduction

In the past 200 years, fossil fuels including coal, oil, and 
natural gas have played an indispensable role as energy 
resources for the society. However, their excessive consump-
tions have exacerbated a huge outbreak of energy crisis and 
simultaneously caused environmental pollution. These prob-
lems have been raising the concerns of the mankind and call-
ing for the vigorous research and deployment of sustainable 
and eco-environmental energy. Consequently, scientists have 
developed abundant, sustainable, and eco-friendly energy 
storage devices for the alleviation of fossil fuel consump-
tion [1]. An extensive investigation on clean, high capac-
ity, and renewable energy storage devices has been made, 
including fuel cells and metal–air batteries, which are of 
key importance for the diminishing non-regeneration energy 
consumption.

Metal–air batteries are one type of electrochemical energy 
storage devices, in which lithium, zinc, aluminum, sodium, 
and magnesium, etc., are frequently investigated as metal 
electrode materials [2]. Among them, the zinc electrode is 
more adaptable for aqueous electrolyte than other metals 
that are more likely to be oxidized or react with water [3]. 
Not only that, the zinc–air batteries (ZABs) also have an 
high theoretical energy density (1350 Wh  kg−1, excluding 
oxygen), which is five times more than lithium-ion batteries 
[4]. The advantages of high corrosion resistance in alka-
line solution, large capacity, and great safety made ZABs 
attract augmented attentions [5, 6]. However, there are still 
a massive amount of scientific and technical difficulty to be 
solved urgently to achieve commercial applications, such 
as the short service life and high cost of ZABs, which are 
closely related to the electrocatalyst of the air electrode [7, 
8]. The discharging and charging cathodic reactions of the 
air electrode are oxygen reduction reaction (ORR) and oxy-
gen evolution reaction (OER) [9–11], respectively. The reac-
tion processes of the two reactions in alkaline solutions are 
as shown by the equations below:

The efficiency of ORR and OER reactions at the air elec-
trode are greatly limited by their sluggish kinetics involving 
four sequential proton-coupled electron transfer steps [12]. 
Generally, the catalysts of precious metal Pt and Ru can 
show excellent ORR and OER performances, respectively, 
but they can’t simultaneously drive the two half-reactions 
of ORR and OER to achieve a lower reaction barrier in 

(1)ORR: O2(g) + 2H2O(l) + 4e− → 4OH−(aq),

(2)OER: 4OH−(aq) → O2(g) + 2H2O(l) + 4e−.

practical applications [13, 14]. In addition, the development 
of flexible electrodes can shorten the assembly time of ZABs 
and be beneficial to the application of wearable electronic 
devices [15, 16]. Therefore, it is particularly important to 
pursue a kind of low-cost, high-efficiency, and non-precious 
metal bifunctional electrocatalysts to meet the demand of 
flexible electrodes.

Structurally, the zinc–air battery consists of a zinc anode, 
electrolyte, and oxygen electrode. During the discharge 
process, the zinc anode undergoes an oxidation reaction to 
generate zinc ions. With the gradual accumulation of zinc 
ions, it begins to decompose to produce zinc oxide when the 
saturated concentration is reached. On the air electrode side, 
oxygen enters the surface of the air electrode catalyst from 
the external environment through the hydrophobic ventila-
tion membrane, involving a complex four-electron reaction 
at the solid–liquid-gas three-phase interface to generate 
 OH−. Complete a complete discharge process. The charg-
ing process is a completely opposite process [4].

In terms of types, zinc–air batteries are basically divided 
into primary zinc–air batteries and secondary zinc–air bat-
teries. The discharge process of a primary battery involves 
zinc oxidation reaction on zinc anode and oxygen reduc-
tion reaction on air cathode. When the secondary battery 
is charged, the reduction process on zinc anode and the air 
cathode oxygen evolution process during the charging pro-
cess are alternatively taken place. Flexible batteries have dif-
ferent structures, such as sandwich structure, cable structure, 
book page shape, etc. The electrochemical properties can be 
maintained under the applied deformation, such as folding, 
twisting, or stretching. The other type is the cable-shaped 
flexible zinc–air battery [5], in which the metal electrode is 
in the central axis wound by the gel electrolyte. The air elec-
trode wraps the outside of the electrolyte to form the basic 
structure of the flexible battery [17]. Moreover, the insulat-
ing material plays the role of encapsulation and protection 
on the outermost side.

Electrospinning is a versatile and simplified fiber manu-
facturing technique that uses polymer precursors to generate 
a tunable one-dimensional (1D) nanofiber structures with 
adjustable morphology [18–20]. To achieve the controlla-
ble preparation of adjustable morphology of electrospun 
nanofibers, some typical methods involve pore structure 
controlling (e.g., coaxial spinneret, volatility of solvent), 
metal loading, as well as parameter tuning of polymer solu-
tion (e.g., viscosity, electrical conductivity) and processing 
conditions (e.g., flow rate of solution, voltage, humidity, 
and temperature) [21]. The electrospun nanofibers enjoy 
the advantages of large surface area and high aspect ratio. 
Especially, the electrospun nanofibers with hollow or porous 
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structure via electrospinning can highlight its cross-linked 
channels and larger surface area, which not only provides 
more active sites and energy storage sites but also shortens 
the diffusion pathways for ions/electrons and promote ion/
electrons absorption [22–24]. Higher pore volume and richer 
porosity of electrospun nanofibers with these unique struc-
tures further expand the contact between the electrolyte and 
catalyst, which facilitates improved kinetics via intercala-
tion/de-intercalation processes of active species [25–27]. A 
large number of documents have reported the emergence 
of electrospun nanofibers as electrocatalysts, polysulfide 
intermediates, and high capacity electrode materials, which 
have elevated the electrochemical performance of energy 
storage devices [28, 29]. In addition to energy conversion/
storage devices, electrospun nanofibers also have several 
novel applications in the field of medicine, such as wearable 
biosensors, drug delivery devices, and biomedical scaffolds 
[30, 31].

One critical aspect of the research about electrospun 
nanofibers electrocatalyst is the design of ameliorated 
polymer precursors and optimized process parameters to 
synthesize complex structures, such as solid, core/shell, 
hollow, porous and tube-in-tube structures. These unique 
structures can facilitate to expose more active sites and 
generate distinctive electronic structures on the surface 
of electrospun nanofiber electrocatalysts. Most electro-
spun nanofibers electrocatalysts use traditional methods 
to prepare powder electrode materials. However, the cata-
lyst will peel off from the surface of the current collector, 
which results in poor stability. Therefore, the electrode 
needs a binder (Nafion, PVDF, etc.) to fix the powder 
catalyst by grinding. That mechanically grinding restricts 
the advantages of nanofibers’ high aspect ratio, and irre-
versibly destroys the 1D morphology of the electrospun 
nanofibers [32]. Moreover, the addition of binders will also 
obstruct the active sites, constrain ion/electron diffusion 
and restrict the practical interaction on the electrochemical 
interfaces [33]. The development of electrospun nanofib-
ers with self-supported structure breaks through the bot-
tleneck of traditional powder catalysts that needed the 
addition of binders. The self-supported or free-standing 
structure is a steric structure with a certain spatial struc-
ture that can be used as a binder-free carrier to directly 
synthesize nanocatalysts in  situ. The high interaction 
forces between the carrier and catalyst affect the growth 
and arrangement orientation. The catalyst is fixed under 
the premise of binder-free to avoid peeling off during the 
electrochemical reaction [34]. Self-supported structure can 
be divided into two categories according to the presence 
or absence of substrate. One is material natively in situ 
grown on conductive substrates (e.g., metal foam, carbon 
paper, carbon cloth, metal foil, metal stainless steel mesh, 
etc.), the other is a substrate-free gas diffusion electrode 

synthesized in one step, which contains the substrate 
itself. Electrospun nanofiber is a typical substrate-free 
self-supported structure. It has the following advantages, 
(1) easy application by directly used as working electrode; 
(2) strong ion/electron diffusion without high-cost bind-
ers; and (3) stable electrochemical reaction durability [17]. 
Electrospun nanofibers catalysts show great potential in 
energy applications, especially there is a multitude of 
research articles that have investigated the improvement 
of ZABs performance in the field of electrospun nanofib-
ers catalysts. Accordingly, this paper is an explicit and 
focused review to generalize the application of electrospun 
nanofibers catalysts in ZABs [35].

This review emphasizes the recent research of electrospun 
1D nanofibers that are applied to cathodic electrocatalysts of 
ZABs. The content covers a brief outline of the electrospin-
ning technique, the controllable preparation of electrospun 
nanofibers with different structures, the comparison of elec-
trospun nanofibers catalysts with self-supported structure 
and traditional powder catalysts, and the recent progress of 
electrospun nanofibers as cathode electrocatalysts in liquid 
and solid ZABs. Finally, we evaluate the challenges and 
deficiencies, and also look forward to an alluring promise 
to provide a timely and realistic cognition of this rapidly 
developing domain.

Electrospinning Technique

Electrospinning technique, firstly described by Zeleny in 
1914 [36], has been proved to be an exceptional nanofiber 
preparation technique for its simplicity, effectivity, low-
cost, and repeatability. This technique can generate ultra-
fine fibers of mm to nm scale from a sequence of different 
polymers, including not only non-water-soluble polymers 
like polyacrylonitrile (PAN), and polystyrene (PS), but also 
water-soluble polymers such as poly(vinyl pyrrolidone) 
(PVP) [21]. Electrospinning is a facile electrohydrodynamic 
(electrically charged fluids kinetics, the basis for forming 
electrospun fibers) fabrication method that can generate 
nanostructured fibers through tunable release dynamics, 
it affords near zero-order release dynamics, dampening of 
burst release. There is an analytical and theoretical frame-
work for modeling the forming electrospun fibers. The prop-
erties of polymer solution and processing condition (liquid 
dynamic viscosity/inertia, surface charge density, and local 
electric field, etc.) are important for the geometry types of 
electrospun fibers. Due to the opposition of electrostatic 
repulsion and surface tension, the liquid drop exits from the 
capillary and deforms into a Taylor cone, then a charged jet 
escapes and elongates towards the collector as the voltage 
increases. There is a steady-state relation:
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in which d represents the jet diameter, and Q, ρ,  E∞, and 
z correspond to the flow rate, fluid density, applied field 
strength, and axial coordinate, respectively [37].

The fundamental setup of electrospinning is illustrated 
in Fig. 1a, a spinneret with a metallic needle, a grounded 
planar or drum collector, and a high voltage power supply to 
generate an electrical field up to 3000 kV  m−1 are essential. 
A classic electrospinning process involves the application 
of a strong electric field to a drop of the polymeric pre-
cursor solution. When a pendant fluid drips from the tip of 
the spinneret, a high voltage applied between the spinneret 
and collector electrifies a droplet and uniformly distributes 
charges onto the hemispherical surface. Furthermore, the 
interactions of the external electric field with the internal 
charges facilitate the formation of Taylor cone which is a 
conical structure. The electrostatic forces will overcome by 
the surface tension of the drop when the applied voltage 
transcends the critical voltage. Then a fine-charged jet will 
eject to evaporation and elongate during an unstable whip-
ping. Finally, the solidification of ultra-fine fibers is ended 
on the grounded collector. Several structures, such as solid, 
core/shell, hollow, porous, tube-in-tube, and multilayer tube 
structures, would be fabricated in consequence of different 
parameters. For decades, due to the high pore volume, con-
spicuous mechanical strength, and controlled designed archi-
tecture, electrospinning has become a versatile and attracting 
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craft. Inspired by the outstanding stability and bifunctional 
activity of electrospun nanofibers, we then exhibit its prac-
tical application in the flexible solid-state and liquid ZABs 
(Fig. 1b–d [38, 39]) which can be applied for wearable elec-
tronic watch, folding mobile phone, and zinc–air electric 
vehicles.

The ultimate characteristics of electrospun nanofibers 
are principally modulated by a wide variety of parameters 
such as process conditions (voltage strength, humidity, and 
solution feed rate), adjustable precursor solution (viscos-
ity, concentration, categories of polymers and additive) and 
supplementary step (temperature and time of calcination or 
carbonization). Different parameters can be easily used to 
regulate the size (length and diameter), morphology (spheres 
or fibers), and structure (solid, hollow, porous, or tube-in-
tube) of electrospun nanofibers, which would change their 
subsequent properties including their catalytic activities. 
Several investigations have detailed the evolution of elec-
trospun nanofiber catalysts with unique structures.

For instance, the solid structure of nanofibers is shown in 
Fig. 2a [40], the interpenetrating of 1D nanofiber enabling 
a network morphology is better to contribute charge con-
duction than sintered aggregates, because of its large sur-
face area of high aspect-ratio nanofibers for the increased 
adsorption of intermediates. This carboxyl-modified porous 
electrospun nanofiber anchored with Ni and Mn has been 
reported to exhibit ultra-low ORR/OER overpotential, as 
well as high power density and stability in their ZABs. 
While its appreciable electrochemical performance is attrib-
uted to the synergy of the heterogeneous interface between 

Fig. 1  a Schematic diagram of the fundamental setup of electrospin-
ning to obtain ultra-fine fibers, and several structures of electrospun 
nanofibers. b Application of flexible solid-state ZABs like wearable 

electronic devices. c [38], d [39] Liquid ZABs based on electrospun 
nanofibers electrocatalysts like zinc–air electric vehicles
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different metals and 1D porous nanofibers. In other exam-
ples, the nanosheets, nanoparticles, and nanowires can be 
in situ grown on nanofiber to form the core/shell structure 
(Fig. 2b [41]). Research shows that the proton transports 
on the interfaces of sheets/particles/wires, where electro-
chemical reactions take place, rather than within the fiber 
itself. Accordingly, this structure exhibits higher conductiv-
ity compared with the counterparts of particles, sheets, or 
wires. In addition, complex hollow structure (Fig. 2c, [42]), 
and microporous structure (Fig. 2d, [43]) can be fabricated 
via volatile and nonvolatile polymers, which provide rapid 
adsorption/access of the electrolyte to the catalytic layer 
and promote fast charge/discharge processes and proton 
transport. That has been shown to be effective on optimiz-
ing the activity of catalysts. Classic instances of the hollow 
structures are the tube-in-tube structure (Fig. 2e, [44]), and 
even the multilayer tube structure (Fig. 2f, [45]). These com-
plex structures are synthesized by a coaxial spinneret with 
multiple syringes. With different precursor fluids loaded in 
the multiple syringes, the middle fluid corresponding to the 
hollow part could be selectively removed while the inner 
and outer polymer fluids corresponding to the solid part 
could have remained. Compared with the solid structure, 
the multilayer tube structure increased surface area to expose 
more active sites and elevated the effective contact area with 
electrolyte. Therefore, the rational design of electrospun 
nanofiber structures could simultaneously reduce the ORR/
OER reaction barrier and optimize its ZABs performance.

Electrospun Nanofibers as Bifunctional 
Electrocatalysts

Electrospun Nanofibers Powder Electrocatalysts

At present, there have been multiple studies on electrospun 
nanofibers electrocatalysts. In general, the electrochemical 
test of catalysts uses a three-electrode system, the working 
electrode of this system is prepared by a common process. 
First, 7 mg electrospun nanofibers catalysts was mixed with 
2 mg of conductive additive (such as carbon black), and 50 
μL binder (such as Nafion) and grind them into powder. 
Then, 760 μL of ethanol and 190 μL of DI water were added 
to the mixer followed by 1 h ultrasonic to form a homoge-
neous catalyst ink. Ultimately, the ink was dropped evenly 
on a pre-cleaned glassy carbon disk as a working electrode. 
Some typical examples about the ORR and OER perfor-
mances of electrospun nanofibers powder electrocatalysts 
are shown in Table 1. As stated, there are many advantages 
of electrospun nanofibers catalysts, such as multiple activity 
sites, sufficient conductivity and controllable defect prepara-
tion. Furthermore, its catalyst activity is directly affected by 
multitude of cross-linked pores, large aspect ratio and unique 
hollow structure. Most electrospun nanofibers powder elec-
trocatalysts in this table demonstrate more efficient ORR/
OER activity in the field of powder catalysts. Mesoporous 
Fe/Co–N–C nanofibers with embedding FeCo nanoparticles 
(FeCo@MNC) are synthesized by a constrained-volume 

Fig. 2  SEM images of a solid structure [40], b core/shell structure [41], c hollow structure [42], d macroporous structure [43], e [44] and f [45] 
tube-in-tube structure of electrospun nanofibers by different operational parameters
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Table 1  ORR and OER 
performances of recently 
reported electrospun nanofibers 
for powder electrocatalysts

Catalyst Eonset (V) E1/2 (V) Ej=10 (V) ΔE =  Ej=10 
−  E1/2 (V)

n References

CMO/S-300 0.915 0.760 1.700 0.940 3.91 [42]
N, F, P tri-doped carbon nanofibers – 0.8 1.67 0.87 2.46 [43]
FeCo@MNC – 0.86 1.47 0.61 3.87 [46]
NiCo@N-C 2 – 0.81 1.76 0.95 3.99 [47]
NiCoP/CNF nanofibers 0.92 0.82 1.498 0.678 4 [48]
AgCo composite nanotubes 0.9464 – – – 3.80 [49]
Ir0.46Co0.54Oy nanotubes – – 1.54 – – [50]
Fe/N/F MCNFs 0.900 0.822 – – 4 [51]
NiCo2O4-A1 nanostructure 0.93 0.78 1.62 0.84 4.0 [52]
NiFe@NCNFs – – 1.524 – – [53]
LaNi0.85Mg0.15O3 0.82 0.69 1.68 0.99 3.4 [54]
FeCo@N-GCNT-FD 0.98 0.8 – – 4 [55]
Ru1Ni1-NCNFs – – 1.52 – – [56]
Pt/Ta/SnO2 1.0 0.9 – – – [57]
CNCF-800 0.83 0.66 1.64 0.98 4 [58]
Pd3/Y-ACNF 0.90 0.81 – – 4 [59]
Fe3C@NCNTs-NCNFs – – 1.514 – – [60]
BSCF-80-ES 0.78 0.64 1.60 0.96 3.83 [61]
ES-CNCo-5 0.8872 0.8122 – – 4 [62]
CNF@NC – 0.72 – – 4.0 [63]
Co3O4/N-ACCNF 0.98 0.79 1.54 0.75 4.0 [64]
50 wt% NiFe-CNF – – 1.50 – – [65]
Fe/N-CNFs 0.96 0.88 – – 3.8 [66]
1D  Co3V2O8 nanostructures – – 1.58 – – [67]
Pt/TiN NTs 0.957 0.843 – – – [68]
LSCF@Ni3(HITP)2-2 – – 1.502 – – [69]
N/Fe-CG 0.93 0.73 – – 4.0 [70]
Pt1Au1/(TiO2)0.5 NWs 1.046 0.889 – – 3.8 [71]
CoFe2O4@N-CNFs – – 1.579 – – [72]
CMS/NCNF 0.969 0.861 1.732 0.871 4 [73]
NiCo2O@C – 0.847 1.537 0.69 3.99 [74]
CCO@C 0.951 – 1.557 – 3.9 [75]
NeTiO2@C-0.75 0.9782 0.7502 – – 3.85 [76]
FeS2-CoS2/NCFs – 0.81 1.57 0.76 3.90 [77]
TCNFs/C 0.941 0.710 – – 3.29 [78]
h-Co3O4/CeO2@N-CNFs – – 1.54 – – [79]
FeCo@NCNS 0.98 0.83 1.597 0.767 3.97 [80]
PrBa0.5Sr0.5Co2−xFexO5+δ-NF – 0.69 1.53 0.84 3.8 [81]
Co-Nx@CNF700 0.941 0.814 – – 3.9 [82]
Fe3C@MHNFs – 0.90 – – 4 [83]
Co-CeO2-N-C nanofibers 0.89 0.82 1.556 0.736 3.96 [84]
FeCNFs-NP 0.9842 0.8842 1.56 0.6758 3.9 [85]
ZCP-CFs-9 – 0.8332 – – 3.97 [86]
CMO/NCNF 1.05 0.83 1.57 0.74 3.7 [87]
Ni3V2O8 NFs – – 1.562 – – [88]
Pt/HPCNF-1000 0.895 0.763 – – – [89]
Co2RhO4 nanotubes – – 1.519 – – [90]
Zn/Co@C-NCNFs (0.50) 0.8682 0.7672 – – 3.69 [91]
NSCFs/Ni-Co-NiCo2O – 0.806 1.498 0.692 3.97 [92]
FeNi/N-CPCF-950 – 0.864 1.585 0.718 3.98 [93]
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method from Fe/Co–N coordination compounds, resulting 
in the enhanced ORR and OER activity of FeCo@MNC 
 (E1/2 = 0.86 V,  Ej=10 = 1.47 V) [46]. Compared with other 
samples in this table, FeCo@MNC has the lowest overpo-
tential (ΔE =  Ej=10 −  E1/2) of 0.61 V. As shown in Fig. 3a–f, 
such outstanding advantages benefit from the great electri-
cal conductivity of larger aspect ratio nanofibers, multitude 
interconnected pores which were beneficial for  O2 speedy 
transportation and substantial reactive active sites exposing, 
thereby reducing the ORR/OER reaction barrier. Therefore, 
FeCo@MNC can be applied as a bifunctional electrocatalyst 
of ZABs for a higher power density and lower charging/
discharging voltage gap.

Electrospun Nanofibers Electrocatalysts 
with Self‑Supported Structure

The electrospun nanofibers catalysts with self-supported struc-
tures have unique mechanical properties, such as great flexibil-
ity and foldability, which fundamentally breaks the bottleneck 
of the powder catalysts added with the binder in the convenient 
process. As well known, the binder will not only retard the 
adsorption sites of oxygen but also inhibit ion diffusion and 
increase the resistance. In particular, avoiding the addition of 
binder allows for a degree of staving off agglomeration and 

pulverization of the electrode. Additionally, the air electrode 
based on electrospun nanofibers with self-supported structure 
has validly reduced the assembly time of the flexible solid-
state ZABs, so the flexible electrode has been widely studied 
in wearable electronic devices. The current research is focused 
on how to prepare electrospun nanofibers with mechanical 
strength and toughness simultaneously, and how to drive ORR/
OER to achieve a steady effective activity. The ORR and OER 
performances of several decent electrospun nanofibers with 
self-supported structure are listed and compared below in 
Table 2. Comparison of Tables 1 and 2 shows that the ORR/
OER overpotential (ΔE) of electrospun nanofibers with self-
supported structure is generally lower than powder electrospun 
nanofibers because they are fixed under the premise of binder-
free to avoid peeling off during the electrochemical reaction. 
Moreover, binder-free catalysts are conducive to expose the 
active sites, accelerate ion/electron diffusion and promote the 
practical interaction on the electrochemical interfaces. These 
examples demonstrate that the electrospun nanofibers with 
self-supported structures are more suitable as bifunctional 
electrocatalysts with outstanding ORR/OER efficiency than 
electrospun nanofibers powder electrocatalysts. As shown 
in Fig. 4a–d [17],  Co3O4 hollow particles with tailored oxy-
gen vacancies  (Co3O4−xHoNPs@HPNCS) are synthesized 
through Kirkendall effect, which emerges a lower reversible 

Eonset,  E1/2, and n denote ORR onset, half-wave potential, and electron transfer number.  Ej=10 is the required 
potential to reach an OER current density of 10 mA  cm−2

Table 1  (continued) Catalyst Eonset (V) E1/2 (V) Ej=10 (V) ΔE =  Ej=10 
−  E1/2 (V)

n References

LCNP@NCNF 0.870 0.72 1.81 1.09 – [94]
Fe-N/Cair/NH – 0.87 – – 4 [95]
Co@N-PCF-3 0.9212 0.8332 – – 3.9 [96]
Co9S8/NSC nanofibers – 0.84 1.56 0.72 3.54 [97]
Fe3C@BxNPCFs 0.968 0.832 – – 4.00 [98]
ZIF-67/PAN-800 0.90 0.81 1.64 0.83 3.4 [99]
Fe-N-Si-CNFs – 0.86 – – 3.89 [100]
CoP/NC-800 0.90 0.78 1.52 0.74 3.62 [101]
MB-CFs-0.6 – 0.8172 – – 3.95 [102]
FeCo@PCNF-800 0.939 0.854 – – 3.99 [103]
Mo2N-MoS2(1:1) MCNFs – – 1.50 – – [104]
Pt–Fe/CNFs-900 0.99 0.79 – – 4.09 [105]
FeCoP@NCNFs – – 1.52 – – [106]
Nb CNF-Pt 0.99 0.89 1.555 0.665 4 [107]
Ni2−xCoxP/N-C NFs – – 1.51 – – [108]
Fe1Ni1-N-CNFs 0.903 0.791 1.602 0.811 3.97 [109]
SNCF-NR – – 1.62 – – [110]
NCNF-1000 097 0.82 1.84 1.02 4.0 [111]
La0.6Sr0.4Co1–xFexO3–δ – – 1.877 – – [112]
CNCo-5@Fe-2 0.971 0.861 – – 3.99 [113]
Fe-CoO/C-800 – – 1.592 – – [114]
FeCo-NCNFs-800 0.907 0.817 1.686 0.869 3.91 [115]
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overpotential (ΔE = 0.74 V). Benefiting from the building of 
a flexible self-supporting structure, this kind of electrospun 
nanofibers electrocatalysts as air electrode can shorten the path 
of ion diffusion and improve the electron transmission rate, 
which will improve the ORR and OER reaction kinetics.

Electrospun Nanofibers for ZABs

Liquid ZABs Based on Electrospun Nanofibers 
Electrocatalysts

A schematic configuration of rechargeable liquid ZABs is 
shown in Fig. 5a, in which a rechargeable ZAB includes zinc 

foil (anode), a gas diffusion electrode (cathode), and electro-
lyte (such as 6.0 M KOH/0.2 M  ZnCl2). The gas diffusion 
electrode contains gas diffusion layer (GDL, which could 
accelerate the adsorption/desorption of  O2 for the ORR/
OER process and prevent electrolyte loss), current collector 
layer (gather and conduct electrons) and catalytic layer (the 
place where ORR and OER react). Thanks to the promising 
advantages of cross-linked porous, large surface area, and 
high porosity, the electrospun nanofibers are generally used 
in ZABs as satisfactory bifunctional electrocatalysts. Table 3 
lists and compares the performances of recently reported 
liquid ZABs based on electrospun nanofibers electrocata-
lysts. Due to the optimized hierarchically porous carbon 
microstructure of electrospun nanofibers electrocatalysts 

Fig. 3  a TEM image of FeCo@MNC. b ORR polarization curves of 
different catalysts recorded at 10 mV·s−1. c The corresponding ORR 
Tafel plots of different catalysts. d OER polarization curves of differ-

ent catalysts recorded at 5 mV·s−1. e OER Tafel slopes on different 
catalysts. f The potential gap (ΔE) between the  E1/2 of ORR and  Ej=10 
of OER for different catalysts [46]

Table 2  ORR and OER 
performances of recently 
reported electrospun nanofibers 
electrocatalysts with self-
supported structure

Catalyst Eonset (V) E1/2 (V) Ej=10 (V) ΔE =  Ej=10 −  E1/2 
(V)

n References

Ni|MnO/CNF – 0.83 1.58 0.763 4.0 [40]
CuCo2S4 NSs@N-CNFs 0.957 0.821 1.545 0.751 3.99 [41]
Co3O4−x HoNPs@HPNCS-60 – 0.834 1.574 0.74 4.0 [17]
Ni@PIM-CF – – 1.62 – – [116]
CoNCNTF/CNF 0.974 0.857 1.61 0.76 3.9 [117]
CoZn-ZIF-500 – – 1.575 – – [118]
AgNF networks 1.041 0.848 – – 4 [119]
PdNi/CNFs-1:2 – – 1.519 – – [120]
Co SA@NCF/CNF – 0.88 1.63 0.75 4.0 [34]
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with a large number of active sites, and the mass activity of 
electrospun nanofibers electrocatalysts is better than the con-
ventional catalysts, most liquid ZABs based on electrospun 
nanofibers electrocatalysts in this table demonstrate higher 
current density and peak density in the field of liquid ZABs. 
As reported in Fig. 5b–d [42], the ZABs based on CMO/S-
300 exhibits a current density of 128 mA  cm−2 (at 1.0 V) 
and peak density of 148 mW  cm−2 (at 1.49 V). Furthermore, 
a LED screen displaying “Zn–Air” is shown as a demo. It 
possesses a very small voltage gap of 0.67 V and tiny dimin-
ishing after a 120 cycles stability test. Additionally, such 
outstanding advantages benefit from the promotion of elec-
tric conductivity and surface vacancies defect after sulfur 

doping engineering. In the future, the liquid ZABs based 
on electrospun nanofibers electrocatalysts might explore the 
promising practicality in energy devices.

Flexible Solid‑State ZABs Based on Electrospun 
Nanofibers Electrocatalysts

Liquid ZABs are vulnerable to operating conditions such 
as excessive volume and difficulty in storage/transporta-
tion. In recent years, wearable electronic devices such as 
electronic watches and foldable curved surface electronic 
screens have rapidly entered the public view. At present, 
numerous investigations are focused on wearable electronic 

Fig. 4  a Illustration of the preparation process. b SEM image of 
 Co3O4−xHoNPs@HPNCS. c ORR polarization curves of different 
catalysts recorded at 10 mV·s−1. d OER polarization curves of differ-

ent catalysts recorded at 5 mV·s−1. e The potential gap (ΔE) between 
the  E1/2 of ORR and  Ej=10 of OER for different catalysts. [17]
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devices, especially flexible solid-state ZABs with preferable 
mechanical toughness and strength. As shown in Fig. 6a, the 
flexible ZABs are composed of a gel polymer electrolyte 
(GPE), cathode (same as the gas diffusion electrode of liquid 
ZABs), and anode (Zn foil). Additionally, the flexible elec-
trospun nanofibers electrodes with self-supported structure 
maintain decent systemic efficiency and deliver adequate 
cycle life. Herein, some recently reported flexible solid-
state ZABs based on electrospun nanofibers electrocatalysts 
with exceptional charge–discharge stability are compared in 
Table 4, most flexible solid-state ZABs based on electrospun 
nanofibers electrocatalysts in this table demonstrate higher 
current density and peak density in the field of flexible 
solid-state ZABs. These impressive functions such as steady 
cycling stability and low voltage gap in this table can be 
attributed to electrospun catalysts with the smallest revers-
ible oxygen overpotential, especially the binder-free electro-
spun nanofibers with self-supported structure. Firstly, elec-
trospun nanofibers with self-supported structures are easy to 

be directly used as working electrode for strong ion/electron 
diffusion without high-cost binders. Secondly, the electrode 
is binder-free to avoid peeling off during the electrochemical 
reaction, which would exhibit stable durability. Lastly, the 
flexibility of self-supported structure displays satisfactory 
battery stability of charging/discharging in different fold-
ing angle conditions. For instance,  CuCo2S4 NSs@N-CNFs 
based solid-state ZABs display satisfactory battery stability 
in different folding angle conditions (Fig. 6b, c). Further-
more, they have a peak power density of 232 mW  cm−2 and 
a minimal voltage gap of 0.8 V for 300 cycles (Fig. 6d, e) 
[41]. The remarkable bifunctional catalytic performance of 
 CuCo2S4 nanosheets@N-doped carbon nanofiber is attrib-
uted to situ sulfurization combining electrospinning at room 
temperature, that scalable fabrication process optimizes the 
chemical composition of the catalyst surface. Consequently, 
it should have commercial significance to study the applica-
tion of electrospun nanofibers in flexible solid-state ZABs 
electrodes.

Fig. 5  a Schematic configuration of rechargeable liquid ZABs. b 
Polarization curves and power densities of liquid ZABs based on 
CMO/S-300 and Pt/C air electrode catalysts. c Photograph of an indi-
cator light LED screen showing the “Zn–Air”, powered by two liquid 

ZABs with the CMO/S air–cathode connected in series. d Galvano-
static pulse cycling at 5 mA  cm−2 with a duration of 400 s per cycle 
of CMO/S-300 cathodes [42]
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Conclusions, Prospects, and Challenges

While a great number of efficient energy storage devices 
have been applied to portable electronic devices and 
electric vehicles, there is an undeniable consensus that 
the further development of versatile, low-cost, and effi-
cient catalysts is still important to achieve the commer-
cial production of energy storage devices, especially in 
ZABs. Electrospun nanofibers have quickly become suit-
able bifunctional catalysts in advanced ZABs because 
of their large surface area, high porosity, good conduc-
tivity, and mechanical properties. One critical aspect of 
the research about electrospun nanofibers electrocatalyst 
is the development of nanofibers with hollow structure, 
which could indicate a larger surface area and porosity 
than solid structure, and then provide more active sites and 
improve the adsorption/desorption of oxygen. This unique 
structure reveals that electrospun nanofibers will have a 
lower OH* hydrogenation barrier and reduced ORR/

OER overpotentials. Consequently, electrospun nanofib-
ers exhibit a tremendous potential to be utilized for the 
zinc–air battery system. The second is mixing metals into 
electrospun nanofibers, it has been confirmed that there 
will be a synergy of the heterogeneous interface between 
different metals and 1D porous nanofibers, the chemi-
cal composition of the catalyst surface and coordination 
sites will be optimized simultaneously, which is one key 
to unlock substantial gains in ORR/OER performance. 
Therefore, electrospun nanofibers catalysts as air cathode 
of ZABs demonstrate a high battery capacity and a rela-
tively high peak power density. The last is the innovation 
of electrospun nanofibers with self-supported structure. 
This innovation eliminates the disadvantages of adding 
binders to powder catalysts and inhibiting the coverage 
of active sites. The binder-free self-supported electrospun 
nanofibers exhibit excellent stability for battery charging/
discharging processes and ORR/OER in alkaline medium. 
A wearable ZABs device using electrospun nanofibers as 

Table 3  Performances of recently reported liquid ZABs based on electrospun nanofibers electrocatalysts

Catalyst Cycling current den-
sity (mA  cm−2)

Discharge 
voltage (V)

Charge volt-
age (V)

Voltage gap (V) Cycling stability References

Ni|MnO/CNF 10 1.2 2.13 0.93 350 cycles [40]
CMO/S-300 5 1.25 1.93 0.67 120 cycles [42]
N, F, P tri-doped CNF 10 1.25 2 0.75 200 cycles [43]
FeCo@MNC 20 1 1.9 0.9 24 h [46]
NiCo2O4-A1 nanostructure 20 1.84 1.00 0.84 50 cycles [52]
LaNi0.85Mg0.15O3 10 1.18 2.1 0.92 110 h [54]
CNCF-800 10 1 2 1 88 h [58]
BSCF-80-ES 20 1.16 2.05 0.89 140 cycles [61]
Co3O4/N-ACCNF 5 1.25 2 0.75 80 h [64]
Fe/N-CNFs 10 1.24 2.21 0.97 55 h [66]
CMS/NCNF 10 1.142 2.125 0.983 100 h [73]
NiCo2O@C 5 1.184 1.922 0.738 200 h [74]
CCO@C 10 1.11 1.9 0.79 160 cycles [75]
FeS2–CoS2/NCFs 10 1.28 2 0.72 250 h [77]
PrBa0.5Sr0.5Co2−xFexO5+δ-NF 10 1.1 2.1 1.0 150 cycles [81]
Co-Nx@CNF700 5 1.2 2.3 1.1 70 h [82]
Co-CeO2-N-C nanofibers 2 1.19 2.06 0.87 113 h [84]
CMO/NCNF 10 1.21 1.98 0.77 350 cycles [87]
NSCFs/Ni-Co-NiCo2O 10 1.1 2.1 1.0 380 h [92]
FeNi/N-CPCF-950 10 1.222 1.986 0.764 960 cycles [93]
LCNP@NCNF 10 1.18 2.13 0.95 500 cycles [94]
Co9S8/NSC nanofibers 10 1.2 2.05 0.85 500 cycles [97]
CoP/NC-800 10 1.0 2.2 1.2 35 h [101]
NCNF-1000 10 1.20 1.93 0.73 500 cycles [111]
CNCo-5@Fe-2 10 – – – 40 h [113]
FeCo-NCNFs-800 10 1.16 2.03 0.87 41.7 h [115]
Zn/Co-N@PCNFs-800 10 1.1 2.1 1.0 18 h [121]
N-Co/CNF-300-10 10 1.25 2.0 0.738 100 cycles [122]
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air electrode demonstrates battery stability as well as its 
high deformation tolerance. Thus, the flexible electrospun 
nanofibers electrodes with self-supported structures have 
gained popularity and significance in the fabrication of 
ZABs, and provide new insights into rational design of 
self-supported electrodes for flexible ZABs devices. In 
addition to metal–air batteries, electrospun nanofibers 
also have several novel applications in the field of energy 
conversion (e.g., fuel cells, solar cells, and water split-
ting), energy storage (e.g., metal-ion batteries), medicine 

(e.g., drug delivery devices and biomedical scaffolds), and 
environment (e.g., filter membranes).

Nevertheless, certain essential studies and massive tech-
nical problems about electrospun nanofibers are still needed 
to be discerned and addressed. Firstly, electrospun nanofib-
ers with tube-in-tube structure are synthesized by a coaxial 
spinneret with multiple syringes with different precursor flu-
ids loaded in the different syringes, so it’s complex to make 
this process realized in commercial application. Secondly, 
the fibers from nanometers to micrometers can be prepared 

Fig. 6  a Schematic configuration of rechargeable flexible solid-state 
ZABs. Digital optical images of three flexible ZABs connected in 
series to power a “NUS” logo with red LEDs under b1–b4 different 
bending angles, c1–c4 and a “Zn–Air” logo with red LEDs different 

bending radius. d Power-current density curves, e comparison of the 
cycling stabilities of solid-state ZABs based on  CuCo2S4 NSs@N-
CNFs air electrode catalysts. [41]

Table 4  Performances of recently reported flexible solid-state ZABs based on electrospun nanofibers electrocatalysts

Catalyst Cycling current den-
sity (mA  cm−2)

Discharge 
voltage (V)

Charge volt-
age (V)

Voltage gap (V) Cycling stability References

CuCo2S4 NSs@N-CNFs 5 1.3 2.1 0.8 300 cycles [41]
CMO/S-300 1 1.2 1.7 0.5 10 h [42]
BSCF-80-ES 10 1.13 1.97 0.84 100 cycles [61]
CMS/NCNF 5 1.2 1.93 0.73 7 h [73]
Co-CeO2-N-C nanofibers 1 1.00 2.08 1.08 11 h [84]
CMO/NCNF 1 1.13 1.97 0.84 5 h [87]
NCNF-1000 2 1.0 1.78 0.78 48 cycles [111]
Co3O4−x HoNPs@HPNCS-60 3 1.2 1.73 0.53 50 cycles [17]
CoNCNTF/CNF 0.5 1.21 1.50 0.29 68 cycles [117]
Co SA@NCF/CNF 6.25 1.25 1.85 0.6 90 cycles [34]
Co3O4/MWCNT 0.5 1.20 2.08 0.88 130 cycles [123]
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by electrospinning, but it’s difficult to consistently main-
tain the morphologies at the nanoscale such as micropores 
through precise control. Thirdly, there is an urgent need 
to develop low-cost and eco-friendly materials for green 
electrospinning, because the polymer precursors used for 
electrospinning may be expensive and detrimental to the 
environment (e.g., toxic, corrosive, and difficult to recycle). 
Fourthly, there are further investigations of electrospinning 
processing to be carried out, for instance, the selection of 
metal species loading and related polymer precursors, the 
temperatures of stabilization and carbonization, the commer-
cial application of multi-jet emitters/nozzles, improving the 
toughness of electrospun nanofibers by synthesizing novel 
composite materials. Last but not least, electrospun nanofib-
ers also need further deeply investigated in the application of 
ZABs, for instance, the weakness of imperfect cycle stability 
and the attenuation of capacity. In summary, the rational 
design of rich nanofibers in active sites and high porosity 
via electrospinning technique is still popular in advanced 
battery devices. Electrospun nanofibers probably create an 
avenue to replace precious metals catalysts in future, which 
will provide valuable insight in the innovation and applica-
tion of ZABs based on electrospun nanofibers.
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