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Abstract

Telomeres are specialized structures located at the ends of chromosomes that are critical for maintaining genomic integrity.
Telomeres are shortened during each cycle of cell division because chromosomes are not able to completely replicate, a
phenomenon known as the end-replication problem. Telomere shortening or dysfunction causes genome instability and is
implicated in a variety of diseases, including cancer, cardiovascular disease and neurodegenerative disorders. Here, we discuss
recent advances in basic and clinical research into telomere regulation and maintenance, and highlight how dysfunctional

telomeres influence aging and age-related diseases.
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Introduction

Telomeres are specialized structures located at the ends of
chromosomes. Structurally, telomeres are composed of tan-
dem-repeat sequences (TTAGGG) in vertebrates and are ter-
minated by a single-stranded overhang of the G-rich strand
(Fig. 1). Telomeres protect the end of chromosome from
degradation and DNA repair activities (de Lange, 2009).
Because of a phenomenon known as the ‘end-replication
problem’, which was introduced by Olovnikov and Wat-
son about 50 years ago (Olovnikov, 1973; Watson, 1972),
DNA polymerase cannot replicate sequences at 3” ends and
telomeres lose TTAGGG repeats with each cell division.
Once telomere shortening reaches a critical length, referred
to as the “Hayflick limit” (Harley et al., 1990), cells undergo
growth arrest and become senescent. Therefore, the length
of the telomere is highly correlated to the number of cell
division, and telomeres are regarded as the ‘molecular
clock’ of cellular aging. Telomeres have many other impor-
tant functions, including the regulation of gene expression
by the telomere position effect (Gottschling et al., 1990).
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Telomere chromatin contains telomeric repeat-containing
RNA (TERRA), which has been implicated in telomerase
regulation, organization of heterochromatin at telomeres and
in the regulation of gene expression (Porro et al., 2014).
Moreover, telomeres are critical to ensure proper chromo-
some separation during mitosis (Canudas & Smith, 2009).

Telomere dysfunction causes chromosomal instabil-
ity, which is associated with many age-related diseases. In
highly proliferating tissues such as the skin, gastrointestinal
tract and hematopoietic system, progressive telomere attri-
tion, due to the low level of telomerase and the continu-
ous renewal of the tissues, trigger DNA damage responses,
whereas ROS-induced damage of telomere sequences causes
attrition and uncapping of telomere in lowly proliferative tis-
sue such as heart, brain, and liver (Chakravarti et al., 2021).
Telomere dysfunction not only causes genome instability,
but also contributes to inflammatory responses in aging-
related diseases including atherosclerosis (Hagg, 2018), type
2 diabetes (Cheng et al., 2020), osteoarthritis (Bekaert et al.,
2005), and Parkinson’s (Chen & Zhan, 2021) and Alzhei-
mer’s diseases (Lukens et al., 2009).

In this review, we provide an overview of current tel-
omere research. We will describe the structure of telomeres,
then introduce the mechanisms of telomere maintenance and
lengthening and finally highlight the role of telomere dys-
function in cardiovascular disease, neurological disorder and
cancer.
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Fig.1 Telomere structure. A Telomeres are composed of tandem-
repeat sequences (TTAGGG). Telomeric DNA is largely double-
stranded, but ends in a short single-stranded G-rich 3’ overhang. B
The ends of telomeres are protected by invasion of the terminal sin-
gle-stranded DNA overhang into duplex TTAGGG repeats to form

Telomere structure and maintenance

The average length of telomere DNA varies by species. In
humans, telomeres are typically 10—15 kb in length and
in mice are about 25-40 kb in length (Blackburn, 2001;
Blasco, 2005; Moyzis et al., 1988). The telomere is cov-
ered by the shelterin complex (de Lange, 2005, 2018), a
multimer composed of six protein subunits: TRF1, TRF2,
TPP1, POT1, TIN2, and RAP1 (Fig. 1A, B). TRF1 and
TRF2 directly bind to duplex TTAGGG repeats, and
TRF2 forms a heterodimer with RAP1 (de Lange, 2018;
Janouskova et al., 2015). POT1 recognizes single-strand
TTAGGG overhangs and binds to TPP1 (Wu et al., 2012).
TIN2 connects POT1-TPP1 to TRF1 and TRF2 to form a
large complex (Hu et al., 2017). Shelterin interacts with
both double-stranded and single-stranded telomeric DNA
and is sufficiently abundant to bind all telomeric DNA
(Takai et al., 2010). This higher-order structure can fold
back and form a T-loop (Griffith et al., 1999). When the
guanine-rich single chain folds back to invade the double-
stranded region, the two chains of the double-stranded
region are separated, and the three chains form a D-loop
structure (Fig. 1B). Telomeres can also form another spe-
cialized structure, in which the four adjacent TTAGGG
repeats can form a four-stranded structure, known as a
guanine quadruplex (G quadruplex) (Burge et al., 2000).
A square plane is formed by the four guanine residues of
the telomere quadruplex; each guanine residue is a hydro-
gen bond donor and acceptor, meaning that Hoogsteen

,,,,, GG
G G

,,,,, GG
G G

,,,,, GG
.G G

the T-loop and D-loop. The shelterin complex (TRF1, green; TRF2,
blue; TPP1, red; POT1, orange; TIN2, yellow and RAP1, gray) pre-
vents the ends of telomeres from being recognized as damaged DNA
and activation of DNA damage response. C Structure of the telomere
G quadruplex

hydrogen bond pairing occurs between guanine residues
(Fig. 1C). It has been proposed that G-quadruplexes can
sequester the 3 end of the telomere and prevent it from
being extended by telomerase (Rhodes & Lipps, 2015).
Telomeres are susceptible to the actions of DNA damage
response pathways (de Lange, 2018). The shelterin complex
has fundamental roles in the regulation of telomere length
and telomere maintenance. This complex is composed of six
core proteins including TRF1, TRF2, TPP1, POT1, TIN2,
and RAPI (de Lange, 2018). TRF1 negatively regulates
telomere length and participates in telomere DNA replica-
tion (Sfeir et al., 2009; Steensel & Lange, 1997). TRF2 and
POT1 control the formation of the 3* overhang at telomeres,
which is critical for T-loop formation and telomere protec-
tion (Doksani et al., 2013; Griffith et al., 1999; Wu et al.,
2012). The T-loop protects chromosome ends from degra-
dation and deleterious effects of DNA damage responses to
contribute to normal telomere function (Griffith et al., 1999).
POT1 binds to single-stranded DNA with high specificity
and affinity, thereby inhibiting the ATR damage signal and
inhibiting homologous recombination (Denchi & Lange,
2007). The POT1-TPP1 complex increases the affinity of
POT1 binding to single-stranded DNA, which stabilizes
chromosome ends (Wang et al., 2007; Xin et al., 2007).
When telomeres are in an open state, such as during replica-
tion or extension, POT1-TPP1 recruits telomerase to accel-
erate the process of telomere extension (Xin et al., 2007).
TIN2 acts as a bridge connecting the POT1-TPP1 complex
with TRF1 and TRF2, and stabilizes binding between TRF1
and TRF2 and double-stranded DNA. The RAP1-TRF2
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complex inhibits non-homologous end joining of telomeres
(Sfeir et al., 2010). The dysfunction of shelterin complex
due to critically shortened telomeres and/or mutations in
shelterin components triggers DNA damage response (DDR)
at chromosome ends.

Mechanisms of telomere lengthening

In normal human somatic cells, telomeres are shortened
50-200 bases every cell cycle. However, in tumor cells,
the telomere length can be maintained usually by telomer-
ase. Telomerase is a reverse transcriptase that synthesizes
telomeric DNA and is composed of the telomerase RNA
component (TERC) and the telomerase reverse transcriptase
(TERT) (Schmidt & Cech, 2015). Telomerase activity is
usually absent in normal human somatic cells due to tran-
scriptional repression of hTERT gene during embryonic
differentiation, except in some high proliferative tissues,
such as male germ cells, stem cell populations and activated
lymphocytes, the enzyme remains active. However, during
the cellular immortalization and transformation process, tel-
omerase is reactivated by diverse and complex mechanisms
(Cong et al., 2002). Recent studies demonstrated that TERT
promoter mutations are the most common non-coding muta-
tions in human cancer (Fredriksson et al., 2014; Rheinbay
et al., 2020). Re-activation telomerase plays a critical role
in the initiation and development cancer by maintaining tel-
omere length and replicative capacity of cancer cells (Bod-
nar et al., 1998; Yuan et al., 2019).

The alternative lengthening of telomeres (ALT) is another
mechanism of telomere maintenance and is observed
in~10-15% of cancer cells (Cesare & Reddel, 2010). ALT
telomeres are characterized by chronic replication stress and
are susceptible to double-strand breaks (DSBs) (Cesare &
Reddel, 2010), which can result in a break-induced telomere
synthesis through break-induced replication (BIR) mecha-
nism, a type of homology-directed repair (Kramara et al.,
2018; McEachern and Haber, 2006). ALT is naturally pre-
sent in tumors and many immortal cell lines without reac-
tivating telomerase, but it can also be induced by inhibiting
telomere replication or by depleting several factors needed
for telomere integrity like the shelterin complex (Bryan
et al., 1995; Epum & Haber, 2021). ALT-associated repli-
cation defects trigger RAD52-dependent mitotic DNA syn-
thesis (MiDAS) (Min et al., 2017). Cancer cells that rely on
the ALT mechanism have a very variable and rapidly chang-
ing telomere length. For example, 61% of human pancreatic
neuroendocrine tumors have variable telomeres and display
characteristics of ALT (Heaphy et al., 2011). In addition to
maintaining telomere length in telomerase-deficient mam-
malian cells, ALT has several additional characteristics. The
C-circle, which is an extrachromosomal circle with an intact
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CCCTAA (C-rich) strand, is ALT specific (Epum & Haber,
2021; Nabetani & Ishikawa, 2009). ALT is often associ-
ated with promyelocytic leukemia (PML) body, referred to
as ALT-associated PML body (APB) (Yeager et al., 1999).
APB contains PML protein, telomeric DNA, and the tel-
omere-specific binding proteins hTRF1 and hTRF2 (Yeager
et al., 1999). Immunostaining showed that some proteins
involved in DNA synthesis and recombination have been
found in APBs, including replication factor A, RADS51, and
RADS2 (Yeager et al., 1999). Furthermore, both ATRX and
DAXX gene mutations are significantly correlated with ALT
positivity (Heaphy et al., 2011). Studies have shown that
ATRX affects telomeric double-strand break (DSB) repair
through telomere cohesion and a DAXX-dependent pathway
(Lovejoy et al., 2020).

TERRA (telomeric repeat-containing RNA) is a long
non-coding RNA that is transcribed from subtelomere and
telomere-derived sequences and contains (UUAGGG)n
repeat sequences (Azzalin et al., 2007). Recent studies have
shown that all eukaryotic cells examined express TERRA
(Azzalin et al., 2007; Luke et al., 2008; Schoeftner & Blasco,
2008). The length of TERRA ranges from 100 bp to more
than 9 kb in mammals (Azzalin et al., 2007). Since TERRA
has a unique G-rich (UUAGGG)n sequence, it has the poten-
tial to generate TERRA—telomere DNA hybrids that cre-
ate R-loop structures (Aguilera & Garcia-Muse, 2012; Graf
et al., 2017). The shortening of telomeres induces TERRA
expression and TERRA R-loops formation, which in turn
activates the DNA damage response (DDR) and homology
directed repair (HDR) at critically short telomeres (Graf
et al., 2017). In addition, TERRA might also fold into G
quadruplexes (Xu et al., 2008, 2010), which has been shown
to inhibit telomerase activity (Mei et al., 2021; Rocca et al.,
2017).

Telomere crisis and genome instability

Critically shortened telomeres or dysfunctional telomeres
can be recognized as a double-stranded DNA break and trig-
ger a permanent growth arrest known as cellular senescence
(Maciejowski et al., 2017). In the absence of tumor suppres-
sor pathways such as the p53 and/or Rb pathways that pre-
vent cell cycle arrest induced by telomere shortening, cells
continue to divide with further telomere loss, which ulti-
mately leads to the genome instability. This causes the cells
to enter into a period called telomere crisis (Maciejowski &
Lange, 2017; Shay & Wright, 2005). Telomere crisis occurs
during the early stages of tumorigenesis (Dewhurst, 2020).
During telomere crisis, unprotected chromosome ends
generate end-to-end fusions and dicentric chromosomes,
resulting in breakage—fusion—bridge cycles, aneuploidy
and tetraploidization, translocations, and amplifications
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(Hayashi et al., 2015). These processes eventually lead
to various forms of genome instability through kataegis
(localized hypermutations) and chromothripsis (clustered
chromosomal rearrangements) during mitosis (Artandi &
DePinho, 2010; Maciejowski & Lange, 2017; Maciejowski
et al., 2015) (Fig. 2).

The breakage—fusion—bridge cycle occurs when a bicen-
tric chromosome (including a chromosome formed by tel-
omere fusion) breaks, followed by a secondary fusion of
the broken ends in the daughter cells (Eisfeldt et al., 2019;
Tang et al., 2018). The fusion between sister chromatids can
also lead to end deletions or inverted end repeats, which can
be amplified in subsequent breakage—fusion—-bridge cycles
(Maciejowski & Lange, 2017). Many studies indicate that
the breakage—fusion—bridge cycle is closely related to cancer
outcomes such as loss of heterozygosity, translocation, and
gene amplification (Maciejowski et al., 2015).

Recently, it has been shown that chromothripsis occurs as
a result of telomere crisis. Chromothripsis describes a pat-
tern of genome rearrangement in which fragmented or bro-
ken chromosomes are randomly reconnected to the derived
chromosome arrangement (Cleal & Baird, 2020; Stephens
etal., 2011). Thus, chromothripsis could promote tumorgen-
esis in a variety of ways. Chromothriptic breakpoints are fre-
quently associated with kataegis mutation clusters (Macie-
jowski & Lange, 2017)—hypermutated patterns of clustered
C>T and C> G changes at TpC dinucleotides associated
with APOBEC-mediated mutagenesis (Maciejowski et al.,
2015). Whole-genome sequence analysis revealed that

kataegis occurs at the break sites of chromothriptic rear-
rangements (Maciejowski et al., 2015).

Dysfunctional telomeres in age-related
diseases

The special properties of telomeres not only protect the ends
of linear chromosomes from degradation and repair activities
to ensure genome stability, but are also critically involved in
a number of cellular processes contributing to the pathology
of aging and cancer. Telomeres are protected and maintained
by the shelterin complex; therefore, deficiency of any shel-
terin component may result in telomere dysfunction, which
triggers DNA damage response. Recent studies using mouse
models suggest that the deficiency of shelterin complex has
been implicated in cancer susceptibility and aging-related
pathologies (Martinez & Blasco, 2017).

Numerous studies have implicated telomere dysfunction
as a major driver of age-related diseases, such as dyskera-
tosis congenita (DC), aplastic anemia (AA), and idiopathic
pulmonary fibrosis (IPF) (Armanios, 2013). DC is associ-
ated with germline mutations in genes involved in telomere
biology (Mitchell et al., 1999). DKC1 encodes the nuclear
protein dyskerin, which is as an essential component of the
telomerase holoenzyme, and is the first gene found mutated
in DC (Holme et al., 2012; Mitchell et al., 1999). The clas-
sic phenotype of DC consists of the mucocutaneous triad
of dysplastic finger and toenails, oral leukoplakia, and lacy,

Fig.2 Telomere crisis and
genome instability. In the
presence of tumor suppressor
pathways (such as p53/p21 and/
or Rb/p16 pathways), critically
shortened or dysfunctional
telomeres induce leads to
cellular senescence, whereas
in the absence of tumor sup-
pressor pathways, unprotected
chromosome ends can generate
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reticular skin pigmentation (Niewisch & Savage, 2019). AA
is a common complication in DC patients, and was later
characterized as an independent telomere biology disorder
(Savage & Bertuch, 2010). About 10-20% of patients with
acquired AA have short telomeres (Dolberg & Levy, 2014).
Moreover, IPF is considered the most prevalent manifesta-
tion of telomere disorders (Armanios, 2012). Studies have
shown that mutations in TERT or TERC confer a dramatic
increase in susceptibility to adult-onset IPF (Tsakiri et al.,
2007). These findings provide strong evidences that telomere
length is a determinant or a predictor for some of specific
diseases.

A recent study highlighted that there is a strong correla-
tion between whole-blood telomere length and the telomere
length of various tissues, and showed that the telomere
length of blood cells is a biomarker of human aging and
disease (Demanelis et al., 2020). The researchers collected
6391 tissue samples across more than 20 tissue types from
952 individuals, and characterized the variability of telomere
length of each tissue sample. Generally, telomere length dif-
fers across human tissue types, but is correlated among tis-
sue types. Whole blood telomere length was positively cor-
related with tissue-specific telomere length measurements,
and leukocyte blood telomere length is used as a proxy for
telomere length in many tissue types (Demanelis et al.,
2020). The positive correlations of telomere length among
tissue types are likely due to the fact that the initial telomere
length in the zygote affects telomere length in all adult tis-
sues through mitotic inheritance. This finding provides
support for the validity of epidemiological studies based on
blood telomere length. Shortened telomeres are associated
with an increased risk of cardiovascular disease, type 2 dia-
betes, neurodegenerative disorders, and cancer (Table 1).

Table 1 Association of telomere length and age-related diseases

Cardiovascular disease is the leading cause of death
worldwide. Several studies indicate that telomere dys-
function is associated with coronary heart disease, ath-
erosclerosis, myocardial infarction, heart failure and stroke
(Willeit et al., 2010). Compared with age-matched healthy
controls, individuals with early myocardial infarction have
shorter leukocyte telomere length (Brouilette et al., 2003).
Telomeres are shorter in leukocytes from patients with
severe heart failure (van der Harst et al., 2007), and there
is a significant independent association between shorter
telomeres and cardiovascular risk (Brouilette et al., 2007,
D'Mello et al., 2016).

Similarly, telomere shortening is associated with the
development of type 2 diabetes and related clinical condi-
tions such as insulin resistance, impaired glucose toler-
ance, obesity and inflammation. A study conducted over
5 years indicated that diabetic patients have significantly
shorter leukocyte telomere length (Zhao et al., 2014).
Patients with type 2 diabetes also had shorter telomeres
in peripheral monocytes and endothelial cells (Sampson
et al., 2006). Meanwhile, two GWAS studies have indi-
cated that type 2 diabetes is strongly linked to telomere
shortening (Liu et al., 2014; Saxena et al., 2014).

Alzheimer's disease is one of the most common neuro-
degenerative diseases. Defects in telomere maintenance
accelerate aging in mice and humans (Blasco et al., 1997;
Herrera et al., 1999; Lopez-Otin et al., 2013). Many stud-
ies have showed that leukocyte telomere length is shorter
in patients with Alzheimer's disease than in control indi-
viduals (Forero et al., 2016), and that telomere length
in peripheral blood mononuclear cells may help predict
disease progression (Tedone et al., 2015). Telomere

Disease Sample size Study type Method References
Cardiovascular disease

Coronary heart disease 566 Observational QPCR Hammadabh et. al. (2017)

Atherosclerosis 259 Observational Southern blot Hagg (2018)

Myocardial infarction 203 Observational Southern blot Brouilette et al. (2003)

Stroke 419 Observational Southern blot Fitzpatrick et. al. (2006)
Type 2 diabetes 17 cohorts Metaanalysis N/A Cheng et al. (2020)
Neurodegenerative diseases

Alzheimer's disease 30 Observational qPCR Lukens et. al. (2009)

Parkinson’s disease 37,688 Mendelian randomization N/A Chen and Zhan (2021)
Cancer

Breast cancer 70 Observational Slot blot Fordyce et al. (2006)

Lung cancer 1385 Observational qPCR Sanchez-Espiridion et al. (2014)

Colon cancer 124 Observational Southern blot Nakamura et al. (2000)

Prostate cancer 128 Observational Slot blot Heaphy et al. (2010)
Osteoporosis 110 Observational Southern blot Bekaert et al. (2005)
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shortening is also involved in the pathogenesis of the neu-
rological disorder Parkinson’s disease (Eitan et al., 2014).

A number of studies have explored the relationship
between telomere length and cancer risk or prognosis (Aviv
et al., 2017). Telomeres in breast, colon, and prostate tumor
tissues are shorter than those in adjacent tissue from the
same patient (Fasching, 2018). Furthermore, in telomerase-
positive tumors, short telomeres are usually associated with
cancer progression and reduced survival rate (Fordyce et al.,
2006; Valls et al., 2011). However, in lung cancer, patients
with adenocarcinoma have longer telomeres than controls,
while patients with squamous cell carcinoma have shorter
telomeres than controls (Sanchez-Espiridion et al., 2014).
Whether telomere length can be used to predict cancer risk
prediction requires further investigation.

Telomeres in osteoblasts and mesenchymal stem cells
are shortened with age. The first large-scale epidemiology
study by Valdes et al. showed that there is a significant cor-
relation between leukocyte telomere length and the bone
mineral density of the spine and forearm (Boccardi et al.,
2013). In a prospective study of elderly population (age
range 71-86 years), shorter leukocyte telomere length was
associated with bone loss in several distal forearm locations
(Bekaert et al., 2005). Experiments in mice showed that the
replicative senescence of osteoblast precursors promotes
bone loss and senile osteoporosis (Saeed et al., 2011). A
recent study suggests that short and dysfunctional telomeres
contribute to age-associated renal fibrosis by influencing the
epithelial-to-mesenchymal transition program (Saraswati
et al., 2021).

Telomeres and the external environment

Telomere length serves as a ‘molecular clock’ for human
aging. Strong evidence indicates that telomere length in
parental germ cells affects telomere length in offspring cells
(Delgado et al., 2019). Besides genetic factors, lifestyle factors
(diet, physical activity, cigarette smoking) and environmental
exposures (including radiation) also affect telomere length
(Chakravarti et al., 2021; Fasching, 2018). A meta-analysis
showed a positive correlation between adherence to the Medi-
terranean diet and maintenance of telomere length (Canudas
et al., 2020). A study conducted on 5309 adults from the USA
with no history of diabetes or cardiovascular disease showed
that people who consumed sugar-sweetened beverages had a
shorter leukocyte telomere length (Leung et al., 2014). Tel-
omere length correlates with body mass index; obese individu-
als have shorter telomeres and weight loss positively correlates
with telomere length (Wulaningsih et al., 2018). Increased
physical activity positively correlates with telomere length,
and people who engage in higher levels of physical activity
have longer telomeres than sedentary individuals (Ludlow

et al., 2008). The NASA Twins Study, in which one twin went
to the International Space Station for 340 days while the other
identical twin remained on Earth, observed the effects of the
Earth and space environments on physiological functions
(Garrett-Bakelman et al., 2019). Both twins had similar tel-
omere lengths at the start of the study. The telomere length of
the twin on Earth remained relatively stable, whereas telomere
length increased significantly in the other twin during the
space flight and then shortened rapidly upon return to Earth.
Interestingly, within 6 months after return to Earth, telomere
length stabilized to near preflight averages, but increased num-
bers of short telomeres were observed. Together, these studies
strongly support the notion that telomere length is carefully
regulated and is subject to changes in lifestyle and environ-
ment factors.

Conclusions and future perspectives

In conclusion, telomeres have a crucial role in maintaining
genome stability. Detailed understanding of the mechanisms
of telomere maintenance and regulations will provide insights
into the role of telomere attrition in disease development and
progression, and opportunities for prognosis and therapeutic
intervention. Basic and clinical research showed that telomere
length can be used as an indicator of aging and age-related
diseases. The telomerase repair therapy has been explored as
a potential anti-aging or anti-tumor strategies. Several small
molecules such as TA-65 and the histone deacetylase inhibi-
tors targeting TERT have been identified (Bernardes de Jesus
et al., 2011; Yu et al., 2018). Jesus et al. show that TA-65 is
capable of increasing average telomere length and decreasing
the percentage of critically short telomeres in haploinsufficient
mouse embryonic fibroblasts (Bernardes de Jesus et al., 2011).
Won et al. suggest that the HDAC complex plays an important
role in the regulation of hTERT in various proliferation condi-
tions such as normal cycling, senescent, and tumor cells (Won
et al., 2004). Future research will reveal the complex biologi-
cal mechanisms between telomere function and diseases. This
research may be translated into more accurate predictors of
age-related disease risks and more effective treatment strate-
gies that may ultimately be useful in monitoring and interven-
ing in the aging process.
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