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Abstract
Human cells need to cope with the stalling of DNA replication to complete replication of the entire genome to minimize 
genome instability. They respond to “replication stress” by activating the conserved ATR-Claspin-Chk1 replication check-
point pathway. The stalled replication fork is detected and stabilized by the checkpoint proteins to prevent disintegration 
of the replication fork, to remove the lesion or problems that are causing fork block, and to facilitate the continuation of 
fork progression. Claspin, a factor conserved from yeasts to human, plays a crucial role as a mediator that transmits the 
replication fork arrest signal from the sensor kinase, ataxia telangiectasia and Rad3-related (ATR), to the effector kinase, 
Checkpoint kinase 1 (Chk1). Claspin interacts with multiple kinases and replication factors and facilitates efficient repli-
cation fork progression and initiation during the normal course of DNA replication as well. It interacts with Cdc7 kinase 
through the acidic patch segment near the C-terminus and this interaction is critical for efficient phosphorylation of Mcm 
in non-cancer cells and also for checkpoint activation. Phosphorylation of Claspin by Cdc7, recruited to the acidic patch, 
regulates the conformation of Claspin through affecting the intramolecular interaction between the N- and C-terminal seg-
ments of Claspin. Abundance of Claspin is regulated at both mRNA and protein levels (post-transcriptional regulation and 
protein stability) and affects the extent of replication checkpoint. In this article, we will discuss how the ATR-Claspin-Chk1 
regulates normal and stressed DNA replication and provide insight into the therapeutic potential of targeting replication 
checkpoint for efficient cancer cell death.
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Introduction

Cancer incidence is a prevalent cause for human death in 
developed countries with aging society. How to effectively 
inhibit cancer cells from progression, metastasis and even 
relapse is one of the key medical issues that are being studied 
in different disciplines from various points of views (Klein, 
2020). Cancers can arise from accumulation of genetic 
alterations that may be generated during chromosome rep-
lication and inheritance (Andor et al., 2017). Accordingly, 

investigation of molecular mechanisms of maintenance of 
genome integrity has been a mainstay of cancer research.

The major cause of genome instability is the presence 
of replication stress during DNA replication which stalls 
replication fork progression and reduces the replication fork 
rate (Bartkova et al., 2006; Di Micco et al., 2006; Gorgou-
lis et al., 2005). The sources of replication stress include 
lesions on DNA (DNA strand breaks, double-strand cross-
linking, DNA assaults, and chemical modification of bases, 
etc.), unusual DNA structures on the template DNA, reduced 
supply of nucleotide precursors, and collision of replication 
and transcription. The replication stress can be induced by 
untimely induction of DNA replication or by dysregulated 
origin firing (Gaillard et al., 2015).

To preserve the genome integrity during replication 
stress, the ATR-Claspin-Chk1 replication checkpoint path-
ways is activated (Gaillard et  al., 2015). Here, we will 
mainly focus on the cellular roles of the ATR-Claspin-Chk1 
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pathway in control of DNA replication, replication stress 
responses and oncogenesis. Readers are also referred to 
other recent reviews on Claspin (Azenha et al., 2019; Smits 
et al., 2019).

Functional roles of Claspin during normal 
DNA replication, replication fork 
progression and initiation

Although Claspin and its yeast ortholog, Mrc1, were discov-
ered as a regulator of replication checkpoint, they have been 
shown to regulate origin firing and fork progression dur-
ing the normal course of DNA replication both in yeast and 
human cells (Hayano et al., 2011; Petermann et al., 2008; 
Yeeles et al., 2017). Recently, we reported that Claspin is 
required also for DNA replication initiation in non-cancer 
cells (Masai et al., 2017; Yang et al, 2016). Claspin recruits 
Cdc7 kinase, essential for initiation, to the conserved acidic 
patch (AP) region (residues 986–1100) near the C-terminus 
of Claspin. The replacement of the acidic residues in AP 
with alanine impairs the Cdc7 binding and abolishes the 
ability of Claspin to recruit Cdc7 kinase, and reduces the 

phosphorylation of Mcm (Fig. 1A). Accordingly, the rate of 
DNA synthesis is compromised in the Claspin AP-mutant 
MEF cells. Cdc7 can also phosphorylate multiple sites on 
Claspin (Kim et al., 2008; Rainey et al., 2013; Yang et al., 
2019). Indeed, DE/A mutant of Claspin is not phosphoryl-
ated by Cdc7 kinase in vitro. The AP mutation abrogates 
the intramolecular looping between the N-terminal (N-ter) 
and C-terminal (C-ter) regions within Claspin. This intramo-
lecular interaction suppresses the DNA- and PCNA-binding 
activities of Claspin, and is disrupted by phosphorylation 
of the N-ter by Cdc7, strongly suggesting that the recruit-
ment of Cdc7 by Claspin plays important roles in initia-
tion not only by facilitating the phosphorylation of Mcm 
proteins, but also by activating DNA and PCNA binding of 
Claspin (Masai et al., 2017; Matsumoto et al., 2017; Yang 
et al, 2016).

To ensure appropriate replication fork progression, Ctf4 
(And-1), Mrc1 (Claspin), and Csm3/Tof1 (Tipin/Timeless) 
together with CMG complexes, constitute replisome pro-
gression complexes in yeast (Baretić et al., 2020; Gambus 
et al., 2006; Fig. 1B). Claspin has been shown to be an inte-
gral component of the replisome progression complex, and 
loss of Claspin leads to reduced replication fork rate in cells. 
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Fig. 1  The roles of Claspin in DNA replication initiation and fork 
progression. A The AP (Acidic Patch) and basic patch segments of 
Claspin undergo intramolecular interaction. Cdc7 kinase is recruited 
to AP of Claspin on the chromatin (indicated by a red arrow; ①), 
facilitating the phosphorylation of Mcm and Claspin itself. (indicated 
by green arrows) This phosphorylation disrupts the intramolecular 

interactions within Claspin (②) and facilitates its binding to PCNA 
(indicated by a red arrow) and DNA (③). All of them contribute to 
efficient DNA replication initiation. B Through direct interactions 
with Tipin, Timeless, and CMG complex, Claspin stabilizes the rep-
lication fork, regulates fork speed, and ensures efficient fork progres-
sion
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The direct role of Mrc1 in efficient DNA replication fork 
progression in yeast has been further demonstrated using 
the in vitro reconstituted DNA replication system (Yeeles 
et al., 2017). In the reconstituted DNA replication system 
with a set of origin firing proteins (e.g., Cdc45, DNA poly-
merase ε, Mcm10, Sld3/7, Sld2, Dpb11, S-CDK, GINS), 
replication elongation factors (e.g., TopoII, DNA polymer-
ase α, RPA, Ctf4) and fork-associating factors (Mrc1, CMG, 
FACT, TopoI, Csm3, and Tof1), omission of Mrc1 dramati-
cally decreases DNA synthesis rate, nearly identical to the 
replication profile exhibited by minimal replisome which is 
composed of all origin firing proteins along with TopoII and 
Ctf4. Replication fork rate is much reduced in the absence of 
Csm3 and Tof1, suggesting Mrc1 in conjunction with Csm3 
and Tof1 contributes to replication fork progression at the 
maximum rate (Yeeles et al., 2017).

It was previously reported that the interaction between 
Mrc1 and Hsk1 (fission yeast homologue of Cdc7 kinase) 
regulates origin firing in yeast in a checkpoint-independent 
fashion (Matsumoto et al., 2017). This interaction relies on 
the Hsk1 bypass segment (HBS) in Mrc1 to which Hsk1 
binds. Similar to Claspin that is phosphorylated by Cdc7, 
Mrc1 is robustly phosphorylated by Hsk1 kinase through 
the HBS and this phosphorylation leads to the disruption 
of intramolecular looping formed between HBS and N-ter-
minal target of HBS (NTHBS) within Mrc1 (Matsumoto 
et al., 2017). Thus, regulation of Claspin/Mrc1 through an 
intramolecular interaction is evolutionally conserved.

Furthermore, Claspin (Mrc1 in yeast) in conjunction 
with TIMELESS (Tof1 in yeast) and TIPIN (Csm3 in yeast) 
is physically tethered to mini-chromosome maintenance 
(MCM) DNA helicase subunits and DNA polymerases. This 
association is important for both efficient fork progression 
and for fork stabilization under normal and replication stress 
conditions (Leman & Noguchi, 2012; Leman et al., 2010; 
Petermann et al., 2008; Yoshizawa-Sugata & Masai, 2007). 
Recent studies show that Mrc1 forms a complex called MTC 
or fork protection complex with Tof1 and Csm3 (Lewis 
et al., 2017; Noguchi et al., 2003). The association of the 
MTC complex with the fork significantly increases the fork 
speed and replication progression, shown by DNA stretching 
assay at the single-molecule level. The transient interaction 
between MTC and replisome is due to the weak affinity of 
MTC to replisomes, making the movement of the replisome 
a highly dynamic process. It has also been reported that 
Mrc1 in cooperation with Tof1 and Csm3 protects specifi-
cally CAG repeats from DNA contractions and breakages. 
This is indicated by the finding that Mrc1 deletion leads to 
higher vulnerability of CAG repeats (Gellon et al., 2019). 
The protective functions of Mrc1 in CAG repeat stabil-
ity might be due to the fact that the MTC complex can be 
coupled to the helicases, such as Srs2 and Sgs1, in yeast. 
Similar roles of Claspin-Timeless-Tipin in stabilization of 

trinucleotide repeats are observed in human cells (Liu et al., 
2012a, 2012b).

Although Mrc1 and Claspin are orthologs and possess 
functional and mechanical similarities including intramo-
lecular regulation between N- and C-terminal segments, as 
stated above, there may be some differences in terms of their 
functional significances (Matsumoto et al., 2017). The N–C 
interaction in the yeast Mrc1 appears to contribute to the 
negative regulation of initiation, since its disruption causes 
precocious initiation specifically at early-firing origins. In 
mammalian cells, this interaction contributes positively to 
the initiation in non-cancer cells. However, the effects of the 
intramolecular interaction differ between cell types in mam-
malian cells (Hsiao et al. unpublished data), and thus roles of 
Claspin need to be evaluated in various cell types. Claspin 
could also negatively regulate the initiation in mammalian 
cells (see below).

The conserved ATR‑Claspin‑Chk1 pathway 
regulates replication checkpoint

The stalled replication forks are quickly detected by the 
conserved ATR-Claspin and various downstream events 
are induced, including the suppression of origin firing, 
slowed replication fork progression and inhibition of mito-
sis (Tercero et al., 2003). However, stalled replication forks 
could generate DNA breaks (nicks) if they are not properly 
attended by the ATR-Claspin-Chk1 checkpoint pathway. In 
yeast, the DNA replication checkpoint kinase, Cds1, sup-
presses the endonuclease activity of Mus81/Eme1 during 
perturbed DNA replication to maintain genome stability 
(Froget et al., 2008). The Mus81/Eme1 heterodimeric com-
plex can cleave the branched DNAs in a structure-specific 
manner. When the Cds1 functions improperly or is absent, 
DNA is cleaved by Mus81/Eme1 and stalled replication 
forks are at a higher risk of DNA breaks and mutations or 
more vigorous genomic rearrangements (Froget et al., 2008).

DNA damages are caused by persistent endogenous 
and exogenous genotoxic insults and activate DNA dam-
age responses (DDRs) (Gaillard et al., 2015; Técher et al., 
2017). Replication checkpoint/DNA damage checkpoints 
further activate subsequent checkpoint signaling pathways 
for DNA repair and cell cycle arrest. The ATR/Claspin/Chk1 
in human or Mec1(Rad3)/Mrc1/Rad53(Cds1) in yeasts, 
well-conserved in eukaryotes, plays a crucial role in rep-
lication checkpoint control in response to replication stress 
(Bacal et al., 2018; Berens & Toczyski, 2012; Smits et al., 
2019; Yang et al., 2019). However, how this axis is precisely 
controlled is not completely understood.

When replication fork is stalled, ssDNA regions are 
generated and are coated with replication protein A (RPA), 
which is then sensed by ATR-interacting protein (ATRIP) 
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that forms a complex with ATR, triggering ATR auto-
phosphorylation at Thr1989 (Liu et al., 2011). Then, the 
ATR–ATRIP complex stimulated by TopBP1 and ETAA1 
phosphorylates Claspin, resulting in Chk1 phosphoryla-
tion at Ser317 and Ser345 which is mediated by ATR 
(Kim et al., 2008; Liu et al., 2011; Rao et al., 2018; Yang 
et al., 2019; Zou, 2017). Meanwhile, the stalled replica-
tion forks generated by replication stress are protected and 
stabilized by the complex containing Tim, TIPIN, Claspin 
and AND-1 (Kemp et al., 2010; Leman & Noguchi, 2012; 
Leman et al., 2010; Rageul et al., 2020; Yoshizawa-Sugata 
& Masai, 2007). As previously described, Tim and Tipin 
are involved in the maintenance of replication forks under 
both normal replication and replication stress conditions 
(Leman & Noguchi, 2012; Leman et al., 2010; Yoshi-
zawa-Sugata & Masai, 2007). In the presence of repli-
cation stress, Tipin interacts with RPA bound to ssDNA 
and regulates Claspin-dependent Chk1 phosphorylation 
(Kemp et al., 2010) (Fig. 2). It has been further shown 
that SDE2, a PCNA-interacting protein regulating DNA 
replication fork progression, is involved in Chk1 activation 
(Rageul et al., 2020). Since the recruitment of Claspin to 
chromatin is disrupted upon SDE2 or Tim depletion, it has 
been concluded that both SDE2 and Tim are required for 
Claspin engagement in the replication fork complex upon 
replication stress (Rageul et al., 2020).

To sum up, Claspin is tightly associated with success-
ful replication checkpoint activation in response to replica-
tion stress through a complex protein regulatory network. 
Although a number of proteins have been identified to reg-
ulate the ATR-Claspin-Chk1 axis, the detailed molecular 
mechanisms require further investigation.

Regulation of Claspin expression 
and stability in its functional control

Stabilization and modification of Claspin at both transcrip-
tional and post-translational levels play a crucial role in 
replication checkpoint signaling in response to replication 
stress. The Claspin mRNA can be structurally stabilized by 
tristetraprolin (TTP), mRNA-interacting protein (Lee et al., 
2020) (Fig. 3A). The association of 3’ untranslated region of 
Claspin and TTP is required for Claspin to exert its normal 
functions, including replication fork progression and appro-
priate replication checkpoint activation. This is indicated 
by the fact that TTP depletion significantly thwarts normal 
DNA replication fork progression and diminishes Claspin-
dependent Chk1 phosphorylation after replication stress.

At the post-translational level, Claspin can be targeted 
and ubiquitinated by a series of ubiquitinases for its pro-
tein turnover and regulation during cell cycle progression. 

Fig. 2  The signaling cascade of 
the ATR-Claspin-Chk1 replica-
tion checkpoint pathway. Upon 
fork stall caused by replication 
stress, ATR is activated by 
RPA/ATRIP (ATR-interacting 
protein) and TopBP1. Recruit-
ment of ATR–ATRIP to RPA-
coated ssDNA leads to auto-
phosphorylation at Thr-1989 of 
ATR (Liu et al., 2011). Cdc7 (or 
CK1γ1) is recruited to Claspin 
(red arrow), phosphorylating 
T916 and S945 in CKBD of 
Claspin (indicated by green 
arrows), inducing the binding 
of Chk1, which is phosphoryl-
ated by ATR at S317 and S345 
(indicated by a green arrow). 
Phosphorylated Chk1 now 
regulates origin firing, replica-
tion fork progression, cell cycle 
progression, repair of lesions 
and removal of the causes of 
replication stress. See text for 
more details
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However, this can be antagonized by ubiquitin-specific 
peptidases (USPs), including USP7, USP9X, USP11, 
USP20, USP28, and USP29 (Faustrup et al., 2009; Ito et al., 
2018; Martin et al., 2015; McGarry et al., 2016; Wang et al., 
2017; Yuan et al., 2014; Zhao et al., 2021) (Fig. 3B). Deple-
tion of hepatocyte nuclear factor 1-β (HNF-1β) compromises 
Claspin-dependent replication checkpoint activation, includ-
ing Chk1 phosphorylation, in response to replication stress 
(Ito et al., 2018). This is because HNF-1β is needed to sta-
bilize Claspin by stimulating USP28 gene expression and 
enhancing USP28-mediated deubiquitination. These findings 
strongly suggest that manipulation of Claspin expression and 
stability at both mRNA and post-translational levels can be 
exploited for controlling replication checkpoint activity.

Claspin stability is modulated by MTA1, a chromatin 
remodeler that drives transcriptional regulation, as well (Li 
et al., 2010). MTA1 is stabilized by UV which suppresses 
MTA1 ubiquitination and thus prevents its degradation, and 
is required for the efficient expression of Chk1 and Claspin. 
MTA1 interacts with ATR in response to UV, and main-
tains the expression levels of Claspin and Chk1, and thus is 
required for efficient replication checkpoint activation.

Protein kinases control replication 
checkpoint in response to biological stresses

The key step for the replication checkpoint signaling 
in response to replication stress and fork stalling is the 
recruitment of multiple protein kinases to the stalled fork. 
ATR kinase triggers DNA replication checkpoint signal-
ing in response to replication stress. ssDNA, generated at 

the stalled replication fork, is coated by RPA, which then 
recruits ATRIP, the activator of ATR. In response to repli-
cation stress, Chk1-binding domain (CKBD) in Claspin is 
phosphorylated. This is conducted primarily by Cdc7 kinase 
in cancer cells, while CK1γ1 is predominantly responsible 
in non-cancer cells (Fig. 2; Yang et al., 2019). This phos-
phorylation is absolutely required for binding of Chk1 to 
Claspin, a step prerequisite for checkpoint activation.

ATR and Chk1 kinases cooperatively promote replication 
checkpoint. Chk1 phosphorylation mediated by Claspin and 
ATR induces Cdc2/cyclin B1-mediated cell cycle arrest and 
p53-regulated cellular responses to ssDNA breaks, includ-
ing DNA repair and even apoptosis when the damage is not 
properly fixed (Chen, 2016; Lanz et al., 2019; Ronco et al., 
2017). Cdc25A, a critical factor that promotes G1/S and 
G2/M transition, is phosphorylated and targeted for pro-
teasomal degradation as a result of Chk1 activation, lead-
ing to the delay of S-phase progression and mitotic entry 
(Goto et al., 2019; Ronco et al., 2017) (Fig. 2). Activation 
of Chk1 kinase also induces C-terminal acetylation of p53 
(Craig et al., 2007; Shieh et al., 2000; Yogosawa & Yoshida, 
2018), which enhances p53 DNA-binding affinity, resulting 
in upregulation of its downstream target genes (Ou et al., 
2005).

Furthermore, one recent study illustrates how inhibi-
tion of ATR and Chk1 kinase activities leads to enhanced 
origin firing. Dual inhibition of ATR and Chk1 kinase 
activities destabilizes the interactions between Rif1 and 
phosphatase 1 (PP1), and therefore, PP1 fails to counteract 
the action of Cdc7 and Cdk, required for initiation, leading 
to increased origin firing. This is caused by phosphoryla-
tion of S2205 of Rif1 by Cdk, and authors suggest that 
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ATR and Chk1 suppress Cdk activity during the unper-
turbed S phase (Moiseeva et al., 2019) (Fig. 2). Chk1 can 
also increase replication fork stability in conjunction with 
poly(ADP-ribose) (PAR) via a C2H2 motif (C8-C6-H8-H) 
in Chk1 which is conserved in all vertebrates and thus was 
named as PAR-binding regulatory (PbR) motif (Min et al., 
2013). PAR binding to Chk1 also regulates Chk1 kinase 
activity in an ATR-independent manner, suggesting PAR is 
also involved in Chk1 activation (Min et al., 2013). Chk1 
also affects nucleotide metabolism. RRM1 and RRM2, two 
subunits of ribonucleotide reductase (RNR) are degraded 
upon ATR or Chk1 inhibition via increased CDK2 activi-
ties (Koppenhafer et al., 2020). At cellular level, as RRM1 
and RRM2 are degraded by ATR or Chk1 inhibition, cells 
enter an apoptotic state due to persistent DNA damages, 
suggesting a role of ATR and Chk1 in maintenance of 
nucleotide pools (Koppenhafer et  al., 2020). Further-
more, ATR-mediated phosphorylation of Chk1 at Ser-317 
and Ser-345 induces its auto-phosphorylation at Ser-296 
(Okita et al., 2012). The phosphorylated Ser-296 gener-
ates a docking site for 14-3-3γ protein on Chk1 and also 
enhances interaction between Cdc25A and 14-3-3 protein, 
promoting the complex formation among Chk1, 14–3-3, 
and Cdc25A, leading to Cdc25A degradation and prevent-
ing mitotic entry (Goto et al., 2014; Kasahara et al., 2010). 
Chk1 can activate DNA repair pathways by phosphorylat-
ing BRCA2 and RAD51 (Bahassi et al., 2008; Enomoto 
et al., 2009; Ou et al., 2005).

Next, we would like to discuss structural basis on how 
ATR, Claspin and Chk1 coordinate replication checkpoint. 
A recent structural analysis demonstrates that dimerized 
ATR kinase forms a complex with ATR-interacting pro-
teins (ATRIP) (Rao et  al., 2018). ATR is composed of 
N-terminal heat repeats (N-HEAT; residues 1–1383), FAT 
(FRAP, ATM, TRRAP) domain, a kinase domain (KD), 
and a C-terminal short fragment referred to as FATC. The 
structure of ATR–ATRIP complex with a short peptide of 
Chk1 (residues 343–352) has also been determined. The 
short Chk1 fragment is modeled into the KD polypeptide 
and shown to pack against the structure formed by FATC, 
catalytic loop, and activation loop. Thus, Ser-345 in Chk1 
is right in front of the catalytic site of ATR and can be effi-
ciently phosphorylated (Rao et al., 2018). A study on the 
functional activities of Chk1 phosphorylation sites showed 
that defective Ser-345 phosphorylation of Chk1 exhibits 
impaired replication checkpoint and aberrant mitosis, result-
ing in failure to be localized in the cytoplasm; therefore, 
Ser-345 phosphorylation is critical for replication checkpoint 
activation, mitotic progression, and cytoplasmic localization 
(Niida et al., 2007). On the other hand, Ser-317, another 
crucial residue for phosphorylation of Chk1, affects replica-
tion checkpoint and chromatin binding abilities of Chk1 but 
not mitotic progression and cytoplasmic localization (Niida 

et al., 2007), suggesting differential regulation exerted by 
distinct phosphorylation sites.

Another recent structural study illustrates that Chk1 can 
recognize phosphorylated Claspin with its Lys-54, Arg-129, 
Thr-153, and Arg-162 within the kinase domain (Chk1-KD, 
residues 1–270). These amino acid residues fit to the phos-
phorylated Ser-945 of Claspin and contribute to the proper 
interaction between Chk1 and Claspin (Day et al., 2021). It 
further shows that Chk1-KD can still interact with one of 
its substrates, Cdc25C, in the presence of bound Claspin, as 
indicated by fluorescent polarization (FP) assay and NADH-
coupled ATPase experiments. These results suggest that 
Claspin–Chk1 interactions do not have conspicuous impacts 
on Chk1 kinase activity and that Claspin merely acts as a 
mediator protein to recruit Chk1 for subsequent replication 
checkpoint signaling (Day et al., 2021).

Crosstalk between the replication stress 
checkpoint and general biological stresses

It has been reported that ATR/Claspin/Chk1 or Mec1(Rad3)/
Mrc1/Rad53(Cds1) can be activated by various biological 
stresses (Duch et al., 2013, 2018; Tuul et al., 2013). In bud-
ding yeast, heat shock, osmotic stress, hydrogen peroxide 
 (H2O2), and nutrient deprivation are shown to induce rep-
lication inhibition, in a manner independent of Mec1 and 
Rad53 (Bennett & Clarke, 2006; Duch et al., 2013, 2018; 
Tuul et al., 2013) (Fig. 4A). However, it depends on Mrc1, 
and critical phosphorylation events are identified that occur 
in response to these stresses. A comprehensive kinase 
screening reveals that multiple stress-activated protein 
kinases (SAPKs) are capable of phosphorylating the specific 
N-terminal target residues in response to specific cellular 
stress (Duch et al., 2018). For example, Hog1 interacts with 
and phosphorylates Mrc1 upon osmotic stress, coordinating 
replication program with replication stress induced by tran-
scription–replication collision (Duch et al., 2013, 2018). The 
hog1 mutants fail to phosphorylate Mrc1 and does not slow 
down S phase, exhibiting DNA damages. Also, phosphoryl-
ated Mrc1 induced by Hog1 promotes Cdc45 unloading and 
reduces replication fork rate (Duch et al., 2013). Likewise, 
heat stress, oxidative stress or glucose deprivation induces 
Mpk1, Psk1 and Snf1, respectively, which phosphorylate 
the critical N-terminal target residues of Mrc1 (Duch et al., 
2018). In mammalian cells, Claspin–Chk1 is activated by 
Unfolded Protein Response (UPR) induced by stresses such 
as hypoxia to slow down replication fork and reduce origin 
firing (Fig. 4B). The inhibition of DNA synthesis depends 
on UPR effector PERK, and is associated with phosphoryla-
tion of Claspin (Cabrera et al., 2017). On the other hand, 
hypoxia induced Senataxin, an RNA–DNA hybrid heli-
case, in a PERK-dependent manner. Senataxin decreases 
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the numbers of DNA–DNA hybrids and protects cells from 
DNA damages (Ramachandran et al., 2021).

We observe that Chk1 is activated by a spectrum of cel-
lular stresses, including heat, osmotic stress, arsenate, oxi-
dative stress, hypoxic stress, glucose shock and so forth, in 
mammalian cells, and this activation relies on Claspin (Yang 
et al., unpublished data). Some of these cellular stresses 
appear to directly induce replication stress, whereas others 
may activate Claspin–Chk1 through pathways distinct from 
replication stress.

In conclusion, Mrc1/Claspin coordinates biological stress 
signals as a general mediator which may or may not activate 
the downstream effector kinase (Rad53 or Chk1). Currently, 
upstream sensor and downstream effector kinases of these 
stress-induced replication checkpoint are being examined 
in more detail.

The biological significance 
of the ATR‑Claspin‑Chk1 axis in oncogenesis 
and clinical phenotypes in cancer patients

Genome instability is a major driving force that contributes 
to cancer development and it would be crucial to under-
stand the molecular basis of genome instability to develop 
novel therapeutic strategies. Therefore, major efforts have 
been made on studies of mechanistic links between the 
impaired replication checkpoint control and genome insta-
bility. Claspin plays a central role as a mediator between 

ATR and Chk1, maintaining replication fork stability and 
safeguarding the genome (Faustrup et  al., 2009; Goto 
et al., 2019; Ito et al., 2018; Kim et al., 2008; Martin et al., 
2015; McGarry et al., 2016; Scorah & McGowan, 2009; 
Sørensen et al., 2003; Yang et al., 2019; Yuan et al., 2014). 
The ATR-Claspin-Chk1 pathway ensures genome integrity 
and potentially prevents oncogenesis by several proposed 
mechanisms, including inhibition of mitotic progression 
with incompletely duplicated genome, suppression of ini-
tiation at dormant origins under replication stress (e.g., HU 
treatment), and regulation of dNTP pool (Lecona & Fernan-
dez-Capetillo, 2018; Oakes et al., 2014).

In the following section, we would like to discuss clinical 
correlation between the ATR-Claspin-Chk1 axis and cancer 
formation. ATR was shown to be upregulated in adenoid 
cystic carcinoma (ACC), mediated by MYB, a transcription 
factor noted to be activated in ACC, and this may affect 
ATR-Claspin-Chk1 signaling (Andersson et  al., 2020). 
However, general roles of Claspin in oncogenesis are still 
controversial, as it could either support or inhibit cancer cell 
growth depending on circumstances (Azenha et al., 2017; 
Bianco et al., 2019; Cai et al., 2021; Kobayashi et al., 2019, 
2020; Wang et al., 2017; Yuan et al., 2014). For instance, a 
recent report shows that Claspin and Tim are overexpressed 
in primary lung, colorectal and breast cancer specimens 
and that Claspin together with Tim protein can enhance 
cell proliferation in untransformed fibroblasts and HCT116 
cells, a colorectal carcinoma cell line (Bianco et al., 2019). 
This report further shows that reduction of Claspin and 

Fig. 4  Claspin/Mrc1 coordinates replication checkpoint signaling in 
response to various biological stresses. A Different cellular stresses 
can induce stress-specific kinases, which phosphorylate Mrc1, trig-
gering replication checkpoint signaling in budding yeast. Hog1, 
Mpk1, Snf1, and Psk1 in yeast phosphorylate the N-terminal segment 
of Mrc1 in response to osmotic stress, heat shock, glucose depriva-
tion, and oxidative stress, respectively (Duch et al., 2013, 2018). This 
was termed “Mrc1 transcription–replication safeguard mechanism” 
and was proposed to serve for maintaining genomic integrity in 

response to various cellular stresses. B In mammalian cells, hypoxia 
induces unfolded protein response through PERK, and this would 
lead to Claspin phosphorylation and Chk1 activation in a manner 
dependent on PERK. Hypoxia induces transcription-replication colli-
sion, which results in formation of RNA–DNA hybrids (R-loop). This 
also would lead to replication stress-induced Claspin–Chk1 activa-
tion. Hypoxia also induces Senataxin (RNA–DNA hybrid helicase) 
through PERK-ATF4, which antagonizes the formation of RNA–
DNA hybrids and reduces the replication stress
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Tim expression decelerates replication fork progression in 
HCT116 cells and these two proteins promote the tolerance 
of oncogene-induced replication stress where an oncogenic 
form of Ras protein is introduced. Overall, higher expres-
sion levels of Claspin and Tim are positively associated in 
some primary cancer cells and cancer cell lines, and protects 
cancer cells from oncogene-induced replication stress in a 
checkpoint-independent manner (Bianco et al., 2019). On 
the other hand, Claspin may also possess tumor suppressive 
functions. For example, the expression level of Claspin can 
be stabilized by USP20, a peptidase for ubiquitin that targets 
Claspin for degradation, in gastric cancer (GC) cells and a 
recent study shows that USP20 expression is positively cor-
related with expression levels of Claspin and that a lower 
expression level of Claspin is intimately linked to poorer 
survival and prognosis in GC patients. Indeed, Claspin is 
one of the major substrates targeted by USP20 (Yuan et al., 
2014) and both can suppress tumorigenesis (Wang et al., 
2017). Hence, the dual functions of Claspin, both positive 
and negative, in carcinogenesis require further investigation. 
Furthermore, Chk1 overexpression has also been noted in 
several malignant cancers, including breast cancer, T-cell 
acute lymphoblastic leukemia (T-ALL), and neuroblas-
toma (Ando et al., 2019; Sarmento et al., 2015; Wu et al., 
2019). For instance, Chk1 is overexpressed at mRNA level 
both in T-ALL cell lines and clinical specimens of T-ALL 
patients (Sarmento et al., 2015). Chk1 inhibition in T-ALL 
cell lines causes premature occurrence of DNA replication 
and induces significantly higher levels of DNA damage and 
cancer cell death. In T-ALL xenograft models, Chk1 inhibi-
tion also retards tumor formation.

Claspin has also been linked to oncovirus-associated 
cancer formation (Benevolo et al., 2012; Koganti et al., 
2014, 2020; Spardy et al., 2009). It has been shown that 
several oncogenic viruses interfere with the ATR-Claspin-
Chk1 pathway. Oncogenic Epstein–Barr virus (EBV) acti-
vates STAT3 in B lymphocytes, a transcriptional factor that 
induces a caspase cascade involving caspase 9 and caspase 
7. Caspase 7 then targets Claspin for proteasomal degrada-
tion and inhibits Chk1 phosphorylation at Ser-345 (Koganti 
et al., 2020). Disrupted Claspin–Chk1 pathway permits 
EBV-infected cells to continuously proliferate regardless of 
oncovirus-induced replication stress and DNA lesions, lead-
ing to active viral replication and tumorigenesis.

To conclude, acquired mutations and anomalous expres-
sion in any component of the ATR-Claspin-Chk1 axis or 
disruption of its operation can perturb replication stress 
signaling pathway. The level of Claspin can be high or 
low in different cancer cell lines, and thus, the high level 
of Claspin expression could trigger oncogenesis in some 
cases and in others suppress oncogenesis (Bianco et al., 
2019; Cai et al., 2021; Kobayashi et al., 2019, 2020; Wang 
et al., 2017; Yuan et al., 2014). This suggests the potential 

of the ATR-Claspin-Chk1 axis as an attractive therapeutic 
target for cancer treatment, but the strategy could be differ-
ent depending on the nature of the cancer cells.

Targeting the ATR‑Claspin‑Chk1 axis 
and its utilization as biomarkers for cancer 
therapeutics

Manipulation of the ATR-Claspin-Chk1 replication check-
point pathway could be a potential target of novel cancer 
treatment strategy (Azenha et al., 2017). Cancer cells pos-
sess accumulating genetic alterations due to the defective 
DDR responses (Dieltein et al., 2014; Burgess et al., 2020). 
The aberrations of replication checkpoint and the subsequent 
impairment of the DDR signaling pathways would permit 
cancer cells to continue to progress through the cell cycle 
in the presence of replication stress. Frequent upregulation 
of components for the ATR-Claspin-Chk1 axis in clinical 
cancer samples leads to the proposal that cancer cells are 
more heavily dependent on the ATR-Claspin-Chk1 pathway 
for survival through replication stress compared to normal 
cells. Thus, targeting this pathway and the associated DDR 
in cancer cells may render them more susceptible to rep-
lication impediments, thereby inducing cancer cell death 
(Bianco et al., 2019; Cai et al., 2021; Choi et al., 2014; Gilad 
et al., 2010; Kobayashi et al., 2019, 2020; Tsimaratou et al., 
2007). Accordingly, inhibition of the ATR-Claspin-Chk1 
axis in combination with added replication stress has been 
exploited to suppress cancer cell growth and now is under 
clinical trials for several cancer treatment regimen (Boudny 
& Trbusek, 2020; Gralewska et al., 2020; Sanjiv et al., 2016; 
Barnieh et al., 2021; Dent, 2019) (Tables 1, 2, 3, 4).

For instance, VE-821, an efficacious ATR inhibitor, 
strongly suppresses ATR signaling exemplified by signifi-
cantly downregulated Chk1 phosphorylation at Ser345, 
a marker for checkpoint activation and a critical residue 
for subsequent replication checkpoint activation (Huang 
& Zhou, 2020). The drug increases γH2AX signals and 
decreases Rad51 foci in primary and cultured pancreatic 
cancer cells (Prevo et al., 2012), suggesting reduced DNA 
repair in the presence of the ATR inhibitor. Moreover, 
AZD7762, a Chk1/2 inhibitor, greatly sensitizes cancer cells 
to gemcitabine, an inhibitor of DNA synthesis, in urothe-
lial cancer cell lines (UCCs). In MCF-10A (human normal 
breast epithelial cell cells) and B16-F10 (melanoma cells), 
AZD7762 in combination with ionizing radiation results in 
abscopal tumor response through increased micronuclei for-
mation and immune activation signaling (Chao et al., 2020; 
Prevo et al., 2012). AZD7762 also sensitizes urothelial car-
cinoma cells to gemcitabine (ionizing radiation mimetics) by 
inhibiting DNA repair and disturbing checkpoints, support-
ing the combination of gemcitabine with Chk1 inhibition as 
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a promising urothelial cancer therapy (Isono et al., 2017). 
AZD7762 also induces synthetic lethality in combination 
with ATR inhibition (VE-821) in U2OS osteosarcoma can-
cer cell line, through replication fork arrest, ssDNA accumu-
lation and replication collapse (Sanjiv et al., 2016).

As with other factors for replication checkpoint, Claspin 
is more frequently upregulated in cancer tissues. Although 
no Claspin inhibitors have been developed for clinical trials 
so far, Claspin has been utilized as a proliferation biomarker 
since its anomalous expression is associated with oncogenic 
progression, resistance to cancer chemotherapies, and metas-
tases (Choi et al., 2014; Tsimaratou et al., 2007). Upregu-
lation of Claspin expression either at the mRNA or at the 
protein level has been clinicopathologically shown in certain 
types of cancer, including, GC, renal cell carcinoma, colo-
rectal carcinoma, prostate cancer, lung cancer, brain cancer, 
and so on (Bianco et al., 2019; Cai et al., 2021; Choi et al., 
2014; Kobayashi et al., 2019, 2020; Tsimaratou et al., 2007). 
For instance, in prostate cancer, a recent report shows that 
Claspin overexpression is associated with tumor progres-
sion, more aggressive and metastatic nature of the tumor, 
and relatively poor survival rate in patients, indicating an 
oncogenic role of Claspin (Kobayashi et al., 2019). Elevated 
levels of Claspin mRNA and protein in clinical samples may 
suggest the therapeutic as well as diagnostic and prognostic 
potential of Claspin in these types of cancers.

Conclusion

In past decades, a wide range of studies on the ATR-Claspin-
Chk1 replication checkpoint pathway has revolutionized 
our perspective regarding the molecular mechanisms of 
replication checkpoint in oncogenic signaling and its uti-
lization for novel cancer therapies. However, Claspin is 
differentially involved in the regulation of replication and 
checkpoint depending on the cell types, tissue, and cancer 

types in clinical settings. For example, Cdc7-mediated phos-
phorylation of Claspin at CKBD may be more specific to 
cancer cells, and in normal cells, CK1γ1 would play a more 
significant role. In fission yeast, Mrc1 exerts brake for ini-
tiation, and Cdc7(Hsk1)-mediated phosphorylation releases 
this break for initiation. Tumor suppressive role of Claspin 
in some cancer cells may reflect a potential negative role 
of Claspin for initiation. Thus, development of anti-Claspin 
agents for cancer therapy would require further careful 
investigation.

Future perspectives

Recent studies on Claspin described above have deepened 
our understanding of how Claspin facilitates initiation and 
replication fork progression, and maintains genome integrity 
in the presence of replication stress and how its dysfunc-
tion potentially gives rise to oncogenesis. Claspin/Mrc1 
plays positive roles in replication initiation and fork pro-
gression during normal course of DNA replication, and it 
would negatively regulate replication upon replication stress 
and also potentially the initiation stage. Studies on budding 
yeast Mrc1 indicate that it may act as a brake for replication 
initiation for fine tuning of initiation timing (Matsumoto 
et al., 2017). The mechanisms of this negative regulation 
by Clapsin/Mrc1 of both DNA chain elongation and initia-
tion need to be clarified. Indeed, a recent report indicates 
Rad53 (effector kinase)-mediated phosphorylation of Mrc1 
in response to replication stress inhibits its fork progression 
activity (McClure & Diffley, 2021).

Besides, roles of Claspin in various cell types and dur-
ing development have not been investigated. Knockout of 
Claspin is embryonic lethal at E12.5, suggesting its crucial 
roles for early development (Yang et al., 2016). However, 
tissue-specific KO of Claspin may lead to different pheno-
types. Claspin’s roles as negative or positive regulator of 

Table 1  ATR inhibitors under clinical trials

Agent Effects Target cells References

VX-970 (VE-822) Inhibition of Chk1 phosphorylation, 
retarded tumor growth

PDAC, Non-small cell lung cancer 
(NSCLC) cell lines

Barnieh et al. (2021) and Hall et al. 
(2014)

AZD6738, an 
improved form of 
AZ20

Accumulation of increased unrepaired 
DNA damage, mitotic catastrophe 
in ATM-deficient cells, inhibition 
of cancer cell growth, production of 
micronuclei

NSCLC, HT29, A549, Cal27, FaDu, 
HCT116, H460, PDAC

Foote et al. (2015) and Dillon et al. 
(2017)

BAY1895344 Increased unrepaired DNA damage, 
anti-proliferation of cancer cells in 
combination with chemotherapies

M059J, HT29, LoVo, MCF-7, LAPC-4, 
MDA-MB-436, PC-3, MDA-MB-468, 
Caco2, U-87MG HCC70, HCT116, 
HeLa

Foote et al. (2015) and Wengner et al. 
(2020)

M4344 (VX-803) Inhibition of 308-kinase activities and 
tumor regression

A panel of 92 cancer cell lines Foote et al. (2015) and Zenke et al. 
(2019)



272 Genome Instability & Disease (2021) 2:263–280

1 3

Ta
bl

e 
2 

 A
TR

 in
hi

bi
to

rs
 u

nd
er

 p
re

cl
in

ic
al

 d
ev

el
op

m
en

t

A
ge

nt
Eff

ec
ts

Ta
rg

et
 c

el
ls

Re
fe

re
nc

es

A
Z2

0
D

ow
nr

eg
ul

at
io

n 
of

 C
hk

1 
ph

os
ph

or
yl

at
io

n,
 a

cc
um

ul
at

io
n 

of
 u

nr
ep

ai
re

d 
D

N
A

 d
am

ag
e

G
R

A
N

TA
-5

19
, J

V
M

2,
 L

oV
o

B
ar

ni
eh

 e
t a

l. 
(2

02
1)

Sc
hi

sa
nd

rin
 B

In
hi

bi
tio

n 
of

 U
V-

ac
tiv

at
ed

 G
2/

M
 a

nd
 S

-p
ha

se
 c

he
ck

-
po

in
ts

, s
up

pr
es

si
on

 o
f A

TM
 k

in
as

e,
 b

lo
ck

 o
f e

pi
th

el
ia

l-
m

es
en

ch
ym

al
 tr

an
si

tio
n 

(E
M

T)

Pr
im

ar
y 

br
ea

st 
ca

nc
er

 c
el

ls
, 4

T1
, M

D
A

-M
B

-2
31

, S
18

0
B

ar
ni

eh
 e

t a
l. 

(2
02

1)
, L

iu
 e

t a
l.,

 (2
01

2a
, 2

01
2b

) a
nd

 X
u 

et
 a

l. 
(2

01
1)

N
U

60
27

In
hi

bi
tio

n 
of

 h
om

ol
og

ou
s r

ec
om

bi
na

tio
n,

 sy
nt

he
tic

 le
th

al
-

ity
 w

ith
 P

A
R

P 
in

hi
bi

tio
n

M
C

F7
, L

12
10

B
ar

ni
eh

 e
t a

l. 
(2

02
1)

 a
nd

 P
ea

sl
an

d 
et

 a
l. 

(2
01

1)

D
ac

to
lis

in
 

(N
V

P-
B

EZ
23

5)

In
hi

bi
tio

n 
of

 P
I3

K
/m

TO
R

 a
ct

iv
iti

es
, o

th
er

 A
TR

 
ho

m
ol

og
s, 

A
TM

, t
he

 c
at

al
yt

ic
 su

bu
ni

t o
f D

N
A

-d
ep

en
d-

en
t p

ro
te

in
 k

in
as

e 
(D

N
A

-P
K

cs
), 

su
pp

re
ss

io
n 

of
 D

N
A

 
da

m
ag

e 
re

sp
on

se
s

U
2O

S
B

ar
ni

eh
 e

t a
l. 

(2
02

1)
 a

nd
 T

ol
ed

o 
et

 a
l. 

(2
01

1)

EP
T-

46
46

4
In

hi
bi

tio
n 

of
 P

I3
K

/m
TO

R
 a

ct
iv

iti
es

, o
th

er
 A

TR
 

ho
m

ol
og

s, 
A

TM
, t

he
 c

at
al

yt
ic

 su
bu

ni
t o

f D
N

A
-d

ep
en

d-
en

t p
ro

te
in

 k
in

as
e 

(D
N

A
-P

K
cs

)

U
2O

S
B

ar
ni

eh
 e

t a
l. 

(2
02

1)
 a

nd
 T

ol
ed

o 
et

 a
l. 

(2
01

1)

To
rin

-2
In

hi
bi

tio
n 

of
 P

I3
K

/m
TO

R
 a

ct
iv

iti
es

, i
nd

uc
tio

n 
of

 re
pl

ic
a-

tio
n 

an
d 

m
ito

tic
 c

at
as

tro
ph

e,
 c

an
ce

r c
el

l d
ea

th
N

IH
3T

3,
 M

C
F-

10
A

, M
C

F-
10

F,
 M

C
F-

7,
 M

D
A

-M
B

-2
3

B
ar

ni
eh

 e
t a

l. 
(2

02
1)

, G
ila

d 
et

 a
l. 

(2
01

0)
 a

nd
 C

ho
pr

a 
et

 a
l. 

(2
02

0)
V

E-
82

1
In

hi
bi

tio
n 

of
 C

hk
1 

ph
os

ph
or

yl
at

io
n 

at
 S

er
-3

45
 a

fte
r t

re
at

-
m

en
t w

ith
 g

em
ci

ta
bi

ne
 a

nd
 ra

di
at

io
n,

 d
is

ru
pt

io
n 

of
 c

el
l 

cy
cl

e 
ch

ec
kp

oi
nt

s, 
in

du
ct

io
n 

of
 re

pl
ic

at
io

n 
an

d 
m

ito
tic

 
ca

ta
str

op
he

, r
et

ar
de

d 
ca

nc
er

 c
el

l g
ro

w
th

PS
N

-1
, M

ia
Pa

C
a-

2,
 P

A
N

C
-1

, H
C

T1
16

B
ar

ni
eh

 e
t a

l. 
(2

02
1)

, F
oo

te
 e

t a
l. 

(2
01

5)
 a

nd
 P

re
vo

 e
t a

l. 
(2

01
2)



273Genome Instability & Disease (2021) 2:263–280 

1 3

Ta
bl

e 
3 

 C
hk

1 
in

hi
bi

to
rs

 u
nd

er
 c

lin
ic

al
 tr

ia
ls

A
ge

nt
Eff

ec
ts

Ta
rg

et
 c

el
ls

Re
fe

re
nc

es

U
C

N
-0

1
In

hi
bi

tio
n 

of
 C

hk
1/

2,
 C

D
K

1/
2,

 M
K

2,
 p

ro
te

in
 k

in
as

e 
C

 (P
K

C
) a

nd
 p

53
, e

nh
an

ce
d 

se
ns

iti
vi

ty
 to

 h
ist

on
e 

de
ac

et
yl

as
e 

in
hi

bi
to

rs
 (H

D
A

C
i) 

in
 n

or
m

al
 c

el
ls

, 
se

ns
iti

za
tio

n 
of

 tu
m

or
 c

el
ls

 to
 c

he
m

ot
he

ra
pi

es
 a

nd
 

io
ni

zi
ng

 ra
di

at
io

n 
(I

R
)

H
C

T1
16

, A
54

9
Q

iu
 e

t a
l. 

(2
01

8)
, Y

u 
et

 a
l. 

(2
00

2)
 a

nd
 L

ar
a 

et
 a

l. 
(2

00
5)

A
ZD

77
62

Se
ns

iti
za

tio
n 

of
 tu

m
or

 c
el

ls
 to

 c
he

m
ot

he
ra

pi
es

 a
nd

 IR
, 

en
ha

nc
ed

 se
ns

iti
vi

ty
 to

 h
ist

on
e 

de
ac

et
yl

as
e 

in
hi

bi
to

rs
 

(H
D

A
C

i) 
in

 n
or

m
al

 c
el

ls
, s

yn
th

et
ic

 le
th

al
ity

 w
he

n 
in

 
co

m
bi

na
tio

n 
w

ith
 A

TR
i

4T
1.

2,
 M

D
A

-M
B

-2
31

, M
C

F-
7 

R
AW

26
4.

7,
 M

C
3T

3,
 

M
LO

-A
5,

 U
C

C
s M

C
F-

10
A

, B
16

-F
10

Q
iu

 e
t a

l. 
(2

01
8)

, P
re

vo
 e

t a
l. 

(2
01

2)
, C

ha
o 

et
 a

l. 
(2

02
0)

, I
so

no
 e

t a
l. 

(2
01

7)
 a

nd
 W

an
g 

et
 a

l. 
(2

01
8)

LY
26

03
61

8
Se

le
ct

iv
e 

in
hi

bi
tio

n 
of

 A
TP

-b
in

di
ng

 si
te

s i
n 

C
hk

1,
 

in
ac

tiv
at

io
n 

of
 G

2/
M

 D
N

A
 d

am
ag

e 
ch

ec
kp

oi
nt

, 
su

pp
re

ss
io

n 
of

 tu
m

or
 g

ro
w

th
 in

 c
om

bi
na

tio
n 

w
ith

 
ge

m
ci

ta
bi

ne

H
eL

a,
 C

al
u-

6,
 H

T2
9,

 H
C

T1
16

Q
iu

 e
t a

l. 
(2

01
8)

 a
nd

 K
in

g 
et

 a
l. 

(2
01

4)

M
K

-8
77

6
R

ad
io

-s
en

si
tiz

at
io

n 
of

 tu
m

or
 c

el
ls

 b
y 

ag
gr

av
at

in
g 

IR
-

in
du

ce
d 

m
ito

si
s a

nd
 in

hi
bi

tin
g 

au
to

ph
ag

y
M

D
A

- M
B

-2
31

, B
T-

54
9,

 C
A

L-
51

, E
M

T6
, H

eL
a

Q
iu

 e
t a

l. 
(2

01
8)

, Z
ho

u 
et

 a
l. 

(2
01

7)
 a

nd
 S

uz
uk

i e
t a

l. 
(2

01
7)

PF
-0

04
77

73
6

In
hi

bi
tio

n 
of

 c
yt

os
ol

ic
 tr

an
sl

oc
at

io
n 

of
 p

ho
sp

ho
ry

la
te

d 
C

dc
25

C
, i

nd
uc

tio
n 

of
 a

nt
i-p

ro
lif

er
at

iv
e 

ac
tiv

iti
es

 in
 

co
m

bi
na

tio
n 

w
ith

 d
oc

et
ax

el
, g

em
ci

ta
bi

ne
 a

nd
 c

ar
-

bo
pl

at
in

 b
y 

in
te

rfe
rin

g 
G

1/
S 

an
d 

m
ito

tic
 c

he
ck

po
in

t, 
po

te
nt

ia
tio

n 
of

 a
po

pt
os

is

CO
LO

20
5,

 M
D

A
- M

B
-2

31
,H

T2
9,

 h
um

an
 u

m
bi

lic
al

 
ve

in
 e

nd
ot

he
lia

l c
el

ls
Q

iu
 e

t a
l. 

(2
01

8)
, Z

ha
ng

 e
t a

l. 
(2

00
9)

 a
nd

 B
la

si
na

 e
t a

l. 
(2

00
8)

LY
26

06
36

8
In

du
ct

io
n 

of
 D

N
A

 d
am

ag
e,

 lo
ss

 o
f D

N
A

 d
am

ag
e 

ch
ec

kp
oi

nt
, r

ep
lic

at
io

n 
an

d 
m

ito
tic

 c
at

as
tro

ph
e,

 
gr

ow
th

 re
ta

rd
at

io
n 

of
 tu

m
or

 c
el

ls

N
C

I-
H

46
0,

 H
eL

a,
H

T2
9,

 H
C

T 
11

6,
C

al
u-

6,
 U

-2
O

S
Q

iu
 e

t a
l. 

(2
01

8)
 a

nd
 K

in
g 

et
 a

l. 
(2

01
5)

X
L-

84
4 

(E
X

EL
-9

84
4)

B
lo

ck
 C

hk
1-

in
du

ce
d 

C
dc

25
A

 d
eg

ra
da

tio
n,

 h
ig

he
r 

le
ve

l o
f g

H
2A

X
 p

ho
sp

ho
ry

la
tio

n 
in

 a
ss

oc
ia

tio
n 

w
ith

 
ge

m
ci

ta
bi

ne
, p

re
m

at
ur

e 
m

ito
tic

 o
ns

et
, e

nh
an

ce
d 

ra
di

os
en

si
tiv

ity
 o

f c
an

ce
r c

el
ls

PA
N

C
-1

, H
Y

29
Q

iu
 e

t a
l. 

(2
01

8)
, M

at
th

ew
s e

t a
l. 

(2
00

7)
 a

nd
 R

ie
ste

re
r 

et
 a

l. 
(2

01
1)

C
B

P5
01

In
du

ct
io

n 
of

 h
ig

he
r l

ev
el

 o
f c

yt
ot

ox
ic

 T
 c

el
ls

 in
 c

om
bi

-
na

tio
n 

w
ith

 c
is

pl
at

in
, e

nh
an

ce
d 

tu
m

or
 c

el
l d

ea
th

 in
 

co
m

bi
na

tio
n 

w
ith

 im
m

un
e 

ch
ec

kp
oi

nt
 in

hi
bi

to
rs

 a
nd

 
ci

sp
la

tin

C
T2

6W
T,

 H
C

T1
5,

 C
O

R-
L2

3,
 N

C
I-

H
22

6,
 M

IA
Pa

C
a2

, 
H

C
T1

16
, H

T2
9,

 h
um

an
 u

m
bi

lic
al

 v
ei

n 
en

do
th

el
ia

l 
ce

lls

Q
iu

 e
t a

l. 
(2

01
8)

, S
ak

ak
ib

ar
a 

et
 a

l. 
(2

01
7)

 a
nd

 M
in

e 
et

 a
l. 

(2
01

1)



274 Genome Instability & Disease (2021) 2:263–280

1 3

Ta
bl

e 
4 

 C
hk

1 
in

hi
bi

to
rs

 u
nd

er
 p

re
cl

in
ic

al
 d

ev
el

op
m

en
t

A
ge

nt
Eff

ec
ts

Ta
rg

et
 c

el
ls

Re
fe

re
nc

es

SA
R-

02
01

06
Si

gn
ifi

ca
nt

 a
cc

um
ul

at
io

n 
of

 c
el

ls
 in

 S
 p

ha
se

, d
ec

re
as

e 
of

 
ce

lls
 in

 G
2/

M
 a

rr
es

t, 
se

ns
iti

za
tio

n 
of

 tu
m

or
 c

el
ls

 a
nd

 
in

du
ct

io
n 

of
 tu

m
or

 c
el

l d
ea

th
 to

 c
he

m
ot

he
ra

pi
es

 a
nd

 IR

LN
40

5,
 T

98
G

, A
17

2,
 D

B
TR

G
, p

rim
ar

y 
gl

io
bl

as
to

m
a 

ce
lls

Q
iu

 e
t a

l. 
(2

01
8)

 a
nd

 P
at

tie
s e

t a
l. 

(2
01

9)

C
H

IR
-1

24
A

br
og

at
io

n 
of

 C
hk

1-
m

ed
ia

te
d 

ce
ll 

cy
cl

e 
ch

ec
kp

oi
nt

, 
en

ha
nc

ed
 se

ns
iti

vi
ty

 to
 H

D
A

C
i i

n 
no

rm
al

 c
el

ls
, i

nd
uc

-
tio

n 
of

 c
an

ce
r c

el
l d

ea
th

 in
 c

om
bi

na
tio

n 
w

ith
 to

po
i-

so
m

er
as

e 
I i

nh
ib

iti
on

M
D

A
-M

B
-4

35
, H

C
T1

16
, M

D
A

-M
B

-2
31

, S
W

62
0,

 
CO

LO
 2

05
, H

FS
, A

54
9,

 L
N

C
aP

Q
iu

 e
t a

l. 
(2

01
8)

, A
rc

hi
e 

et
 a

l. 
(2

00
7)

 a
nd

 L
ee

 e
t a

l. 
(2

01
1)

G
N

E-
78

3
En

ha
nc

ed
 e

ffi
ca

cy
 a

nd
 re

du
ct

io
n 

of
 tu

m
or

 c
el

l g
ro

w
th

 
in

 x
en

og
ra

ft 
m

od
el

s i
n 

co
m

bi
na

tio
n 

w
ith

 g
em

ci
ta

bi
ne

, 
C

PT
-1

1,
 a

nd
 te

m
oz

ol
om

id
e

H
T2

9,
 H

C
T1

16
Q

iu
 e

t a
l. 

(2
01

8)
 a

nd
 X

ia
o 

et
 a

l. 
(2

01
3)

G
N

E-
90

0
En

ha
nc

ed
 e

ffi
ca

cy
 a

nd
 re

du
ct

io
n 

of
 tu

m
or

 c
el

l g
ro

w
th

 
in

 v
itr

o 
an

d 
in

 v
iv

o 
in

 c
om

bi
na

tio
n 

w
ith

 g
em

ci
ta

bi
ne

H
T2

9,
 H

C
T1

16
Q

iu
 e

t a
l. 

(2
01

8)
 a

nd
 X

ia
o 

et
 a

l. 
(2

01
3)

C
C

T2
44

74
7

In
hi

bi
tio

n 
of

 C
hk

1 
ph

os
ph

or
yl

at
io

n,
 a

br
og

at
io

n 
of

 c
el

l 
cy

cl
e 

ch
ec

kp
oi

nt
s, 

in
cr

ea
se

d 
se

ns
iti

vi
ty

 o
f t

um
or

 c
el

ls
 

to
 ra

di
at

io
n 

an
d 

ge
m

ci
ta

bi
ne

SW
62

0,
 H

T2
9,

 M
ia

Pa
C

a-
2,

 C
al

u6
, H

N
4,

 H
N

5,
 S

C
C

09
0

Q
iu

 e
t a

l. 
(2

01
8)

, W
al

to
n 

et
 a

l. 
(2

01
2)

 a
nd

 B
ar

ke
r e

t a
l. 

(2
01

6)

A
R

32
3

Re
du

ct
io

n 
of

 p
ro

lif
er

at
io

n 
an

d 
vi

ab
ili

ty
 in

 m
el

an
om

a 
ce

lls
 th

ro
ug

h 
in

du
ci

ng
 a

po
pt

os
is

, p
re

m
at

ur
e 

S-
ph

as
e 

ex
it 

an
d 

m
ito

tic
 o

ns
et

A
 p

an
el

 o
f 1

7 
m

el
an

om
a 

ce
ll 

lin
es

, H
eL

a
Q

iu
 e

t a
l. 

(2
01

8)
 a

nd
 B

ro
ok

s e
t a

l. 
(2

01
3)

A
R

67
8

Re
du

ct
io

n 
of

 p
ro

lif
er

at
io

n 
an

d 
vi

ab
ili

ty
 in

 m
el

an
om

a 
ce

lls
 th

ro
ug

h 
in

du
ci

ng
 a

po
pt

os
is

, p
re

m
at

ur
e 

S-
ph

as
e 

ex
it 

an
d 

m
ito

tic
 o

ns
et

A
 p

an
el

 o
f 1

7 
m

el
an

om
a 

ce
ll 

lin
es

, H
eL

a
Q

iu
 e

t a
l. 

(2
01

8)
 a

nd
 B

ro
ok

s e
t a

l. 
(2

01
3)

C
H

-0
1

In
hi

bi
tio

n 
of

 a
ur

or
a 

A
, a

cc
um

ul
at

io
n 

of
 D

N
A

 d
am

ag
e 

an
d 

lo
w

er
 c

el
l v

ia
bi

lit
y 

in
 h

yp
ox

ic
 c

an
ce

r c
el

ls
R

K
O

, A
54

9,
 H

12
99

, H
19

75
Q

iu
 e

t a
l. 

(2
01

8)
 a

nd
 C

az
ar

es
-K

ör
ne

r e
t a

l. 
(2

01
3)



275Genome Instability & Disease (2021) 2:263–280 

1 3

DNA replication in various organs or tissues need to be care-
fully evaluated.

Moreover, there are some reports that Claspin–Chk1 
is activated by other cellular stresses. In budding yeast, 
osmotic shock activates Mrc1 through phosphorylation by 
Hog1, resulting in the inhibition of DNA replication (Duch 
et al., 2018). Effects of various biological stresses, such as 
heat, nutrition deprivation, hypoxia and so forth, on the 
Claspin–Chk1 axis need to be evaluated to clarify how these 
stress pathways may crosstalk with replication checkpoint 
pathway.

Furthermore, the structural basis of Claspin is still lack-
ing. It has strongly been indicated that Claspin undergoes 
intramolecular interaction, which may be regulated by 
Cdc7-mediated phosphorylation (Masai et al., 2017; Yang 
et al., 2016). Claspin, predicted to harbor large segments of 
intrinsically disordered polypeptide (IDP), may adopt vari-
able structures depending on its bound partners and covalent 
modifications. Clarification on structures of Claspin under 
various conditions will provide important information on its 
modes of action at the initiation, replication fork progression 
and replication checkpoint.

Finally, it is also important to clarify the roles of Claspin 
during oncogenesis of various cancer types. Taken together, 
these future endeavors will lead to identification of novel 
diagnostic and prognostic cancer biomarkers as well as 
effective therapeutic strategies involving Claspin as a target.
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