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Abstract 

The current work is primarily concerned with the analysis of an unsteady incompressible laminar 
two-phase flow in a porous medium through a rectangular curved duct. The Navier–Stokes 
equations and the level set equation with boundary conditions represent the corresponding 

governing equations. Fluid flow through curved rectangular ducts is influenced by the 
centrifugal action arising from duct curvature and has a unique behavior different from fluid 
flow through straight ducts. Centrifugal force-induced secondary flow vortices produce spiraling 

fluid motion within curved ducts. This paper shows the vector plot of the field flow, velocity 
contours, and fluid volume fractions graphically. The effect of curvature, Dean number, aspect 
ratio, porosity, and particle concentration on each fluid domain is also displayed. A comparison 

of the two-phase flow between different fluids is also shown. The results reveal that the unstable 
behavior of the flow is reduced with increased values of curvature, Dean number, and high 
viscosity flow.  
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1 Introduction 

In fluid mechanics, the flow across curved channels is a 
topic of fundamental research interest. The most prevalent 
flow in natural rivers is channel flow. Such channels   
are commonly constructed in nations that generate oil. 
Engineering applications include heat exchangers, 
turbomachinery blade passageways, aircraft intake diffusers, 
and biological transport phenomena. Eustice (1910, 1911) 
made the initial discovery of the existence of this secondary 
flow pattern by injecting dyes into a curved pipe flow 
stream. Dean (1927, 1928) conducted an analysis and found 
that the Dean number, a single parameter, could adequately 
describe the flow of curved pipes. Laminar secondary flows 
in curved rectangular ducts were investigated by Thangam 
and Hur (1990). In a curved duct with an elliptic flow, Dong 
and Ebadian (1992) numerically investigated the effects 
of buoyancy on fully developed laminar flow. Hoque and 
Alam (2013) investigated how the curvature of a curved 
pipe and the Dean number affect fluid flow through the pipe. 

In a curved channel with vortex features, laminar forced 
convection was experimentally studied by Avramenko et al. 
(2004). The results of the experiments revealed that both 
linear and nonlinear components grew with the Dean 
number. In curved channels, Stokes flow was explored by 
Khuri (2006). In a constant-area curved duct, tests on flow 
study were conducted by Biswas et al. (2012). Mathematical 
analysis of the peristaltic flow of a two-phase nanofluid in 
a curved conduit was conducted by Nadeem and Shahzadi 
(2015). In a corrugated, curved channel, fluid motion was 
examined by Okechi and Asghar (2019). Khan and Hye (2007) 
investigated the flow’s dominant singularity in a straight, 
non-aligned rotating pipe. Khan (2006) examined the 
singularity behavior of flow in a curved pipe. The prediction 
of non-isothermal flows via a rotating, curving duct with a 
square cross-section was examined numerically by Mondal 
et al. (2007). Norouzi and Biglari (2013) examined the Dean 
flow in a curved duct with a rectangular cross-section. 

Multiphase flow has great importance in experimental 
research and has broad applications. Two-phase flow is 
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Nomenclature 

pc  Specific heat at constant pressure 
d Width of the curved duct (m) 
De Dean number 
g Gravitational acceleration 
h Height of the curved duct (m) 
K Porosity 
L Radius of curvature (m) 
P Pressure 
Re Reynolds number 
t Dimensional time 
 

u, v, w Velocity in X, Y, Z axis, respectively 
x, y, z Cartesian coordinates 
γ  Re-initialization parameter 
ε  Thickness of interface 
μ  Dynamic viscosity of the fluid 
  Kinematic viscosity of the fluid 
ρ  Density of the fluid 
φ  Level set function 
  Particle concentration 

essential in hydraulic conveying, liquid mixing, liquid 
separations, liquid extraction, steam generators, jet engines, 
condensers, and distillation processes in the pipeline. Xu  
et al. (1999) experimentally studied gas–liquid two-phase 
flow regimes in rectangular channels with mini/micro gaps. 
Crandall et al. (2009) compared experimental results and the 
numerical result of two-phase flows in a porous micro-model. 
Garg et al. (2014) and Picardo et al. (2015) investigated  
the fully developed flow field of two vertically stratified 
fluids in a curved channel of a rectangular cross-section.  
A numerical investigation of two-phase flows through the 
enhanced micro-channel was conducted by Chandra et al. 
(2016). Al-Jibory et al. (2018) discussed an experimental 
and numerical study for two-phase flow (water and air) in 
rectangular ducts with compound tabulators. Okechi and 
Asghar (2021) studied two-phase flow in a grooved, curved 
channel. 

The level set method (LSM) is a useful tool in physics, 
engineering, materials science, computer graphics, and 
beyond. The LSM has been most commonly used for phase 
transformations and multiphase flow. Osher and Sethian 
(1988) introduced LSM, which creates new algorithms for 
following fronts propagating with curvature-dependent speed 
derived from the Hamilton–Jacobi equation. Furthermore, 
this level set approach has been applied to incompressible 
two-phase flow since the article of Sussman et al. (1994). 
Olsson and Kreiss (2005, 2007) discussed the conservative 
LSM two-phase flow. Datta et al. (2011) studied analytical 
and LSM-based studies for two-phase stratified flow in a 
plane channel and a square duct. LSM for computational 
multi-fluid dynamics was studied by Sharma (2015). 

The flow through porous media scheme piques the 
interest of engineers and scientists. There is also the eagerness 
of politicians and economists who see the importance of 
groundwater flows and a variety of tertiary oil recovery 
processes. Bear (1972) summarized the application of flow 
through porous media in his book. Greenkorn (1981) 
discussed the pseudo transport coefficients permeability, 

capillary pressure, and dispersion as well as the fundamentals 
of steady flow through porous media. Dwivedi et al. (2018) 
studied magnetohydrodynamics (MHD) flow through a 
vertical channel with a porous medium. Devakar et al. 
(2017) numerically studied the fully developed flow of 
non-Newtonian fluids in a straight, uniform square duct 
through a porous medium. Hellström (2007) studied the 
parallel computing of fluid flow through porous media. Roy 
et al. (2020) presented a theoretical study for immiscible 
two-phase flow in homogeneous porous media. Chowdhury 
et al. (2016) analyzed natural convective heat and mass 
transfer in a porous triangular enclosure filled with nanofluid 
in the presence of heat generation. 

The numerical analysis of two-phase flow in the porous 
medium through the rectangular curved duct has not yet 
been found in the open literature. In order to solve the 
Navier–Stokes equations with boundary conditions in the 
aforementioned issue, the finite element method is used 
in this paper. For a clearer understanding of the impacts 
of curvature, the Dean number, aspect ratios, porosity, and 
particle concentration on each domain, the vector plot of 
the field flow, the velocity contour, and the volume fraction 
of fluid on the domain are shown for various time points. 
Additionally, the findings for various fluids in the outer 
domain are compared. 

2 Mathematical model 

An unsteady incompressible viscous laminar three- 
dimensional (3D) two-phase flow is considered here. The 
flow passes in the porous medium through a curved duct 
with a rectangular cross-section. The height and the width 
of the cross-section are h (m) and d (m), respectively. O is 
the center of the curvature and L (m) is the radius of 
curvature of the duct, as shown in Fig. 1. The analysis uses a 
mixture of water and engine oil as the immiscible working 
fluid, which is sustained together into the curved duct path. 
In the curved channel inlet, engine oil enters the outer 
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domain, and water enters the inner domain with different 
velocities. Although the inlet velocity is different, the Reynolds 
number remains the same for the fluid in both domains. 
All physical properties of fluids are assumed constant. 

The mathematical model can be expressed by the 
governing equations according to Kucuk (2010) and 
Gyves (1997): 

Continuity equation: 0u v u
x y x L

¶ ¶
+ + =

¶ ¶ +
 (1) 

Momentum equations: 
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2 2
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where u, v, and w are velocity components in the x, y, and z 
directions, respectively; ρ  is the density,   is the kinematic 
viscosity, L is the radius of curvature, and K is the porosity 
of the medium. The model neglects all terms of the order   
1
L

 and 2

1
L

, except the centrifugal force term as in Gyves  

et al. (1999). 
The boundary conditions at the channel, the core walls, 

and the inlet and outlet are 

( ), , 0u v w =  at 2 2 , r L x y r L d= = + = + , top and  
bottom wall    (5) 

At the inlet-1         1 ˆu u n=  

At the inlet-2         2 ˆu u n=   (6) 

At the outlet          0P P=  

The Dean number De is typically denoted by 

 
1

2
  dDe Re

L
æ ö÷ç= ÷ç ÷çè ø

 (7) 

where Re is the Reynolds number, d is a typical length scale 
associated with the channel cross-section, and L is the radius 
of curvature of the path of the duct. Re is defined by 

   ρduRe
μ

=  (8) 

where ρ  and μ  are density and dynamical viscosity of the 
fluid, respectively. Since the governing equations are non- 
dimensional and ρ, d, and μ  are considered constant, De as 
well as Re depend on the value of u . 

Porosity can be written as 

 ps VV VK
V V
-

= =  (9) 

where V is the bulk rock volume that is not occupied by solid 
matter, sV  is the volume of solid, and p sV V V= -  is the 
pore volume. 

The level set function φ  can be represented by Eq. (10) 
from Olsson and Kreiss (2007). 

 ( )1φ φφ γ ε φ φ φ
t φ

é ù¶ 
+ ⋅ = ⋅  - -ê ú

¶ ê úë û
u  (10) 

where u is the fluid velocity. The ε  parameter determines 
the thickness of the layer of the interface. The γ  parameter 
determines the amount of reinitialization, and φ  is the level 
set function that varies from 0 to 1. For engine oil 0φ = , 
and for water 1φ = . 

The level set function φ  is defined by 

 
Fig. 1 (a) Cross sectional view and (b) coordinate system. 
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For calculating surface tension, the interface normal and 
curvature are obtained according to the sign function 
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The level set function is used to determine the density and 
dynamic viscosity globally by 

 ( )Eo w Eoρ ρ ρ ρ φ= + -  (13) 

 ( )Eo w Eoμ μ μ μ φ= + -  (14) 

where Eoρ  and wρ  are the density of engine oil and water, 
respectively; Eoμ  and wμ  are the dynamic viscosity of engine 
oil and water, respectively. 

 
Fig. 2 Phase distribution. 

3 Numerical solution 

To build a simulation, the entire structure must be divided 
into small elements called mesh, and calculations are done 
for each individual element. Combining the individual results 
gives the final result of the structure. Among the elements 
that are taken, we know the values at certain points but not 
on each point. These “fixed points” are called nodal points 
and are often located at element boundaries. The finite 
element method formulation of a boundary value problem 
finally results in a system of algebraic equations, and the 
system of algebraic equations will be solved by matrix 
formula. For a system with a large number of linear algebraic 
equations, it is impossible to solve manually. Usually software 
is used to solve such a problem. COMSOL Multiphysics is a 
finite element analysis solver and simulation program for a 
variety of physics and engineering applications, particularly 
for coupled phenomena and multiphysics. The program 
enables coupled systems of partial differential equations 
with standard physics-based user interfaces. 

The finite element meshing of the computational domain 
is displayed in Fig. 3. A grid refinement test was performed 
until the results showed insignificant change for further 
refined mesh size. 

From Table 1 it was observed that results for average 
velocity magnitude have no significant changes up to three 
decimal places for normal and fine mesh size. Therefore, 
normal mesh size was chosen to find the grid independent 
solution and to save computational time. 

Earlier, the solution of the vector plot of flow parameters 
in a square curved duct was established by Norouzi and 
Biglari (2013). They studied single-phase flow and used the 
perturbation method to solve governing equations with the 
boundary condition, and their result is shown in Fig. 4(a). In 
the present study, their result has been reproduced by using 
the finite element method, which is shown in Fig. 4(b). It was 
observed that both results are almost the same. Therefore, 
the present numerical method is in good agreement with 
the work presented by Norouzi and Biglari (2013). 

4 Results and discussion 

In a curved duct, the centrifugal action manifests two key 
effects. It generates a positive radial pressure field directed 
towards the outer duct wall. The centrifugal force drives the 
fluid radially from the inner to the outer duct wall within the 
positive pressure field, setting up lateral fluid circulation 
called secondary flow. The secondary fluid motion becomes 
vigorous and the radial pressure field intensifies when axial 
flow increases. Assisted by fluid viscosity, this positive 
pressure field adversely affects the secondary fluid flow 

 
Fig. 3 Mesh generation of the 3D domain. 

Table 1 Element size comparison 

Mesh size Extremely 
coarse 

Extra 
coarse Coarse Coarser Normal Fine 

Number of 
elements 2256 6448 18,196 61,314 131,956 389,530

Average 
velocity 0.049449 0.079742 0.108142 0.132178 0.146304 0.146781
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Fig. 4 Comparison of numerical solution of vector plot of flow 
with Re = 50 and δ = 0.1. 

moving towards the outer duct wall to slow it down. 
Consequently, near the outer duct wall, a stagnant flow 
region is formed. 

The solution for the unsteady incompressible laminar 
two-phase fluid flow through a 3D rectangular curved channel 
has been displayed here. The results in terms of axial   
flow velocity, velocity contour, and vector plot of flow field 
have been discussed for the various radius of curvature 
(20 m 100 m),L£ £  Dean number (45 1800),De£ £  
aspect ratio (1:1 to 1:6), particle concentration of outer 
domain (0.0 1)£ £ , and several time steps (0–300 s). 
Also, five different fluids (engine oil, kerosene, ethylene 
glycol, heptane, glycerol, and ethanol) have been tested in 
the outer domain. All the figures are taken at the cut plane 
of –Y Z  plane at 0x = . 

Figure 5(a) shows volume fraction visualization for 
different moments. At time 0 st =  the multiphase fluid 
located in different areas. Water enters the inner domain 
(red), engine oil enters the outer domain (blue), and yellow 
denotes the domain interface. The multiphase flow will mix 
with time. 

Low-viscosity fluid will be in the upper portion, while 
high-viscosity fluid will be in the lower portion. The interface 
will also appear periodic at 60 and 120 st = , and the mixed 
fluid will reach steady-state at 300 st ³ . 

 
Fig. 5(a) Volume fraction visualization at different time with De = 180, L = 40 m, and  = 0.0 at outer domain for aspect ratio 1:1. 
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Figure 5(b) shows the velocity contour of flow. When 
60 s,t =  at the upper part of the duct cross-section, four 

additional contours could be seen inside the principal 
vortex. It suggests that the Dean’s flow does have a rotating 
form. When 120 and 240 s,t =  the axial flow is displaced 
adjacent to the inner and outer walls of the duct, and  
there are 6–8 contours. The chaotic Dean’s flow is 

represented by it as well. At 150,180, and 300 s,t =  axial 
flow is spread over both domains, and there are 10–12 
contours. Also, this demonstrates exactly how chaotic the 
Dean’s flow is. 

A vector plot of the flow field is shown in Fig. 5(c). At 
60 st =  there is a single vortex solution at the center of 

the duct. Two solution vortices for secondary flow are present 

 
Fig. 5(b) Velocity contour at different time with De = 180, L = 40 m, and  = 0.0 at outer domain for aspect ratio 1:1. 

 
Fig. 5(c) Vector plot of flow field at different time with De = 180, L = 40 m, and  = 0.0 at outer domain for aspect ratio 1:1. 
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at the same time, along with just a few line segments along 
the wall. At 180 and 240 s,t =  for secondary flow there 
are four distinct vortex solutions, and each pair of vortex is 
pointing in reversed directions. Also at 300 s,t ³  there are 
six symmetric vortexes, with each pair pointing in opposite 
directions as well. 

Figure 5(d) shows that when 0 st =  the axial flow 
velocity is in a straight line since the flow velocity is zero. 
When 60 and 240 st = , the low-viscosity fluid flows faster 
than the high-viscosity fluid, and the axial flow velocity of 
mixed fluid is hyperbolic and produces multiple orbits. Also 
at 120 s,t =  high-viscosity fluid flows at a faster speed than 
low-viscosity fluid in a spiral pattern in the axial direction. 
But when 240 s,t =  low-viscosity fluid moves faster in the 
axial direction in a spiral manner. Finally, when 300 s,t =  
the axial velocity of the mixed fluid is hyperbolic and only 
generates two orbits, and low-viscosity fluid flows at a faster 
rate than high-viscosity fluid. 

The impact of the radius of curvature on the velocity 
contour is seen in Fig. 6(a). When L = 20 m, the axial flow 
is relocated closer to the duct’s outer wall, and it is apparent 
that there are 14 contours. It manifests chaotic Dean’s 
flow. But when L = 40 and 60 m, there are six contours, 
which means that the axial flow is shifted closer to the 

duct’s outer wall, and also illustrates the chaotic nature  
of the Dean’s flow. When L = 80 m, at the top of the duct 
cross-section, where contours tend to gather in the center, 
there are four additional contours inside the principal 
contour than when L = 100 m. It implies a stable condition 
for the Dean’s flow. Finally, when L = 1000 m, only one 
principal contour can be found in the outer domain, and it 
behaves as a straight closed channel or duct. 

The vector plot of the flow field is highlighted by the 
curvature radius’s impact in Fig. 6(b). When L = 20 and  
40 m, for symmetric secondary flow, there are six vortex 
solutions. Each pair of vortices is moving in opposition to 
one another. For secondary flow, there are two symmetric 
vortex solutions for L = 80 m, and three asymmetric vortex 
solutions for L = 60 m. Each pair of vortices is in opposite 
direction. The single vortex solution exists at L = 100 m. 
When L > 100 m, there is only one vortex that oscillates  
on the centerline, suggesting that the flow behavior may 
approach a parallel channel. There is no vortex solution at 
L = 1000 m. 

Figure 6(c) illustrates how the curvature radius changes 
the axial flow velocity. When L = 20 m, the mixed fluid’s axial 
flow velocity seems to have a hyperbolic shape and generates 
multiple orbits, with the high-viscosity fluid moving at a faster 

 
Fig. 5(d)  Axial flow velocity at different time with De = 180, L = 40 m, and  = 0.0 at outer domain for aspect ratio 1:1. 
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rate than the low-viscosity fluid. For L = 40 m, the axial 
flow velocity of the mixed fluid exhibits two orbits and a 
parabolic shape, with the low-viscosity liquid faster than 
the high-viscosity fluid. Another finding is that the axial 
flow velocity of the mixed fluid has a meandering shape at 
L = 60 m, and is quite high along the fluid-to-fluid interface. 
When L = 80 m, the mixed fluid’s axial velocity is hyperbolic, 
producing multiple orbits, and the velocity of the low-viscosity 

fluid is higher than that of the high-viscosity fluid. But  
when L = 100 m, the axial flow velocity is hyperbolic with  
two orbits, and the low-viscosity fluid flows at a faster rate 
than the high-viscosity fluid. At L = 1000 m, only one orbit 
has axial flow velocity. 

Effects of the Dean number on velocity contour are 
shown in Fig. 7(a). When De = 45 and 180 there are 8–10 
contours, and the axial flow is shifted near the outer wall 

 
Fig. 6(a) Effect of radius of curvature on velocity contour with De = 180, t = 300 s, and  = 0.0 at outer domain for aspect ratio 1:1. 

 
Fig. 6(b) Effect of radius of curvature on vector plot of flow field with De = 180, t = 300 s, and  = 0.0 at outer domain for aspect ratio 1:1.
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of the duct. It shows that Dean’s flow is strongly chaotic. 
When De = 540 and 900 there are 2–4 contours, and the 
axial flow is shifted near the outer wall of the duct. It also 
shows that Dean’s flow is chaotic. But when De = 1260 and 
1800 there are only two contours, and the axial flow is 
shifted near the inner wall of the duct. That means the Dean’s 
flow is becoming steady state. 

From Fig. 7(b), when De = 45, 180, 540, and 900, for 
secondary flow, there are six symmetric solutions containing 

opposing directional vortices. Similar to this, there are two 
symmetric solution vortices with opposing directions when 
De = 1260. 

For De = 1800, the inner domain consists of one vortex 
solution location and a few parallel lines that travel along 
the wall. 

Figure 7(c) shows the impact of the Dean’s number on 
axial flow velocity. With De = 45, the mixed fluid’s axial flow 
velocity exhibits hyperbolic axial flow, resulting in multiple 

 
Fig. 6(c) Effect of radius of curvature on axial flow velocity with De = 180, t = 300 s, and  = 0.0 at outer domain for aspect ratio 1:1.

 
Fig. 7(a) Effect of Dean number on velocity contour with L = 40 m, t = 300 s, and  = 0.0 at outer domain for aspect ratio 1:1. 



K. Rahman, S. Parvin, A. H. Khan 

 

76 

orbits. Additionally, it demonstrates that for De = 45, low- 
viscosity fluid has a higher velocity than high-viscosity fluid, 
while for De = 180, high-viscosity fluid has a higher velocity 
than low-viscosity fluid. The axial flow velocity has an erratic 
pattern when De = 450, with high-viscosity fluid moving 

more swiftly than low-viscosity fluid. Again, when De = 900, 
1260, and 1800, axial flow velocity is in the shape of a curving 
line, and the velocity of low-viscosity fluid is higher than 
that of high-viscosity fluid. 

Figure 8(a) depicts the impact of particle concentration 

 
Fig. 7(b) Effect of Dean number on vector plot of flow field with L = 40 m, t = 300 s, and  = 0.0 at outer domain for aspect ratio 1:1. 

 
Fig. 7(c) Effect of Dean number on axial flow velocity with L = 40 m, t = 300 s, and  = 0.0 at outer domain for aspect ratio 1:1. 
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on the velocity contour at the first domain (outer domain). 
When  0.2,=  the outer domain includes 20% water and 
the inner domain includes 80% engine oil. 

As can be seen in Fig. 8(a), when  0.0, 0.2, 0.8,=  and 
1.0, it demonstrates the presence of 10–12 contours and 
the axial flow’s displacement is towards the duct channel 
and inner wall channel’s centre. So Dean’s flow is chaotic. 

But when  0.4=  and 0.6, it demonstrates the presence of 
8–10 contours and the axial flow’s shift is towards the duct 
channel’s center. The Dean flow is similarly chaotic. 

Figure 8(b) illustrates how particle concentration affects 
the vector plot of the flow field in the outer domain. There 
are six symmetric vortex solutions for secondary flow at 
 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0,=  and each pair of vortex 

 
Fig. 8(a) Effect of particle concentration on velocity contour with De = 180, t = 300 s, and L = 40 m at outer domain for aspect ratio 1:1.

 
Fig. 8(b) Effect of particle concentration on vector plot of flow field with De = 180, t = 300 s, and L = 40 m at outer domain for aspect 
ratio 1:1. 
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pairs is pointed in reverse directions, as can be seen in   
Fig. 8(b). 

Axial flow velocity is depicted to show the impact of 
particle concentration in Fig. 8(c). The axial flow velocity 
has a hyperbolic curve and produces numerous orbits 
when  0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.=  It has been noted 
that high-viscosity fluid has a higher axial velocity than 
low-viscosity fluid. 

In Fig. 9, the axial flow velocity, velocity contour, and 
vector plot of the flow field on the cut plane are compared 
for several fluids on two domains. Engine oil, kerosene, 
ethylene glycol, heptane, ethanol, and glycerol were used in 
the outer domain, while water was used in the inner domain, 
comparing six different fluids. 

By comparing two-phase flow between various fluids, it 
is found that ethanol has a very high viscosity while kerosene 
has a very low viscosity (Table 2). Eight to ten contours are 
created by the mixed fluid flow of water with heptane, 
kerosene, glycerol, and engine oil, as can be seen in Fig. 9(a), 
and the axial flow is displaced adjacent to the inner and 
outer duct walls. The Dean’s flow is a mess because of 
this. Once more, water–ethanol produces 4–6 contours, 
indicating that the axial flow is shifted near the duct’s outer 

and inner walls. Dean’s flow is therefore similarly chaotic. 
Last but not least, water–ethylene glycol only generates two 
contours and displays how axial flow is shifted toward the 
top and bottom of the duct. The Dean’s flow is becoming 
steady. 

According to Fig. 9(b), there are six symmetric vortex 
solutions for fluid mixtures of water and heptane, kerosene, 
glycerol, ethylene glycol, and engine oil, and each of the 
vortex pairs is pointing in the reverse way. Two symmetric 
and two asymmetric vortex formations can be found in 
reverse for water–ethanol. It also demonstrates the reversed 
rotation of symmetric vortices. 

Figure 9(c) demonstrates the hierarchical configuration 
with multiple orbits of the mixed fluid flow for water–heptane, 
water–kerosene, water–ethylene glycol, water–glycerol, and 
water–engine oil. Nevertheless, water–ethanol mixtures have 
a curved axial flow velocity. It also demonstrates that for 
these six types of mixtures, the velocity of high-viscosity fluid 
is greater than that of low-viscosity fluid. The velocity of the 
low-viscosity fluid is higher in the reverse direction of the 
mixed flow of water, ethylene, and glycol, which likewise has 
a hyper pattern with just two orbits. In the reverse direction, 
the mixed flow of water and ethylene glycol has a hyperbolic 

 
Fig. 8(c) Effect of particle concentration on axial flow velocity with De = 180, t = 300 s, and L = 40 m at outer domain for aspect ratio 1:1.

Table 2 Element size comparison 

Mesh size Extremely coarse Extra coarse Coarse Coarser Normal Fine 

Number of elements 2256 6448 18,196 61,314 131,956 389,530 

Average velocity 0.049449 0.079742 0.108142 0.132178 0.146304 0.146781 
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form with just two orbits and a velocity of low-viscosity fluid 
that is greater than that of high-viscosity fluid. 

The effect of aspect ratio on axial flow velocity is shown 
in Fig. 10(a), which shows that for aspect ratios 1:1, 1:2, 1:3, 
1:4, 1:5, and 1:6 axial velocity are in hyperbolic shape having 
with multiple orbits. It is also observed that axial velocity for 
high-viscosity fluid is higher than low-viscosity fluid. 

The aspect ratio influence on the velocity contour is 

shown in Fig. 10(b). There are ten contours and two domains 
of axial flow when the aspect ratio is 1:1. It demonstrates that 
there are four contours and that the axial flow is displaced 
close to the center of the duct channel for aspect ratios of 1:2, 
1:3, and 1:4. Dean’s flow is therefore similarly erratic. The 
axial flow is shifted closer to the center of the duct channel 
and the inner wall; however, when the aspect ratio is between 
1:5 and 1:6, there are only two contours. Dean’s flow is  

 
Fig. 9(a) Comparison among different fluids for velocity contour with De = 180,  = 0.0, t = 300 s, and L = 40 m at outer domain for 
aspect ratio 1:1. 

 
Fig. 9(b) Comparison among different fluids for vector plot of flow field with De = 180,  = 0.0, t = 300 s, and L = 40 m at outer domain
for aspect ratio 1:1. 
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Fig. 9(c) Comparison among different fluids for axial flow velocity with De = 180,  = 0.0, t = 300 s, and L = 40 m at outer domain for 
aspect ratio 1:1. 

 
Fig. 10(a) Aspect ratio effect on axial flow velocity with L = 40 m, De = 180, t = 300 s, and  = 0.0 at outer domain. 
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Fig. 10(b) Aspect ratio effect on velocity contour with L = 40 m,  
De = 180, t = 300 s, and  = 0.0 at outer domain. 

therefore becoming consistent, i.e., steady state. Because fluid 
flow gets enough space to flow, the centrifugal force drives 
the fluid radially from the inner to the outer duct wall, 
setting up lateral fluid circulation. 

The aspect ratio effect on the vector plot of the flow  
field is shown in Fig. 10(c). For secondary flow, there are 
six and four symmetric vortex solutions with aspect ratios of 
1:1 and 1:2, respectively, and each pair of vortex is pointing in  
reverse directions. There are two symmetric vortex solutions 
and two asymmetric vortex solutions for secondary flow 
for aspect ratios 1:3 and 1:4. Asymmetric vortex pairs move 
in a direction normal to the boundary, while symmetric 
vortex pairs move in the opposite direction. The upper  
and lower walls of the secondary flow have two asymmetric  
vortices that are positioned there, and their trajectories are 
opposite when the aspect ratios are 1:5 and 1:6. 

The average value of the magnitude of velocity at the 
surface on the cut plane is shown in Fig. 11. The effect of 
curvature radius is displayed in Fig. 11(a). It is observed  

 
Fig. 10(c) Aspect ratio effect on vector plot of flow field with   
L = 40 m, De = 180, t = 300 s, and  = 0.0 at outer domain. 

that the velocity increases due to the increasing radius of 
curvature. For 100 m,L ³  the velocity behavior is like a 
straight duct. Figure 11(b) depicts the effect of the Dean 
number on the average value of surface velocity magnitude 
on the cut plane. When the Dean number increases, the 
velocity line also increases because the Dean number depends 
on the Reynolds number as well as inlet velocity. Figure 11(c) 
depicts the effect of particle concentration on the average 
value of surface velocity magnitude on the cut plane. The flow 
has a low velocity when particle concentration  = 0.0 and 
1.0, and a higher velocity when particle concentration  = 0.2 
and 0.8. But at  = 0.4, there is the highest velocity line. 

Figure 11(d) illustrates how the average value of the 
surface cut-plane velocity magnitude increases as viscosity 
decreases. According to Fig. 11(e), increasing porosity causes 
velocity to increase. As seen in Fig. 11(f), velocity is better 
in a porous duct than a nonporous duct. 
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5 Conclusions 

A 3D two-phase fluid flow in the porous medium through a 
curved duct with square and rectangular cross-sections was 
investigated numerically. The major findings are as follows: 
 When increasing the radius of curvature, the number 

of contours reduces and Dean flow becomes chaotic to 
regular. If particle concentration increases on domain-1, 
i.e., decreases on domain-2, the Dean flow becomes 
chaotic to regular. 

 Increasing the Dean number, the number of vortex 
decreases and Dean flow becomes periodic to balanced. 
Changing the aspect ratio from 1:1 to 1:6, number of 
vortex loses and the flow becomes periodic to steady. 

 Comparison of two-phase flow between different fluids 
shows that the flow is steadier with high-viscosity fluid 
than with low-viscosity fluid. As time goes on, the volume 
fraction of mixed fluid becomes steady and high-density 
flow stays at the lower part and low-density flow stays 
on the upper part. 

 When the radius curvature is low, the velocity line is 
high, and after increasing radius of curvature, the velocity 
reduces. For large radius of curvature, the velocity 
behaves like a straight channel. As the Dean number 
increases, so does the velocity line. 

 Average value of velocity magnitude at the surface of the 
cut plane is low for particle concentration at  = 0.0, 
and 1.0, and it became high when  = 0.5. Average value 
of velocity magnitude increases due to increasing viscosity, 
and is better nonporous duct. 
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