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Abstract 
Mass, momentum, and energy transfer in bubbly flows strongly depends on the bubble’s size 
distribution, which determines the contact area between the interacting phases. Characterization 

of bubble sizes in polydisperse flows requires empirical modelling of sub-grid physical mechanisms 
such as break-up and coalescence. In the present work an adaptive multiple size-group (A-MuSiG) 
method is incorporated into the Eulerian multiphase solver available in Simcenter STAR-CCM+ in 

order to model polydisperse bubbly flows in horizontal and vertical channels. The disperse phase- 
space is discretized into multiple size-groups each represented by its own size, number-density, 
and velocity field. The diameter of the bubbles in each of the size-groups varies in time and 

space, dynamically adapting to the local flow conditions. The interphase momentum transfer 
between the continuous phase and polydisperse bubbles is modelled through drag, virtual mass, 
turbulent dispersion, and lift forces. For modelling sub-grid bubble break-up and coalescence 

processes, different phenomenological kernels are evaluated. The empirical parameters of the 
adopted kernels are calibrated in two steps. The initial stage of the analysis considers experimental 
channel flows at low Reynolds number and zero-gravity conditions, under which the bubble size 

distribution is solely dependent on coalescence. As part of the second phase of the evaluation, 
additional parametric simulations in turbulent channel flows are performed in order to calibrate 
the break-up models, assuming the coalescence scaling constants derived in the previous step. 

The obtained results demonstrate that in flows with high turbulent mixing the ensuing bubble 
dynamics are strongly coupled to the internal properties of the population, which in turn 
influence the developing multiphase interactions in a transient manner.  
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1 Introduction 

A frequent assumption adopted in two-fluid solvers for 
modelling multiphase flows with droplets and bubbles is 
that the dispersed phase population is monodispersed, 
therefore consisting of particles of the same size. In this 
manner, the interaction length-scale is treated as a constant, 
which implies that the problem can be effectively simplified 
into a set of continuous and dispersed Eulerian flow-fields 
representing the main flow characteristics, e.g., mass, momentum, 
and energy. This approach provides robust and useful solutions 
for many applications; however, the particle length-scales 
encountered in multiphase flows can vary significantly due 

to different physical processes, in which case the hypothesis 
of monodispersed interactions is not representative of the 
physics. The modelling limitations associated with a constant 
particle size can be lifted by introducing additional population 
balance equations (PBEs), accounting for the conservation 
of the internal properties of dispersed populations such as 
number of particles, mass, or volume (Ramkrishna, 2000). 
In principle, the discretization of particle population properties 
by means of PBE is analogous to the statistical description 
of mechanical and thermodynamic fluid systems, realized 
by the classical Liouville’s and Boltzmann’s equations respectively 
(Bird, 1976). In this way, PBEs can provide an extension to 
the macroscopic physical modelling of Eulerian multiphase 
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models by bridging information for particle processes that 
is perceivable at a microscale level. Knowledge of how 
microscopic processes influence the evolution of population 
characteristics of dispersed systems in time and space is 
crucial for a wide range of industrial and scientific fields 
involved in research relating to particle mechanisms such as 
nucleation, breakage and coalescence, aggregation and 
crystallization growth (Ramkrishna, 2014). 

The numerical methods developed for the solution of 
PBEs can be generally classified into three categories: the 
stochastic Monte-Carlo technique (MC) (Zhao et. al., 2007), 
method of moments (MoM) (Randolph, 1964; Frenklach, 
2002), and method of classes (Kumar and Ramkrishna, 
1996a; Bhole et. al., 2008). Amongst these methods, the MC 
seems to be the most suitable approach for modelling 
population balances of discrete Lagrangian particles. However, 
despite the recent progress (Bartsch et al., 2019), stochastic 
predictions can be extensively expensive for large samples 
of particle clusters and prone to intrinsic noise due to statistical 
errors (Hao et al., 2013), what is ill-suited to deterministic 
CFD. Among the deterministic methods the MoM is perceived 
as the most computationally efficient option that can be 
tailored to cover a diverse range of multiphase applications 
(Randolph and Larson, 1971; Sajjadi et al., 2012; Shu et al., 
2012). Since an equation for a low-order moment contains 
some higher-order moments, a closure strategy is typically 
needed in order to terminate the otherwise infinite chain of 
equations. For bubbly flows with coalescence and break-up 
effects, the MoM usually accounts for only a small set of 
low-order moments for the bubble size distribution (BSD) 
(number of the bubbles, surface area, volume, etc.), which 
is sufficient for reconstructing the variance and mean size 
of dispersed population given a predefined distribution shape 
(Lo and Zhang, 2009). Similarly, the MoM can be converted 
into a set of ordinary differential equations for describing 
the particle’s number-density decay in Brownian coagulation 
of aerosols, by assuming a priori a logarithmic distribution 
for the dispersed population as well as simplifying the relevant 
collision kernel to manageable expansion terms (Lee et al., 
1984; Wang et al., 2019). The quadrature method of moments 
(QMoM) (McGraw, 1997) employs the product-difference 
algorithm (Gordon, 1968) in order to reconstruct the BSD 
from the finite set of moments, while the direct quadrature 
method of moments (DQMoM) (Marchisio and Fox, 2005) 
solves directly for the quadrature points. Note that the 
QMoM method requires solution of an eigenvalue problem, 
whilst the DQMoM inverts an ill-conditioned matrix, both 
strategies severely affecting the computational cost and 
robustness of the methods. An alternative approach for 
modelling the population distribution is pursued in the 
method of classes, also known as multiple size-group method 
(MuSiG), where the particle distribution is discretized into 

different size-groups each represented by its own flow properties. 
However, since the population distribution is not known a 
priori, a large number of fixed classes are typically required 
for discretizing the spectrum of sizes in the phase-space. 
For this reason, the computational cost associated with the 
method of classes can be prohibitively high. The limitations 
associated with the fixed discretization approach for the 
phase-space are addressed by developing adaptive techniques 
that account for the variations of the size range. By dynamically 
adjusting the discretization elements/classes to follow the size 
evolution of the population, the moving pivot (Kumar and 
Ramkrishna, 1996b) and moving sectional methods (Kim and 
Seinfeld, 1990; Mohs and Bowman, 2011) are successful in 
modelling condensation/evaporation of droplets in aerosols as 
well as coagulation, nucleation, surface growth, and agglomeration 
in particulate flows, while preserving meaningful characteristics 
for the distribution shape. A conceptually similar adaptive 
discretization algorithm, the adaptive MuSiG method (A- 
MuSiG) is developed in Simcenter STAR-CCM+ (Vikhansky 
and Splawski, 2015; Vikhansky, 2017). The method employs 
the direct quadrature spanning tree algorithm (Vikhansky, 
2013) in order to calculate the volume fraction and the 
number density of each size-group; this allows each class to 
adaptively follow the development of the population sizes 
in the phase-space, as a result of physical mechanisms such 
as break-up and coalescence. 

In principle, break-up and coalescence models are derived 
in view of different sub-grid particle mechanisms, relating 
to isotropic turbulence–particle interactions (Tsouris and 
Tavlarides, 1994; Martinez-Bazan et al., 2010), bubble–bubble 
collisions and film-formation (Luo, 1993), as well as viscous 
forces and surface instabilities (Kocamustafaogullari and 
Ishii, 1995). To a degree, the available models are established 
based on scaling features of turbulence (Hinze, 1955) while 
usually and due to the empiricism involved, the efficiency 
of the underlying physical processes is further calibrated 
according to experiments. In the current analysis, the A- 
MuSiG method is evaluated in bubbly channel flows for 
different empirical coalescence and break-up kernels, as well 
as closures for modelling bubble interactions and turbulence. 
The bubble coalescence efficiency is calibrated using a zero- 
gravity experiment (Kamp et al., 2001) and likewise the break- 
up model is tuned using available spatial BSD measurements 
in horizontal pipe flows (Kocamustafaogullari and Wang, 
1991). The A-MuSiG model is further validated against 
experiments in vertical channel flows past an obstacle (Krepper 
et al., 2009). Special attention is given to the performance of 
the A-MuSiG method due to its adaptive algorithm. 

2  Multi-group population balance model 

In the context of the Eulerian multiphase models, multifluid 
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flow-fields are represented by continuous and dispersed phases 
which coexist in space and time as interpenetrating continua. 
In order to account for polydispersed bubble populations, 
the dispersed phase-space is partitioned into M size-groups, 
each one modelled with its own set of conservation equations. 
The size-groups are allowed to interact with the surrounding 
continuous flow via the acting forces as well as with each 
other through coalescence and break-up events. Accordingly, 
bubble break-up events transport mass and momentum to 
the smaller group-sizes, while the opposite occurs when 
bubbles coalesce and thus move to classes with larger sizes. 
Details regarding the numerical algorithm of the A-MuSiG 
model can be found in published work (Vikhansky and 
Splawski, 2015), while for the purposes of the current study 
the basic formulation is presented. 

In the case of an isothermal flow without phase-change 
effects, the Reynolds-averaged (RA: ·) mass conservation 
for group i of the dispersed phase is expressed as 

 ( )p
p
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i i ij jii

ρ α
ρ α m m
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¶

+⋅ = -
¶

u   (1) 

where pρ  is the density of the dispersed bubbles, iα  is 
the RA volume-fraction, mij is the mass flux between 
groups i and j due to breakage and coalescence, and ui is 
the phase-averaged velocity: 
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The flow velocity of bubbles in group-size i is given by the 
momentum conservation law: 
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The terms in the RHS of Eq. (2) are the pressure-gradient 
( ),p the Reynolds stresses ( ),iτ the phase interaction forces 
(Fi), and inter-group momentum transfer due to break-up 
and coalescence. 

Coupling between the continuous and dispersed phases 
is achieved by integrating relevant interaction forces acting 
on bubbles. In particular, the implemented bubble force 
balance is modelled as follows: 

 B D VM TD L TΣ = + + + + +F F F F F F F  (4) 

The resultant particle force postulated in Eq. (3) consists of 
contributions due to buoyancy (FB), drag (FD), virtual-mass 
(FVM), turbulent dispersion (FTD), lift (FL), as well as 
turbophoresis (FT) effects. The necessary force closures for 
the drag and virtual-mass forces are adopted from established 
models in the literature (Auton et al., 1988; Tomiyama et al., 
2002). For the lift coefficient a constant value is assumed 

(CL = 0.1). The turbulent dispersion force is a direct product 
of the Reynolds averaging procedure, involving covariance 
terms between the volume-fraction, velocity, and acceleration 
of the continuous phase. The closure model of these extra 
terms is derived based on the Boussinesq gradient hypothesis: 

 c
TD p T
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where DT is the turbulent diffusion coefficient assumed to 
be directly analogous to the corresponding eddy diffusivity 
of the continuous phase (Hinze, 1959), and τD,i is the relaxation 
time of the particles that belong to group i. Bubble dispersion 
is further augmented by turbophoresis effects. As a result, 
particles responding to turbulent fluctuations are reorganized 
inside the flow-field (Young and Leeming, 1997), which for 
bubbles implies migration towards areas of high turbulence. 
The closure model for this additional stress-term is formulated as 

 c
T c VM c

c

in n
i i

i

α αρ α C
α α

æ ö  ÷ç=- - ÷ç ÷çè ø
F τ τ  (6) 

where CVM denotes the virtual-mass coefficient and nτ is the 
nth component of the Reynolds stress tensor. 

The approach pursued for modelling the Reynolds stresses 
in the continuous phase is based on a 2nd order closure 
technique, whereby turbulence is treated as anisotropic. In 
particular, the elliptic blending Reynolds stress model 
(EBRSM) is employed for the transport of the turbulent 
stresses. This method adopts Durbin’s concept of elliptic 
relaxation for the integration of near-wall turbulence (Durbin, 
1993). To this purpose, an elliptic function is incorporated 
for blending between an inhomogeneous near-wall pressure– 
strain tensor and a conventional homogeneous quadratic 
form for the outer region (Manceau and Hanjalic, 2000). 
For bubbly channel flows the modelling of turbulent wall 
effects by means of the pressure redistribution terms in RSM 
is relevant, since bubbles have low inertia and are therefore 
highly responsive to normal stresses developing near walls 
(Papoulias et al., 2016). Closure of the respective turbulent 
stresses of the dispersed phase (Eq. (3)) is provided by an 
empirical approach based on Issa’s correlation (Gosman et 
al., 1992). This model assumes that the velocity fluctuations 
of the dispersed phase are directly linked to those of the 
continuous phase via a turbulent response function f(τ). 
This analogy is essentially derived from experimental 
data extrapolation, while also fitted with a correction for 
the volume-fraction loading. The general form reads as 
follows: 

 c( )n
i i i if a= =' 'τ u u τ   (7) 

The continuity and momentum conservation equations of the 
dispersed phase (Eq. (1) and Eq. (2)) are augmented by an 
additional PBE for the number-density of the population (ni): 
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The RA convective term in Eq. (8) can be expressed as 
 i i i i i in n n¢ ¢= +u u u  (9) 

Rearranging Eq. (2) and substituting in Eq. (9) provides the 
following relationship: 
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The covariance products appearing in Eq. (10) can be 
modelled using the gradient closure hypothesis. Eq. (10) 
and Eq. (8) are combined to yield the RA transport equation 
for in : 

 ( )[ ]T ln lni
i i i i ii

n n D α n S
t
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The modelled part of the convective term which is expressed in 
logarithm form resembles the diffusive fluxes in typical 
transport equations. Despite that this term is not representing 
a physical process for the number-density property, and is 
in fact vanishing for homogeneous flows, it remains still 
essential for the numerical treatment of spurious dissipation 
attributed to the DQMoM method (Fox, 2003). The source- 
term Si which is added to the right side of the number- 
density balance (Eq. (11)) encapsulates the growth or decline 
of the bubble population due to break-up and coalescences 
effects, respectively. 

The utilized kernel for the break-up of bubbles is formulated 
by an empirical model (Tsouris and Tavlarides, 1994). 
According to this phenomenological approach, bubble break- 
up events are postulated as an ensemble probability product 
between the frequency of eddy-particle collisions (h(di)) and 
the energy that is required in order to rupture the surface 
of the entrained bubble. Based on the kinetic theory of gases 
and that the energy spectrum of eddies in the inertial subrange 
(Batchelor, 1970), the phenomenological break-up rate 
(g(di)) model is expressed as an exponential function of the 
Weber number (We): 

 cr . /
1/3

c
B B

( )( ) ( ) ei We We
i i

i

ε dg d h d C
d

-= ⋅  (12) 

where CB is an empirical constant, ε is the turbulent dissipation, 
di is the bubble diameter, and cr.We denotes the critical Weber 
number. The probability density function of the newly created 
daughter bubbles assumes a normal distribution, which is 
linearly dependent on the surface energy required for the 
formation of a binary set of particles. The size of the resulting 
bubbles is determined by the minimum energy needed for a 
break-up event to occur, which generally leads to a pair 
consisting of a smaller and a larger particle. 

Likewise, bubble coalescence events are modeled by an 

empirical model that assumes different physical processes 
during the mutual interaction of bubbles (Luo, 1993). According 
to this theoretical approach, colliding bubbles form a thin 
cushion of fluid-film between their contacting surfaces, 
which prevents the particles from merging unless gradually 
drained to a critical thickness. The efficiency of the process 
is described as a function of the colliding frequency and the 
time available for interacting, relative to the shrinkage rate of 
the thin-film. The collision frequency of bubbles is approximated 
in a similar way to the eddy–particle collisions, assuming that 
bubbles in turbulent flows behave like ideal gas molecules. 
The time particles spend in contact (tcont.) is presumed to be 
directly proportional to the characteristic life span of eddies 
of similar size (Levich, 1962). An expression for the interaction 
time (tint.) is derived by transforming the force balance of 
colliding particles into a film-thinning equation, which can 
be analytically integrated by imposing appropriate boundary 
conditions (Chesters, 1991). Based on the theory of the parallel- 
film model, the coalescence kernel is formulated as 

 C cont. int .( / )
C( ) ( , ) eC t t

i i jg d h d d -⋅= ⋅  (13) 

where CC in Eq. (13) is a calibration constant. 
The solution of the number-density and volume-fraction 

PBE is sufficient for calculating an equivalent diameter— 
the volume-mean—for each of the dispersed bubble groups: 

 3 / (6 π )i i id α n=  (14) 

3  Polydispersed simulations in bubbly channel flows 

Coalescence and break-up models for simulating BSD in 
multiphase flows involve a number of empirical constants 
which require a priori calibration (i.e., CB in Eq. (12) and CC 
in Eq. (13)). To this purpose, in the present work parametric 
calculations are performed for tuning as well as validating 
the A-MuSiG model based on three experiments in fully- 
developed turbulent bubbly flows: (i) a pipe flow under 
microgravity conditions (Section 3.1), (ii) a horizontal channel 
flow (Section 3.2), and (iii) a vertical flow past an obstacle 
(Section 3.3). The analysis of each case study including specifics 
regarding the experiments, simulation conditions, and predicted 
results, is presented in the upcoming dedicated sections. 

Typical integral quantities that are utilized for the assessment 
of the results, in particular the mean particle sizes, are 
purposely introduced prior to the forthcoming analysis. 
These expressions are derived by averaging the BSD output 
from the A-MuSiG model, against different weighting functions 
of the moments. The resulting mean bubble diameters can 
be encapsulated in a generic formula: 

 ( ) /p qp q
pq i ii id n d n d-= å å  (15) 
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where p and q are integer indexes that synthesize different 
types of mean diameters. The most commonly used definitions 
include the arithmetic mean diameter d10: 

 10 /i i id n d n= å å  (16) 

the surface mean, commonly known as Sauter mean diameter 
d32: 

 3 2
32 /i i i id n d n d= å å  (17) 

and the volumetric mean diameter d30: 

 3
30 /i i id n d n= å å  (18) 

3.1  Bubbly pipe flow in microgravity conditions 

The lifetime of travelling bubbles is mostly dependent on 
the available surface-energy of the interface as well as the 
conditions encountered along the flow. Strong turbulent 
disturbances and hydrodynamic interactions are amongst 
the principal physical mechanisms mentioned in the 
literature, which gradually result in bubble deformation and 
break-up when the restoring interfacial forces are exceeded. 
If the dominant break-up mechanisms are suppressed—by 
reducing turbulence in the flow and relaxing the forces 
acting on the interface—then the life expectancy of bubbles 
can be extended. Such conditions are emulated in microgravity 
experiments on bubbly pipe flow, for low Reynolds numbers 
and dilute mixtures (Kamp et al., 2001). In such experimental 
arrangement, buoyancy forcing effects relating to slip-induced 
drag and turbulence generation at the trailing wakes of 
bubbles are minimized and thus a hydrodynamic equilibrium 
state between the liquid and dispersed phases is promoted. 
Under these conditions the population sizes and number- 
density of the dispersed bubbles are mainly governed by 
coalescence events, depending on the probability of interparticle 
collisions and interaction time. 

Table 1 describes the experimental flow conditions selected 
for modelling bubble coalescence effects with the A-MuSiG 
model, in terms of the superficial liquid (jL) and gas 
velocities (jG), the bubble volume-fraction (αd) as well as the 
operating Re number. The Perspex pipe utilized in these 
experiments measured 4 m in length and 40 mm in diameter. 
BSD measurements were acquired at a downstream location 

(~0.5–0.7 m) where the two-phase flow is fully developed, 
using a synchronized dual system of high-speed cameras. 
The Sauter mean diameter (d32) at the inlet and outlet of the 
channel were approximated using an image post-processing 
algorithm (Table 2). 

The flow conditions listed in Tables 1 and 2 are simulated 
with the two-fluid A-MuSiG model in order to reproduce 
the BSD as reported in the experiments. The flow domain 
for these simulations is modeled as two-dimensional axisymmetric 
and is discretized by 16,000 uniform quadrilateral elements 
(Fig. 1). At the inlet boundary the assigned velocity (U) and 
turbulence (k and ε) profiles are provided by corresponding 
fully-developed single-phase calculations. The initial sizes 
of the introduced bubbles are represented by a log-normal 
distribution, with mean and variance both determined by 
the available experimental measurements. For the discretization 
of the BSD the dispersed phase-space is partitioned into 
five size-groups. 

The two-fluid A-MuSiG set-up is complemented with 
the previously described turbulent collision and coalescence 
models (Eq. (13)). In order to calibrate the contribution of 
the empirical input (CC) in the overall efficiency of the 
process different values are tested (Table 3), in the range of 
1.0 to 2.5. In these parametric runs break-up effects are 
neglected. 

 
Table 1  Experimental conditions of microgravity channel flow 

Experiment No. jL (m/s) jG (m/s) αd (—) Re 

1 (D21) 1.558 0.061 0.0286 69244 

2 (E16) 0.954 0.128 0.0912 42400 

3 (E17) 0.937 0.219 0.15 41644 

4 (I18) 0.842 0.223 0.17 37422 

 
Table 2  Sauter mean diameter measurements at the inlet and 
outlet of the channel 

Experiment run d32 (mm), inlet d32 (mm), outlet 

1 (D21) 2.67 5.02 

2 (E16) 5.07 12.94 

3 (E17) 5.79 16.18 

4 (I18) 4.02 14.07 

 

 

Fig. 1  Physical flow domain and boundary conditions for pipe flow in microgravity.            
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Table 3  A-MuSiG parametric coalescence simulations in microgravity 
bubbly flow 

Run Collision model Coalescence model Efficiency const. CC

1 (D21) 

2 (E16) 

3 (E17) 

4 (I18) 

Turbulent & 
Zaichik 

Luo & Film-Drainage 1.0–2.5 

 
The mean flow characteristics and bubble coalescence 

behavior in the tested parametric simulations are similar. 
Indicative results for a typical scenario (I18) are presented 
in Fig. 2, in terms of the bubble volume-fraction, number- 
density as well as coalescence rate (CR). As shown in the 
illustrated predictions, due to the absence of gravity the 
bubbly flow retains a uniform distribution inside the pipe, 
while the population number-density gradually declines 
due to coalescence. Despite the fact that interparticle collisions 
are more frequent as the bubbles merge and grow in size, 
the probability of coalescence is steadily reduced during the 
journey along the channel. This implies that the fluid-film 
separating large bubbles in contact is substantially thick and 
the available interaction time is not sufficient for drainage, 
what prohibits coalescence. 

The induced coalescence effects on the development of 
the population inside the channel can be evaluated in a 
quantitative manner by plotting the number-density and 

sizes of the individual bubble groups, along the axis of 
symmetry (Fig. 3). 

The population number-density and group-sizes plotted 
in Fig. 3 correspond to different discretization classes for 
the moments of the dispersed bubbles, with G0 and G4 
denoting the smallest and largest size-groups in the BSD 
respectively. As shown in these graphs, the endured coalescence 
events along the pipe are forcing the individual bubble 
groups to an asymptotic growth in terms of their sizes and an 
analogous exponential decay with respect to their population 
numbers. 

Variations in the properties of the dispersed bubble 
population are interlinked to the developing hydrodynamic 
interactions, which in turn are responsible for regulating 
the momentum exchange between the flow phases. The 
resultant flow velocity when the phases reach equilibrium 
will depend on the interfacial area, and therefore the properties 
of the bubble population. Therefore, by comparing measurements 
of the pressure-drop across the channel against respective 
predictions (Fig. 4), it is possible to get an initial indication 
of whether the modelled bubble population is representative of 
the experiments. In that respect, the performed parametric 
runs exhibit negligible differences relative to the measurements, 
less than 3%, which implies that the modelled population 
sizes and numbers are comparable to those measured in the 
experiments. 

 

  
Fig. 2  Predicted distributions for the volume-fraction, number-density and coalescence rates for Run I18. 

 

 
Fig. 3  Predicted bubble coalescence rate, number-density, and group-size variations along the axis-symmetry boundary for I18 run.           
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Fig. 4  Model predictions and experimental measurement (Kamp 
et al., 2001) for the pressure-drop along the pipe. 

 
The sensitivity of the calculated bubble mean sizes for 

the tested coalescence kernels and empirical constants is 
reflected on the predictions presented in Fig. 5. The scatter 
symbols in these graphs are averaged measurements of the 
bubble sizes—defined in terms of the d10, d32, and d30 mean 
diameters—acquired at the inlet and outlet of the experimental 
pipe. The spatial distribution line plots represent the corresponding 
A-MuSiG parametric calculations (Table 3), along the axis 
of the pipe; each tested combination for modelling bubble 
coalescence and turbulent collisions is denoted by a different 
color, while solid and dash lines are adopted for distinguishing 
between different values of the coalescence efficiency constant 
(CC). According to these graphs, it is evident that the efficiency 
constant inherent to coalescence kernels requires a priori 
tuning in order to approach the bubble sizes indicated in the  

experiments. The emerging discrepancies in the modelled 
mean bubble sizes exhibit a tendency to increase as the 
concentration of the bubble population becomes high (i.e., 
E17 and I18 runs), irrespective of the models used. By means 
of an optimization study it is possible to calibrate CC, to 
values that effectively minimize the modelling differences. 
For the considered pipe flows, limiting the coalescence 
efficiency by increasing CC to values in the range of 1.7 to 
2.5 seems to provide more accurate sizes for the resulting 
bubbles at the outlet. The effects of the particle collision 
rate ,( ( ))i jh d d  in the coalescence process are shown in the 
calculations performed with the so-called film-drainage 
model (cyan and gray lines)—a generic exponential model of 
the form ~ /

C ,e
n mWe ReC ⋅ where n and m are scaling constants. 

The collision model is formulated in the work of Zaichik et 
al. (2010), which can be considered as an extension to the 
turbulent collision kernel since it also accounts for inertial 
effects that are appreciable in flows with high particle-to- 
fluid density ratio. The predicted bubble sizes when using the 
aforementioned kernels for modeling coalescence effects seem 
to be increasing at a faster rate upstream of the channel, while 
downstream the growth slope gradually becomes asymptotic. 
Overall, the results obtained by the tested phenomenological 
turbulent coalescence kernels seem to converge to similar 
solutions for the mean sizes of the bubbles, provided that 
the efficiency of the modeled coalescence process is properly 
scaled. 

 

 
Fig. 5  A-MuSiG model predictions and experimental measurements (Kamp et al., 2001) of the bubble mean diameters across the 
channel.             
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The examined two-phase channel flow experiments 

provided the necessary size distribution data for tuning the 
coalescence efficiency of bubbles, assuming that break-up 
effects are suppressed due to the microgravity conditions. 
In the next section, the calibrated A-MuSiG approach for 
the coalescence of bubbles is also integrated with Tsouris 
and Tavlarides turbulent break-up model (Eq. (12)), in order 
to evaluate the combined effect in bubbly flows developing 
in a horizontal pipe. 

3.2  Bubbly flow in horizontal pipe 

The experimental results utilized for the second part of the 
A-MuSiG validation analysis consist of bubbly flow distributions 
in horizontal pipe flows (Kocamustafaogullari and Wang, 
1991), where buoyancy forcing effects have a significant 
impact on the population dynamics. In these experiments, 
a closed-loop rig is equipped with a transparent glass pipe 
14 m in length and 50 mm in diameter, where gravity acts 
along the normal direction of the flow. Air bubbles are 
introduced upstream of the water flow through a porous 
medium chamber, with representative pore sizes of 1 mm. 
The two-phase flow is allowed to develop and mix along the 
pipe, before coming in contact with a dual-sensor installed at 
the center of the test-section (~7 m) which probes the 
spatial distribution of the bubbly phase. In principle, the 
utilized electrical resistivity sensors provide instantaneous 
voltage signals that fluctuate depending on the material in 
contact; when the wire probe is insulated by a crossing 
bubble the electric circuit is closed, while when the resistance 
is immersed in water most of the electricity is conducted 
through the medium (Hampel, 2019). The acquired electrical 
signals are averaged over a sufficient period of time and 
converted into meaningful bubble characteristics (i.e., 
bubble sizes, population concentration, and velocities) by 
means of a post-processing algorithm. Using this experimental 
arrangement, the phase distribution of the bubbly flow is 
characterized for different Re numbers, bubble volume- 
fractions, and superficial phase flow-rates. The particular 
flow conditions selected for validating the A-MuSiG model 
are described in Table 4. 

Similarly to the previously presented calculations (Section 
3.1), also in this case the performed simulations consider 
different superficial flow velocities and loading fractions for 

the dispersed phase. The workflow and model set-up for the 
current two-phase flow simulations are adopted from the 
practices developed during the previous analysis. Accordingly, 
the same dispersed bubble forces are assumed for coupling 
the two phases and likewise, fully-developed flow profiles 
for the velocity and turbulence are assigned as inlet boundary 
conditions. Since the flow is not favored by any preferential 
symmetry, a three-dimensional computational domain is 
constructed for the discretization of the pipe channel consisting 
of approximately 950,000 quadrilateral elements (Fig. 6). 
The initial bubble sizes at the inlet are defined based on the 
equivalent porosity size (i.e., 1 mm) of the porous media 
chamber, where the dispersed phase is introduced into the 
flow. 

The migration trajectory of bubbles in channel flows, 
and thereby the phase distribution, are determined by the 
acting forces which to a degree are also influenced by the 
developing turbulent field. Therefore, bubbles with different 
sizes will reside in different parts of the flow in order to 
coexist in equilibrium with their surroundings, depending 
also on the volumetric flow-rate of each phase. In order to 
investigate the hydrodynamic behavior of bubbles in the 
considered channel flow, different momentum closure 
models are tested for the flow forces as well as the turbulent 
stresses. To this purpose, the standard two-equation k–ε 
model is used, while calculations are also performed using 
second-moment closures based on RSM. In the latter class 
of anisotropic models, two alternative techniques are evaluated 
for modelling the pressure-strain term; a typical linear model 
(Gibson and Launder, 1978) and the elliptic relaxation approach 
(Manceau and Hanjalic, 2000). With regards to sub-grid 
processes which operate on the size and number-density of 
the population, the A-MuSiG calculations account for the 
birth and death rates of bubbles due to turbulent breakage 
(Eq. (12)), in addition to the calibrated Luo kernel for 
modelling coalescence effects (Eq. (13)). The break-up kernel 
requires a user input for the particle’s Wecr., which for 

 
Table 4  Experimental conditions of horizontal bubbly flow 

Experiment No. jL (m/s) jG (m/s) α (—) Re 

1 (19) 5.10 0.24 0.0434 

2 (20) 5.10 0.44 0.0802 

3 (22) 4.98 0.88 0.204 

~280000

 

 

Fig. 6  Physical flow domain and boundary conditions for the horizontal pipe flow.          
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bubbles typically ranges between 0.5 and 3.0 depending 
also on the material properties of the background flow 
(Hinze, 1955; Hesketh et al., 1987). In detail, the performed 
parametric A-MuSiG simulations are summarized in Table 5. 

The development of the bubbly channel flow for a 
particular parametric condition (Run 20) is illustrated in 
Fig. 7, in terms of the predicted bubble volume-fraction 
distribution, number-density, coalescence rate as well as break- 
up rate (BR). As expected for this scenario, the hydrodynamic 
behavior of the bubble population along the horizontal 
channel flow is mainly dominated by buoyancy effects. 
Under the influence of gravity, bubbles seem to gradually 
separate from the heavier carrier phase and accumulate 
near the upper wall of the pipe. The high population density 
forming at the top of the pipe encourages closely clustered 
bubbles to collide and stay in contact long enough to coalesce. 
Growing bubbles due to coalescence are more susceptible to 
break-up, as the restoring surface-tension force becomes 
insignificant compared to the destructive energy of eddies 
dissipating near wall boundaries. The final size of bubbles is 
gradually adjusted to the local flow conditions, in favor of a 
balance between the competing break-up and coalescence 
mechanisms. For the current flow conditions coalescence 
events appear to be dominant over break-up effects, implying 
that buoyancy forcing and turbulent fluctuations are not as 
effective as the interparticle collisions in changing the bubble 
sizes and population density. 

The predicted spatial distributions of the bubble Sauter 
mean diameter (d32) and volume-fraction for the tested 
horizontal channel flows are plotted in Fig. 8. Each individual 
line in these graphs corresponds to a different parametric 
calculation (Table 5), while the scatter circle symbols represent 
the available experimental measurements for the examined 
cases. The plotted spatial flow profiles consist of data extracted 
from the median vertical distance between the bottom and 
top walls (r/R= 1.0 to 1.0), which is part of the downstream 
cross-section (X = 7 m) probed with the wire-mesh sensor. 

As previously shown in Fig. 6, the bubble population in 
the horizontal channel flow accumulates at a concentration 
site near the turbulent boundary layer developing at the top 
wall. However, the resulting volume-fraction peak of the 
bubble population near the top wall appears exaggerated by 
the majority of the tested turbulence models. To a certain 
degree, this effect is less pronounced when using second- 
moment closures. Likewise, the radial distribution of the mean 
bubble sizes is better predicted assuming the RSM, contrary 
to the isotropic k–ε which results into underestimation of 
the developing sizes. In fact, it seems that the two-equation 
turbulence model is not adequately representing the interaction 
length-scales and mixing flow characteristics, in order to 
sustain the underlying modelled break-up and coalescence 
mechanisms. 

The effects of different turbulence and force closures on 
the internal properties of the bubble population become 
more evident if the characteristics of the developing dispersed 
regime are inspected across the entire cross-section of the 
channel (Fig. 9) where measurements are acquired. To a certain 
degree, the excess of bubbles predicted near the top wall 
seems to be limited when accounting for the wall-reflection 
terms in the LRSM approach. The extra correction terms 
for modeling wall effects are effectively realized as additional 
normal stresses that diminish the wall-normal components 
in favor of the streamwise and spanwise direction (Launder 
and Sandham, 2002). Likewise, the turbophoresis force is 

 
Table 5  A-MuSiG parametric coalescence and break-up simulations 
in horizontal bubbly flows 

  Fluid solver Bubble interaction models 

Run 
Turbulence 

model 
Collision 

rate model
Coalescence 

model 
Break-up 

model 
Forces 

1 (19)

2 (20)

3 (22)

k–ε 
LRSM 

EBRSM
Turbulent

Luo 
(CC = 2.5) 

Tsouris & 
Tavlarides

(Wecr. = 0.5)

FCD, FVM,
FTD, FT

 

 
Fig. 7  Predicted distributions for the volume-fraction, number-density, coalescence and break-up rates for Run 20.           
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Fig. 8  A-MuSiG model predictions and experimental measurements (Kocamustafaogullari and Wang, 1991) for the spatial distributions 
of the bubble Sauter mean diameter (d32) and bubble volume-fraction; the flow profiles are plotted across the vertical diameter at a 
downstream cross-sectional plane (X = 7 m). 

 

 
Fig. 9  Predicted mean volume-fraction and logarithmic number-density distributions across the vertical measurement plane (X = 7 m) 
of the horizontal channel flow (Run 22). 

 
acting to redistribute the population of bubbles towards 
areas exhibiting high production of turbulent kinetic energy, 
which for pipe flows develop near the wall and in particular 
close to the outer region of the boundary layer (Young and 
Leeming, 1997). Therefore, despite that in certain cases low- 
order turbulence models combined with the most essential 
force closures (e.g., drag, lift, and turbulent dispersion) may 
be adequate for predicting the mean behavior of dispersed 
phase flows, neglecting the three-dimensional character of 

Reynolds stresses and induced turbulent-drift effects due to 
turbophoresis appear to have a considerable impact on the 
mixing behavior as well as coalescence and break-up of the 
bubble population. Since the momentum and population 
balances are coupled via the group-sizes, the aforementioned 
closures are also affecting the prediction of the local bubble 
sizes. 

The last two sections in this study presented a parametric 
analysis of different bubbly regimes in channel flows for 
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numerous operating conditions, with the objective to calibrate 
empirical constants involved in modelling coalescence and 
break-up effects according to experimental measurements. 
In the forthcoming section, the A-MuSiG model and optimized 
empirical kernels from the preceding analysis are evaluated 
against an additional bubbly flow experiment conducted in 
an obstructed channel. 

3.3  Bubbly flow in vertical obstacle channel 

In this section the calibrated A-MuSiG model is validated 
against reported experiments in two-phase channel flows, 
conducted in TOPFLOW facilities (Krepper et al., 2009). 
The vertical channel utilized in these experiments is made 
of Perspex plastic and measures 0.2 m in diameter and 9 m 
in length (DN200). Water is pumped at different flow-rates 
inside the pipe circuit, while bubbles are introduced using a 
sparger system—consisting of 16 radial tubes, with multiple 
injection port 0.8 mm in diameter—mounted on the central 
axis of the channel close to the entry. The bubbly flow is 
allowed to develop undisturbed for most of the part of the 
channel (~5.5 m), prior to entering the test-section which is 
fitted with a half-moon shaped obstacle blocking half of the 
available flow area. Wire mesh sensors are installed at different 
axial locations downstream and upstream of the obstacle 
wall for measuring properties of the bubble population such 
as velocity, size, and number-density. Two experimental 
scenarios are considered for the current validation analysis; 
in both cases the laboratory circuit is maintained at standard 
pressure (1 atm) and temperature (23 oC) conditions, while 
the superficial fluxes for the flow phases varied within the 
bounds of the bubbly regimes. In detail, the considered flow 
conditions are summarized in Table 6. 

The solution domain for simulating the development of 
the dispersed bubbly flow across the obstructed vertical 
pipe covers the test-section part of the channel (~3 m), 
assuming a symmetry boundary along the mid-plane. For 
the spatial discretization approximately 1.1 million grid 

elements are used, consisting of mixed quadrilaterals and 
wall prism-layer cells. At the inlet boundary fully-developed 
profiles for the velocity and turbulence properties are 
prescribed. The mean size ( d ) and variance (σ) of the bubbly 
distribution assigned at the inlet boundary are taken from 
measurements acquired 0.52 m upstream of the half-moon 
obstacle. The physical flow boundaries and the grid resolution 
in the vicinity of the obstacle wall are illustrated in Fig. 10. 
The outlined cross-sections along the channel correspond 
to some of the locations selected for data acquisition by 
adjusting the movable wire-mesh sensor. 

The adopted closures for modelling turbulence as well 
as simulating bubble sub-grid break-up and coalescence effects 
are deduced from the previously conducted parametric flow 
simulations (Sections 3.1 and 3.2). In the current analysis, 
different modelling assumptions for the discretization of 
the polydispersed phase-space are evaluated in the context 
of the A-MuSiG approach. To this purpose, the multi-speed 
as well as single-speed mode of the A-MuSiG model are 
examined, assuming a discrete momentum balance for each 
of the size-groups or a collective velocity field for the entire 
population, respectively. In addition, different number of 
size-groups are used for adaptively discretizing the BSD, 
ranging from 5 to 15. A brief description of the considered 
parametric simulations is provided in Table 7. 

The development of the multiphase flow-field behind 
the obstacle wall can be visualized by plotting the mean 
streamlines and the volume-fraction distribution of the 
predicted bubble population (Fig. 11). As can be seen, the 
obstacle wall that is positioned at right angles against the 
flow is generating a strong vortex wake downstream of the 

 
Table 6  Experimental flow conditions of obstacle bubbly flow 

Experiment No. jL (m/s) jG (m/s) α (—) Re 

Run 074 (1) 1.017 0.0386 0.0231

Run 096 (2) 1.017 0.0898 0.0565
~260000 

 

 
Fig. 10  Physical flow domain and boundary conditions for the obstacle channel flow. 

 
Table 7  A-MuSiG parametric bubbly flow simulations in obstacle channel 

  Fluid solver A-MuSiG solver Bubble interaction models 

Run Turbulence model Bubble velocity Number of size-groups Collision rate model Coalescence model Break-up model 

1 

2 
EBRSM 

single-speed & 
multi-speed 

5, 9, 15 Turbulent 
Luo  

(CC = 2.5) 
Tsouris & Tavlarides 

(Wecr = 0.5) 
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channel, which occupies the space behind the obstruction. 
The adverse pressure-gradient that develops behind the 
obstacle due to flow separation attracts the travelling bubbles 
towards the wake region. A large majority of the population 
is trapped inside the vortex core, while bubbles that seem to 
escape are carried along the detached shear-layer forming 
downstream of the sharp edges of the obstacle wall. 

A quantitative comparison of the predicted bubbly flow 
characteristics against the experimental measurements is 
provided for the first test case (Run 074), in terms of the 
spatial velocity and volume-fraction distributions developing 
at different elevation planes along the pipe (Fig. 12). The 
bubble concentration is presented in normalized form ( vf ), 
relative to the local cross-sectional averaged volume-fraction 
(Frank et al., 2007). The flow profiles are plotted across the 
median line of the measurement planes which lies on the 
symmetry boundary, covering the distance between the 
walls. The position of the half-moon obstacle relative to the 
vertical walls is located at the right part of the pipe (i.e., 
r/R = 0.0–1.0). Overall, the predicted mean flow characteristics 
appear to be aligning well with the corresponding spatial 
measurements. Discrepancies are mainly noticed downstream 
of the obstacle, at the space inhabited by the separated wake. 
In particular, the intensity of the detached vortex seems to 
be overpredicted, especially near the sharp edges of the 
obstacle (X = 0.08 m, X = 0.25 m for r/R = 0.0–1.0). As a 
result, the mixing between the separated and unrestricted 
parts of the flow downstream of the pipe appears to be less 
diffused compared to the experiment (X = 0.25 m for r/R = 
1.0–0.0). To a certain degree, the observed differences in  

the mean flow velocity are also affecting the local distribution 
of the bubbles. Most likely, a factor that contributes to the 
observed differences is the three-dimensional character of 
the vertical flow and the turbulent mixing behavior, which 
to an extent are both compromised as a consequence of the 
symmetry assumption along the central plane of the pipe. 

The rate of bubble coalescence and break-up events 
across the pipe depends on the local flow conditions and in 
particular the characteristics of the forming turbulent 
structures (Fig. 13). Areas where break-up effects appear to be 
dominant are established in places where strong interactions 
between eddies and bubbles are occurring; these zones are 
mostly developing along the separated turbulent-layer, 
which is initiated around the sharp periphery of the flow 
facing obstacle and extends further downstream as part of 
the wake. The region behind the obstacle is occupied by a  

 

 

Fig. 11  Predicted flow streamlines and bubble volume-fraction 
distribution behind the obstacle (Run 096). 

 

  

Fig. 12  A-MuSiG model predictions and experimental measurements (Frank et al., 2007) for the spatial distributions of the axial 
velocity magnitude |Uz| and normalized bubble volume-fraction ( )vf at different elevation planes (Run 074).   
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vortex structure which continuously mixes the entrapped 
bubbly population inside the confined space of the wake. The 
resulting flow conditions at the vicinity of the vortex are 
favorable for frequent bubble–bubble collisions and persistent 
interactions, both leading to high coalescence rates. 

The bubble size distribution across the channel is adjusted 
to the developing coalescence and break-up rates, correlating 
to the local flow conditions. The evolution of the characteristic 
bubble sizes is demonstrated by means of the predicted 
PDF (Fig. 14), which represents averaged population clusters 
at the flow planes surveyed by the wire-mesh sensors. The 
individual line plots on these graphs refer to calculations 
with different number of size-groups. Upstream of the wake 
(X = 0.08 m), the peak of the PDF distribution seems to be 
shifted towards larger bubble sizes implying that coalescence 
effects are dominant in this part of the flow. The enhanced 
mixing between eddies and bubbles downstream of the 
vortex wake (X = 0.52 m) encourages break-up effects, which 
gradually diminish the size and variance of the population. 
Overall, the A-MuSiG predictions appear to be independent 
of the number of size-groups used for discretizing the phase- 
space. 

The solution effects attributed to the momentum closure 
assumption for modelling bubble–flow interactions (i.e., 
single-speed or multi-speed velocity fields) are interpreted 

in terms of the cumulative distribution function (CDF) (Fig. 
15), which is integrated from the previously presented 
PDF distributions. Accounting only for mean size bubble 
interactions with the flow by adopting a single velocity-field 
for the entire dispersed phase population, seems to result 
into overestimation of the BSD developing behind the 
obstacle (X = 0.08 m), especially in the mid-size range. The 
distribution discrepancies emerging near the obstacle of the 
pipe grow further downstream of the turbulent vortex flow 
(X = 0.52 m), after the bubbles have spend sufficient time 
interacting with the surrounding flow. 

 

 

Fig. 13  Predicted bubble break-up and coalescence rates (Run 096). 
 

 
Fig. 14  A-MuSiG model predictions and measurements (Krepper et al., 2009) for the PDF of the bubble size distribution at 0.08 and 
0.52 m planes (Run 096). 

 

 

Fig. 15  A-MuSiG model predictions and measurements (Krepper et al., 2009) for the CDF of the bubble size distribution at 0.08 and 
0.52 m planes (Run 096).          
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4  Conclusions 

In the presented analysis the A-MuSiG model implemented 
in the Eulerian multiphase solver in Simcenter STAR-CCM+ is 
validated against numerous experiments in bubbly channel 
flows. The multiphase inspection techniques employed 
in the considered experiments provided essential sets of 
measurements that characterized the properties of the 
bubble population as well as mean flow for different operating 
conditions. The principal objective of the performed CFD 
investigation is aligned with a more general research effort 
towards the evaluation of the predictive capabilities of PBE 
methods as well as empirical kernels for modelling sub-grid 
coalescence and break-up mechanisms, which to a certain 
extent also pertains to the turbulent-stresses and forces 
closures adopted for the momentum equations. To this 
purpose, the conducted parametric simulations accounted 
for phenomenological models relating to a wide spectrum 
of particle physical processes, such as eddy–particle interactions, 
turbulent interparticle collisions and film-drainage effects 
between contacting interfaces, as well as anisotropic closures 
strategies and wall-reflection effects. The obtained predictions 
imply that to a degree, the empirical coalescence and break- 
up kernels can be calibrated to fit the population size 
distributions measured in the experiments, provided that 
the underlying turbulent length-scales of the carrier flow 
and momentum balance of the moving particles are adequately 
modeled. Uncoupling the instantaneous size interactions of 
individual bubble groups with the background flow and 
instead modelling mean size interactions by assuming a 
single-velocity field for the entire population, is justified 
only in limited cases where the properties of the particulate 
phase are ideally homogeneous. Given the multifaceted 
nature of polydispersed flows, the proposed adaptive phase- 
space discretization algorithm is an advantageous technique 
for solving PBEs, since it reduces the dependent variables of 
the problem by calculating the population size-groups, instead 
of a priori prescribing a fixed number of classes. RANS 
closures for modelling turbulent fluid-flow and particle 
dynamics combine first principles to describe microscopic 
and macroscopic physical processes and as such rely on 
experiments as well as direct numerical simulation in order 
to recover information that may be lost due to formulation 
assumptions. Overall, the derivation and calibration of 
phenomenological particle sub-grid models to characterize 
physics relating to a wide spectrum of scales are demanding 
tasks, currently challenged by deep learning and machine 
training algorithms (Ma et al., 2015). 
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