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Abstract 
In this work, an efficient model for simulating bubble dispersion and coalescence due to 

turbulence is developed in the Euler–Lagrange framework. The primary liquid phase is solved on 
the Euler grid with the RANS turbulence model. Bubble motion is computed with the force 
balance equations. One-way coupling between two phases is assumed and the framework is 

designed for the computation of disperse bubbly flows at low Eötvös number. The turbulent 
dispersion of the dispersed phase is reconstructed with the continuous random walk (CRW) 
model. Bubble–bubble collisions and coalescence are accounted for deterministically. To 

accelerate the time-consuming search for potential collision partners in dense bubbly flows, the 
sweep and prune algorithm is employed, which can be utilized in arbitrary mesh types and sizes. 
Validation against experiments of turbulent pipe flows demonstrates that the one-way coupled 

EL-CRW dispersion model can well reproduce the bubble distribution in a typical dense bubbly 
pipe flow. Good agreement of the bubble size distribution at the pipe outlet between the 
simulation and the experiment is obtained.  
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1 Introduction 

Dispersed bubbly flows appear in various engineering systems 
including chemical, mechanical, and biological applications. 
The modeling of bubble motion, turbulent dispersion, and 
interaction with other bubbles plays a significant role in the 
design process of industrial productions.  

Much work has been carried out to develop numerical 
methods for computing unsteady bubbly flows. The point 
mass approach in an Euler–Lagrange framework is promising 
for the large-scale industrial applications due to its flexibility 
and computational efficiency. Compared with the Euler–Euler 
representation, the Euler–Lagrange approach provides the 
advantage to track each numerical bubble and model the 
interaction between bubbles deterministically (Mattson 
and Mahesh, 2012). 

According to the review of Liao and Lucas (2010), the 
interaction between bubbles may be caused by several 
mechanisms: random motion due to turbulent fluctuations, 
shear flow because of gradients of the nearby fluid velocity, 
different rise velocities resulting from different bubble sizes, 
and the wake entrainment of bubbles moving in line. 
Compared to the turbulence induced interaction, other 

mechanisms are normally of minor significance. In order to 
predict bubble motion due to turbulence, it is ideal to 
describe all the temporal and spatial scales of the fluid phase 
with direct numerical simulation (DNS). The Large Eddy 
Simulation (LES) approach is conceptually similar to DNS 
but requires reduced computational effort by modeling instead 
of resolving the smallest length scales. However, both methods 
still need sufficiently fine grids and the computational 
resources increase rapidly with Reynolds number. The 
simulation of bubble dispersion with DNS or LES for 
industrial applications of high Reynolds numbers is valid 
but remains very expensive (Santarelli and Fröhlich, 2015; 
Fang et al., 2018). Furthermore, not resolving the smallest 
length scales in an LES poses problems for the prediction of 
bubble trajectories similar to the ones addressed in this 
paper for RANS.  

Alternatively, the Reynolds-averaged Navier–Stokes 
(RANS) approach solves for the time-averaged velocity, 
which is more affordable for a wide range of complex 
industrial applications. In order to model bubble dispersion, 
the RANS statistics need to be enhanced by instantaneous 
fluid velocity fluctuations seen by the Lagrange phase. This 
is usually done in a stochastic manner. Iliopoulos and       

 Vol. 3, No. 3, 2021, 152–170
Experimental and Computational Multiphase Flow https://doi.org/10.1007/s42757-020-0082-2

 



Efficient simulation of bubble dispersion and resulting interaction 

 

153

Nomenclature 

Greek Letters 
αb  Bubble volume fraction 
αl  Liquid volume fraction 
μl  Liquid molecular viscosity (kg/(m·s)) 
μt  Turbulent viscosity (kg/(m·s)) 
ρb   Bubble density (kg/m3) 
ρl   Liquid density (kg/m3) 
ρp  Particle density (kg/m3) 
σ  Surface tension coefficient (N/m) 
σf  Variance of liquid velocity fluctuation (m/s) 
τb  Bubble relaxation time (s) 
τL  Lagrange time scale of the turbulence (s) 
ε  Turbulence dissipation rate (m2/s3) 
ξ  Gaussian random number with mean 0 and  
   variance 1 
Roman Letters 
CD  Drag force coefficient 
CL  Lift force coefficient 
Cτ  Model constant in the continuous random 
  walk model 
Cvm  Virtual mass coefficient 

′vmC   Modified virtual mass coefficient 
D  Drift term in the continuous random walk 
   model 

D  Pipe diameter (m) 
Db  Bubble diameter (m) 
Eo  Eötvös number 
jl  Liquid superficial velocity (m/s) 
jb  Gas superficial velocity (m/s) 
k  Turbulent kinetic energy (m2/s2) 
mb  Bubble mass (kg) 
Mo  Morton number  
Nb  Bubble number 
Rb  Bubble radius (m) 
Re  Reynolds number 
Reb  Bubble Reynolds number 
RL  Correlation function in the continuous  
  random walk model 
Stb  Bubble Stokes number 
u  Fluid velocity vector (m/s) 
u   Reynolds-averaged fluid velocity vector (m/s) 
u'  Fluid velocity fluctuation vector (m/s) 
ub  Bubble velocity vector (m/s) 
Vb  Bubble volume (m/s) 
xb  Bubble position vector (m) 
ΔtL  Lagrange time step size (s) 

 
 

Hanratty (1999) studied the dispersion of particles with 
zero inertia in a fully developed turbulent channel flow. 
The fluid velocity fluctuations along the particle trajectory 
obtained from a Lagrange dispersion model were compared 
to the DNS diffusion results, and good agreement was 
found. Bocksell and Loth (2001) investigated different 
dispersion models in a nearly homogeneous turbulent wake 
and in an inhomogeneous axisymmetric jet. The predicted 
statistical concentration of particles agreed well with the 
experimental data. Indeed, stochastic dispersion models are 
able to give realistic predictions in various applications 
(Dehbi, 2008). Therefore, one focus of this paper is to apply 
a RANS dispersion model for modeling turbulence- 
induced interaction between the elements of the Lagrange 
phase, a prerequisite to address turbulence-induced bubble 
collisions. 

Another focus of this paper lies on modeling coalescence, 
occuring in a certain percentage of collision events. Darmana 
et al. (2006) adopted the Euler–Lagrange method to 
investigate bubble coalescence with the model of Chesters 
(1991) and the model of Prince and Blanch (1990). Recently, 
Hoppe and Breuer (2018) and Kamp et al. (2001) developed 
two coalescence models based on the studies of Jeelani and 
Hartland (1991) and Chesters (1991), respectively. Mattson 

and Mahesh (2012) applied the model of Kamp et al. 
(2001) in a turbulent pipe flow to predict the variation of 
the bubble size with the streamwise position. Good agreement 
between the predicted size distribution and the experimental 
results was obtained. The model of Hoppe and Breuer 
(2018) was validated against experiments of single bubble 
coalescence with a free surface for different bubble sizes 
and fluid conditions. In the present paper, both models are 
applied to turbulent bubbly pipe flows. To the best of the 
authors’ knowledge, it is the first time that the model of 
Hoppe and Breuer (2018) is validated in bubble laden 
flows.  

In all cases, contact and collision is the premise of 
coalescence. The time required for computing collisions 
between Lagrange bubbles can become extremely large for 
dense two-phase flows if no special algorithm for the 
computation of bubble–bubble distances is used. Owing to 
the small time step size used in the dispersion models to 
capture the necessary eddy properties, the computational 
burden is increased further. To overcome this problem, 
several algorithms have been proposed to accelerate the 
collision modeling (Shams et al., 2011; Breuer and Alletto, 
2012). However, such algorithms have certain limitations. 
For example, the bubble size should not be larger than the 
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cell size (Shams et al., 2011). In this work, the sweep and 
prune method is employed to determine the distance 
between Lagrange bubbles.  

The paper is structured as follows. In Section 2 the 
computational method employed for the simulations is 
briefly introduced. The bubble dispersion model and the 
approach for modeling bubble–bubble interactions are 
presented in Sections 3 and 4, respectively. In Section 5, the 
solver is presented, together with a verification based on the 
well-mixed criterion. Section 6 reports the validation 
results for several turbulent pipe flows.  

2  Basic equations 

2.1  Governing equations of the continuous phase 

The liquid phase is computed by solving the steady incom-
pressible Reynolds-averaged conservation equations for 
mass and momentum in a 3D domain: 
 u 0⋅ =  (1) 

 ( ) ( )uu u gu T
effρ p μ ρé ù ⋅ =- +⋅  + +ê úë û  (2) 

where u  and p  are the Reynolds-averaged fluid velocity 
and average pressure, respectively. Note that the mean fluid 
velocity u  is related to the total liquid velocity u  by 
u u u¢= -  with u¢  the instantanuous liquid velocity 
fluctuation. Statistical modeling of u¢  will be discussed in 
Section 3. The density in Eq. (2) is the liquid density 

lρ ρ=  and assumed constant throughout. The effective 
viscosity effμ  is composed of the liquid viscosity and the 
turbulent viscosity tμ  with eff t lμ μ μ= + . The turbulent 
viscosity tμ  is obtained from two different turbulence 
models, the realizable k ε-  model or the Reynolds stress 
model (RSM). The governing equations of these models are 
given in the Appendix. Eqs. (1) and (2), combined with the 
transport equations for the selected turbulence model, are 
solved in a three-dimensional domain, covered with a 
stationary grid, the Euler grid.  

2.2  Governing equations for bubbles 

The bubble velocity is computed by solving an ordinary 
differential equation for the linear momentum considering 
different forces on the bubble. Generally, these forces may 
be divided into fluid dynamic forces (e.g., drag, pressure, 
virtual mass, Saffman forces, etc.) and field forces (gravity, 
electrostatic forces, etc.). Hence, the equations of motion 
for each individual bubble read: 

 x ub
b

d
dt

=  (3) 

 D L P g
u F F F F F Fb

b vm coll
d
d

m
t
= + + + + +  (4) 

where xb  is the bubble position vector, and ub  the bubble 
velocity vector. The forces on the right-hand side of Eq. (4) 
are drag force, lift force, virtual mass force, pressure 
gradient force, gravity, and the collision force, respectively.  

For solid particles it may be required to account for the 
Magnus force resulting from rotation which, in turn, 
requires additionally solving an equation for the angular 
momentum. Due to the extremely small mass of bubbles 
and their different behavior during collisions this is not 
modeled in the present study.  

The drag force DF  results from the resistance experienced 
by the bubble moving through the liquid, which is a 
function of the velocity difference between the bubble and 
the liquid nearby. It takes the form (Crowe et al., 1977): 

 ( )D bF u u u ul D
b b

b b

3
4

ρ Cm
ρ D

= - -  (5) 

where DC  is the empirical drag coefficient, and bD  is 
the bubble diameter. The correlation of Tomiyama et al. 
(1998) for clean bubbles in pure liquid: 

 ( ) ( )b

0 687
D b

b

16 48 8max min 1 0 15
3 4

EoC Re
Re Re Eo

.ì üé ùï ïï ï= + . , ,ê úí ýï ï+ê úë ûï ïî þ
  

  (6) 

is used here. The bubble Reynolds number bRe  and the 
Eötvös number Eo  appearing in Eq. (6) are defined as   

 u ul b b
b

l

ρ DRe
μ
-

=  (7) 

 g 2
l b bρ ρ DEo

σ
-

=  (8) 

with σ  the surface tension coefficient. The correlation (6) 
was proposed by Tomiyama et al. (1998) based on measured 
data under the conditions 2 310 10Eo- < < , 3

b10 Re- < <  
510 , and 1014 log 7Mo- < < , with the Morton number: 

 
4
l
3

l

gμMo
ρ σ

=  (9) 

The lift force FL  is caused by a shear flow around the 
bubble. It can be expressed as (Saffman, 1965):   

 ( ) ( )[ ]F u u ul
L L b b

b

ρC m
ρ

= - ´ ´  (10) 

According to Mei and Klausner (1994), the shear lift 
coefficient LC  is positive for a spherical bubble so that the 
lift force acts perpendicularly to the flow direction and 
points in the side with larger relative velocity between 
bubble and liquid. The lift coefficient changes its sign if a 
substantial deformation of the bubble occurs. From the 
observation of the trajectories of a single air bubble rising 
in simple shear flow of a glycerol-water solution, Tomiyama 
et al. (2002) derived a correlation under the experimental 
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condit ions of  ≤ ≤105 5 log 2 8Mo- . - .  and 1 39. ≤  
5 74Eo .≤  using the modified Eötvös number hEo =  

2
l b h( )ρ ρ D σ- /g  with the modified diameter hD =   

3 0 757
b 1 0 163D Eo .+ . . It reads:  

 b h h
L

h h

min[0 288tanh(0 121 ) ( )], 4
( ), 4

Re f Eo Eo
C

f Eo Eo
ì . . ,ïï= íï >ïî

≤
  

  (11) 

with  
3 2

h h h h( ) 0 00105 0 0159 0 0204 0 474f Eo Eo Eo Eo= . - . - . + .  

  (12) 

The bubbles studied in the present work are mainly spherical. 
So, for simplicity, the constant positive lift coefficient 

L 0 5C = .  is used here.  
The virtual mass force Fvm  in Eq. (4) accounts for the 

additional work that the bubble performs in order to 
accelerate or decelerate the surrounding fluid: 

 u uF l b
vm vm b

b

D d
D d

ρC m
ρ t t

æ ö÷ç= - ÷ç ÷çè ø
 (13) 

with vmC  the virtual mass coefficient. The assumption of 
vm 0 5C = .  is valid for isolated spherical bubbles (Auton et 

al., 1988). Although vmC  can vary if an additional bubble 
is located in close vicinity of the considered bubble (Kamp 
et al., 2001), the bubbly flows studied in this work are not 
contact dominated and the average inter-bubble distance is 
still large. The same holds for bubble–wall distances. 
Therefore, a constant value vm 0 5C = .  is selected here.  

The sum of the pressure force and the gravity force can 
be expressed as (Laín et al., 2002): 

 uF F gl l
P g b b

b b

D 1
D

ρ ρm m
ρ t ρ

æ ö÷ç+ = + - ÷ç ÷çè ø
 (14) 

The last term in Eq. (4) Fcoll , describes the collision force 
which is discussed in Section 4.1.2.  

Eqs. (5), (7), and (10) contain the instantaneous liquid 
velocity u  which is the sum of the mean velocity u  and 
the instantaneous fluctuation u¢ . With a RANS approach 
according to Eqs. (1) and (2), only u  is available, however. 
Setting u u=  yields wrong results, as this disregards 
turbulent dispersion, for example. Hence, an adequate 
modeling approach is needed to provide a surrogate for the 
fluctuations, such that   
 u u u mod( )¢= +  (15) 

can be used in the above equations. In the following 
discussion, the index mod  is dropped and all quantities 
with a prime, like u¢ , are understood to be models for the 
unavailable true fluctuations. Observe that in Eqs. (10), 
(13), and (14), the mean velocity is employed. This will be 
addressed in Section 3.3.  

3  Generation of fluctuations 

3.1  Different approaches to dispersion modeling 

According to Bocksell and Loth (2001), models for generating 
turbulent fluctuations can be divided into discontinuous 
random walk (DRW) models, continuous random walk 
(CRW) models, and stochastic differential equation (SDE) 
methods in ascending order of computational effort.  

The first discontinuous random walk (DRW) model 
was proposed by Gosman and Loannides (1983) and later 
extended to other variants like the one of Ormancey and 
Martinon (1984), for example. Turbulent dispersion in 
DRW is a succession of interactions between a bubble and 
eddies with finite lengths and lifetime. It is assumed that a 
bubble can be captured by an eddy when it moves through 
the fluid. This phenomenon induces a random instantanuous 
velocity component, which is piecewise constant in time. 
After the eddy lifetime is reached or when the bubble 
escapes from the eddy, a new random velocity fluctuation 
will be generated.  

Compared with DRW models, progress in predicting 
turbulent dispersion especially in non-homogeneous 
turbulence can be obtained with the continuous random 
walk (CRW) models, which produce velocity fluctuations 
that are continuous in time (Sommerfeld, 2001). To account 
for the non-homogeneous drift of the diperse phase, a drift 
correction term associated with gradients of the Reynolds 
stresses or the turbulent kinetic energy is included in the 
approach (Bocksell and Loth, 2006).  

The SDE approaches have many properties in common 
with the CRW methods, like the continuous velocity 
fluctuations in time. But a major difference is that the SDE 
technique does not demand additional drift corrections to 
account for the effects of inhomogenities (Reynolds and Lo 
Iacono, 2004). Instead, SDE models require models for the 
triple-velocity moments which makes them more complex 
compared with other two. This technique is still in the 
development stage, because some problems need to be 
further investigated, such as, e.g., the robust specification of 
particle–wall interactions (Bocksell and Loth, 2001). For 
these reasons the approach is not widely used in engineering 
applications.  

Despite their deficiencies, CRW models have been 
shown to provide realistic predictions of turbulent bubble 
dispersion (Laín et al., 2002) and to reach a good 
compromise between computational effort and accuracy. 
Hence, a CRW model will be adopted in this work.  

3.2  Normalized continuous random walk model 

With the CRW approach, a separate Langvin equation is 
employed for each bubble to model the liquid velocity 
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fluctuation u¢  seen by this bubble. The normalized CRW 
model of Bocksell and Loth (2006):   

 u u DL 2
L L

f f L

( ) ( ) 1
( ) ( )
t t t R R

σ t σ t t
¢ ¢ -D

= + - +
-D

ξ  (16) 

is chosen in this work, where LtD  is the time step size of 
the Lagrange phase to evolve the bubble position xb . Here, 

fσ  is the RMS of fluid velocity fluctuations at the bubble 
position and ξ  a Gaussian random number with zero 
mean and standard deviation equal to one. If a two- 
equation turbulence model is applied, it is assumed that 

f 2 3σ k= / . If a Reynolds stress turbulence model is 
adpoted, the diagonal elements of the Reynolds stress 
tensorare considered so that f x xσ u u¢ ¢=  for the x-com 
ponent of Eq. (16), f y yσ u u¢ ¢= for the y-component, and 
so on. The first term on the right-hand side of Eq. (16) 
represents the correlated part and the second term the 
random contribution to the velocity fluctuation. The 
correlation function has an exponential form: 

 L L Lexp( )R t τ= -D /  (17) 

where Lτ  is the Lagrange integral time scale. It can be 
determined from   

 
2
f

L τ
στ C
ε

=  (18) 

with a model constant τC  and the dissipation rate ε . The 
choice of τC  is an open question. Sommerfeld (2001) 
proposed τ 0 4C = . . In Pope (2000), τ 0 952C » .  (due to 
the different formulation of Lτ  in that reference, the value 
given there was converted) was found to provide a good 
estimation in a turbulent thermal wake experiment. But as 
the Reynolds number of the flow increases, smaller τC  
down to 0 33.  gives better results (Dehbi, 2008). In the 
present work τ 0 4C = .  is employed.  

The last term D  in Eq. (16) is the drift term, which 
accounts for the inhomogeneity of turbulence and avoids 
non-physical dispersion. The theoretical derivation of the 
full expression of the drift term goes back to Bocksell and 
Loth (2006). Under the assumption of isotropic turbulence, 
the expression provided by these authors can be simplified 
to 

 D L

f L b

1
3 ( )1

t k
σ t t St

D
= 

-D +
 (19) 

with b b LSt τ τ= /  the bubble Stokes number. Here, the 
expression of bτ  from Laín et al. (2002): 

 
bu u

b b l
b

l D b

4 1
3 2

ρ D ρτ
ρ C ρ

æ ö÷ç= + ÷ç ÷ç| - |è ø
 (20) 

is employed.  
The numerical implementation of the CRW model (16) 

leads to 

 x x u1 1
b b b L
n n n t- -= + D  (21) 

 
b

xx x xu u x
1 f b 2

L b f b L b1
f

( )( ) ( ) 1 ( ( ))
( )

n
n n n n n

n
σR σ R

σ
-

-= + -¢ ¢ ξ  

 f

b

L b
1

f b b

( ) 1
3 ( )1 ( )

n

n n
t σ k

σ St-

D
+ 

+
x
x x

 (22) 

where the superscripts n  and 1n-  denote the current 
and the previous time step, respectively.  

Differing from the normalized CRW (22), the conventional 
CRW model assumes x x 1

f b f b( ) ( ) 1n nσ σ -/ =  on the right- 
hand side. According to Bocksell and Loth (2006), in the 
case a tracer particle is heading to a wall, the conventional 
form cannot correctly decrease the “history” effect, i.e., 
reduce the first term on the right-hand side. This may cause 
a non-physical drive of particles into the wall and result in a 
large amount of wall collisions (Bocksell and Loth, 2006). 
Therefore, a normalized CRW model with f b( )nσ /x  

1
f b( ) 1nσ - ¹x  is employed here.  

3.3  Employing the mean velocity field to determine 
forces 

The models for the forces acting on the bubbles, i.e., the 
expressions in Eqs. (5), (7), (10), (13), and (14), contain the 
fluid velocity. In some of the terms the velocity u u u¢= +  
is employed, in other terms only the mean velocity u . This 
is discussed now.  

First, the term u u u¢´ =´ +´  cannot be 
evaluated, because u¢  is defined in a Lagrange manner 
along the trajectory of each bubble. Transferring in each 
time step the information from the set of bubbles to the 
Euler grid, where the curl could be evaluated, would 
involve overwhelming computational cost. Most of all, the 
Lagrange model for u¢  is exempt of information on the 
spatial correlation of realistic turbulent fluctuations, so that 
spatial derivatives cannot be captured and would be entirely 
unrealistic if modeled in this way.  

Second, Eqs. (13) and (14) contain the material derivative 
along the bubble trajectory so that DuD t/  could be used, 
in principle. Instead, however, D Du t/  is preferred, 
because the derivative in time would generate unrealistically 
large values due to the random number ξ  employed in 
Eq. (22), without improving the realism of the model.  

4  Bubble–bubble interaction 

4.1  Efficient deterministic collision model 

4.1.1  Previous studies and requirement in this work 

Beyond transport and turbulent dispersion turbulence- 
induced coalescence is the most relevant phenomenon for 
the bubbly flows studied in this work. The random bubble 
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motion described by the CRW model leads to collisions, 
which are the prerequisite for subsequent coalescence.  

One major challenge related to the collision modeling is 
the expensive search for potential collision partners in the 
Euler–Lagrange representation. If there are bN  bubbles in 
the domain, computation of binary collision is an 2

b( )O N  
problem, which strongly restricts the simulation to small 
bubble numbers.  

Sommerfeld (2001) proposed a stochastic collision 
model for particulate flows. Instead of searching collision 
partners, the momentum change due to collision is computed 
by generating a fictitious partner and assuming that the 
collision of a real particle takes place with the fictitious 
partner. However, from a physical point of view, contact 
and collision of real bubbles is the premise of coalescence. 
Modeling of bubble coalescence based on a fictitious collision 
partner is non-trivial. For these reasons, deterministic 
collision modeling proposed by Breuer and Alletto (2012) 
and Shams et al. (2011), for example, is preferred here.  

To improve upon the time-consuming search, Shams et 
al. (2011) employed a node-based linked-list of bubbles for 
a cell-centered mesh. First, every cell corner node, e.g., 
some red points in Fig. 1, on the Euler mesh is assigned 
with an empty list. Then a loop going through all bubbles 
will find the nearest node to the center of that bubble. The 
corresponding bubble index will be appended into the list 
of that node. Collision detection is then carried out for 
bubbles inside the same list. This procedure reduces the 
number of bubbles that are searched. However, if the 
bubble size is of the same order as the grid size or if cells of 
the Euler grid are strongly anisotropic, this approach may 
fail to identify some collision events as illustrated in Fig. 1.  

 

 

 
 

Fig. 1  Node-based linked-list may fail to detect collisions in 
certain cases. The arrows indicate the nearest nodes (in red) for 
corresponding bubbles. 

Breuer and Alletto (2012) developed an efficient 
collision model based on their tracking algorithm for the 
Lagrange points (Breuer et al., 2006). The computational 
domain is divided into secondary virtual cells. The size of 
these cells is chosen based on some criterion so that an 
appropriate number of particles are located inside. Substantial 
computational savings are achieved by restricting the 
collision detection to particles in the same virtual cell or in 
the neighbouring cells. Similar virtual cell methods are 
employed in smooth particle hydrodynamics or granular 
flows (Hopkins and Louge, 1991) as well. The computational 
efficiency of such methods largely depends on the selected 
virtual cell size (Rousset et al., 2018). It could be delicate to 
choose the cell size in such a way that the number of 
bubbles per cell is sufficiently low, in particular if the bubble 
sizes vary substantially in time and space due to coalescence, 
which is the situation considered in the present study.  

In the present work, an efficient algorithm which can be 
applied on arbitrary cell types, cell sizes, and bubble sizes is 
demanded. To do so the sweep and prune (SaP) approach 
proposed by Baraff (1992) is employed to model bubble– 
bubble interactions.  

Rousset et al. (2018) have evaluated and compared 
several different collision detection algorithms for the 
Discrete Element Method (DEM). It was found that the 
choice of the best algorithm is a trade-off between many 
criteria including the size of the search space, the number 
of particles and the memory usage. For the situation 
considered there, the SaP method was found to yield 
competitive execution time up to about 105 particles and 
the lowest memory consumption of all investigated 
algorithms.  

4.1.2  Sweep and prune with bounding boxes 

Baraff (1992) originally developed the SaP method to check 
the overlapping of multiple axis-aligned bounding boxes 
whose edges are parallel to the Cartesian coordinate axes. 
The basic idea is illustrated here with a two-dimensional 
example.  

Figure 2 shows three axis-aligned bounding boxes labeled 

 
Fig. 2  Idea of the sweep and prune algorithm. 
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A, B, C. At first, the coordinates of each box corner are 
sorted in ascending order, yielding the two vectors: 
 0 0 1 0 1 1a b a c b cx x x x x xé ù

ê úê úë û
, , , , ,  (23) 

 0 0 1 0 1 1a c a b c by y y y y yé ù
ê úê úë û

, , , , ,  (24) 

in this 2D case. A loop sweeps through these sorted arrays 
to identify overlapping boxes according to the following 
criterion: If two boxes overlap with each other, like box B 
with box C in Fig. 2, 0bx  or 1bx  must be placed between 

0cx  and 1cx , or vice versa. This criterion must be fulfilled 
also for the y-coordinates of the boxes. On the contrary, 
boxes A and B do not overlap, because no intersection can 
be found with respect to the y-axis. The same is done in the 
three-dimensional case, just with a third vector of corner 
coordinates.  

Since it only works on one-dimensional vectors of 
length proportional to the number of elements to be 
checked, and since fast sorting schemes can be employed, 
the SaP method requires only b( )O N  operations. For 
three-dimensional problems the original SaP was improved 
by Capannini and Larsson (2016) who proposed a succinct 
data structure to store the information of overlapping boxes 
during the sweep process. This algorithm is selected here 
for accelerating the computation of bubble interactions.  

The link between box overlapping and collision detection 
is established by a bounding box around each bubble with 
edges in the direction of the Cartesian coordinates. During 
the simulation, such a bounding box is determined for each 
bubble based on its position and diameter. Then, with the 
help of the SaP algorithm, the collision of boxes is identified. 
If box overlapping is confirmed, the distance between the 
two bubbles involved is computed based on their true, 
spherical shape.  

4.1.3  Soft-sphere collision model 

After the determination of the distance between the bubble 
surfaces a collision model has to be applied. For the present 
work this is a soft-sphere model. Such a model is based on a 
repulsive spring-like force. As a result, it usually allows a 
very small overlap of the two bodies with the force, 
depending on the amount of overlap, such that the bubbles 
are driven apart (Fig. 3). The same is done if more than two 
bubbles overlap with each other.  

 
Fig. 3  Illustration of bubble collision. 

Here, the repulsive force of the model of Heitkam et al. 
(2017) is used①, with 

 F n
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In the equation, D  is the overlap distance shown in 
Fig. 3, and eq b1 b2 b1 b22 ( )R R R R R= / +  is the equivalent 
bubble radius computed with the radii of the colliding pair. 
Furthermore, σ  is the surface tension coefficient and 
ncoll  a normal vector pointing in the direction from the 
center of the collision partner to the current bubble center. 
The complete model of Heitkam et al. (2017) also contains 
viscous contributions which are neglected here, because 
clean bubbles are considered.  

4.2  Coalescence modeling 

4.2.1  Condition of bubble interface 

During the bubble collision, two bubbles may merge with 
each other if the thin film of liquid trapped between them 
is drained out under the influence of external driving forces. 
According to the review of Chesters (1991), various regimes 
of drainage may be distinguished depending on the 
conditions of the bubble interfaces. Important regimes of 
film drainage are those of immobile, partially mobile, and 
fully mobile interfaces. The surface of clean bubbles is often 
assumed to be fully mobile, while the surface of contaminated 
bubbles is considered immobile (Chesters, 1991). From a 
physical point of view, this means that at the corresponding 
surfaces, slip or no-slip boundary conditions hold for clean 
or contaminated bubbles, respectively. Fully mobile interfaces 
are known to accelerate coalescence by orders of magnitude 
(Chesters, 1991).  

The surface mobility can be decreased by the presence 
of different kinds of surfactants in the fluid. Besides, the 
material properties of the interfaces like Gibbs elasticity can 
play other important roles in the bubble coalescence (Danov 
et al., 1999). In this work, clean bubbles with mobile surfaces 
are assumed.  

Liao and Lucas (2010) listed three kinds of models for 
computing coalescence: (i) the energy model, which is 
related to the kinetic collision energy and the interfacial 
energy of the bubble, (ii) the critical velocity model based 
on the relative approach velocity before collision, and (iii) 
the film drainage model. The last one determines the 
possibility of coalescence from two characteristic time 
scales, the contact time and the drainage time. The 
drainage time is the time required for the thin film between 
the two bubbles to reduce its thickness down to a critical 
                                                                 
① Note the recently published corrigendum to this paper (Heitkam Et 
Al., 2020). 
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thickness. The contact time is obtained from the velocity of 
the bubbles relative to each other. Because the film drainage 
model is derived from the physical mechanisms of bubble 
coalescence and can be extended to different interface 
conditions, many varieties of this model have been 
proposed in the literature (Chesters, 1991).  

In the following the two film drainage models used in 
this work are briefly presented. Based on the bounding box 
method introduced before, the respective coalescence criterion 
is evaluated when overlapping between two bubbles is 
found at the current time step but not found at the previous 
time step. This is to ensure that during each collision the 
coalescence is determined only once and only at the first 
contact of the two bubbles. The reason is as follows. The 
whole film drainage process for clean bubbles takes place 
over a very short lap of time and involves complex variations 
of the bubble shape which cannot be resolved by the point 
mass Euler–Lagrange approach. For this reason, the two 
coalescence models determine the probability of coalescence 
based on the relative collision velocity at the first contact 
without attempting to resolve the film drainage process. 
Thus, when bubbles keep overlapping with each other in 
several subsequent time steps in the present approach, the 
coalescence criterion should not be evaluated repeatedly.  

If no coalescence takes place, bubbles stay in touch and 
the elastic collision force will be added to the right-hand 
side of the force equation (4).  

4.2.2  Model of Kamp et al. (2001) 

Kamp et al. (2001) proposed a model based on the ratio of 
the bubble interaction time it  and the film drainage time 

dt . Instead of attempting a theoretical derivation of the 
probability of coalescence, cP , an exponential probability 
function depending on the ratio d it t/  was chosen   

 d
c

i
exp tP

t
æ ö÷ç= ÷ç ÷çè ø

 (26) 

The interaction time it  is defined as the interval between 
the onset of film formation and the moment at which the 
bubbles begin to separate in a collision process due to the 
elasticity of the bubbles. Without viscous dissipation and 
body forces during the collision, a balance between the 
increasing surface free energy and the corresponding 
reduction in the kinetic energy of the systems can be 
established. The resulting interaction time it  is   
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with the equivalent diameter eq b1 b2 b1 b22 ( )D D D D D= / + . 
The modified virtual mass coefficient vmC¢  deviates from 
the standard value of 0 5.  for individual bubbles. The 
presence of a second bubble with the same size nearby 

increases the value beyond 0 5.  when the two bubbles 
approach. Furthermore, the value of vmC¢  decreases 
monotonically with increasing difference between b1D  and 

b2D . The value vm 0 8C¢ = .  was found in the case of two 
equally sized bubbles just touching each other (Kamp et al., 
2001). For simplicity, vm 0 8C¢ = .  is applied here throughout.  

The drainage time dt  in the model of Kamp et al. 
(2001) is obtained from the numerical solutions of Chesters 
and Hofman (1982) for the case of two colliding bubbles 
with constant approach velocity yielding: 
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where 0u  is the normal component of the relative velocity 
at the start of the collision.  

In many instances the assumption of a constant 
approach velocity in deriving dt  is invalid. Thus, the final 
formulation of the coalescence time scale ratio d it t/  is 
multiplied with an additional correction factor 1k  to take 
into account the effect of various approximations made in 
the derivation (Kamp et al., 2001), thus leading to   
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The coefficient 1k  was found to be equal to 2 5.  when 
comparing to experimental results for bubble coalescence 
with a free surface in highly purified water (Kamp et al., 
2001).  

Mattson and Mahesh (2012) applied the model of 
Kamp et al. (2001) to simulate bubble coalescence using 
an Euler–Lagrange approach with LES. They suggested to 
compare cP  with a random number ζ  uniformly distributed 
in the interval [0, 1] to determine if coalescence occurs 
when a collision is detected. The condition proposed is that 

cζ P< , with otherwise collision only and no coalescence.  

4.2.3  Model of Hoppe and Breuer (2018) 

Hoppe and Breuer (2018) have developed film drainage 
models in the context of the Euler–Lagrange approach 
based on the work of Jeelani and Hartland (1991). Their 
coalescence model for clean bubbles is distinguished from 
the one of contaminated bubbles. In the case of clean 
bubbles, the film drainage is an inertia-controlled process, 
where the viscous force during the film drainage is 
neglected.  

One advantage of this model is the consideration of a 
temporally evolving contact surface to avoid the simplification 
of a constant contact area. The varying contact surface fA  
is accounted for in the force balance of the bubble motion 
during the collision by setting: 

 ub
b f f
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d 42
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σm F A
t D
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which assumes that the collision process is dominated by 
the film force fF . Integrating Eq. (30) and applying some 
simple geometrical considerations, Hoppe and Breuer (2018) 
obtained f eq 0 c csin(π ) 2A D u t t t= / / , where the important 
parameter ct  is the contact time during the collision: 
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Note that the expression of the contact time ct  used in the 
model of Hoppe and Breuer (2018) equals twice the 
interaction time it  of Kamp et al. (2001) in Eq. (27). The 
contact time ct  defines the time bubbles stay in touch 
during the collision, and it  describes the time bubbles are 
heading towards each other at the first stage of the collision.  

The drainage equation describing the reduction of the 
film thickness h  for clean bubbles employed in the model 
reads: 

 i i
l eqf

d 32πwith
d
h h σk k
t ρ DA
=- , =  (32) 

where h  is the film thickness. By inserting the initial film 
thickness ih  at 0t =  and the final film thickness fh  at 

c 2t t= /  and integrating Eq. (32) in time, an expression 
for fh  is obtained   
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The model of Hoppe and Breuer (2018) formulates the 
criterion in terms of two characteristic length scales: fh  
from Eq. (33) and the critical film thickness crith . If fh <  

crith , coalescence is said to occur. Otherwise, coalescence 
does not occur.  

To specify ih  and crith , the estimations of Chesters 
(1991), i.e., 
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are employed, with HA  the Hamaker constant, which is of 
the order ...20 19(10 J 10 J)O - - . For the validation cases 
investigated below, the Hamaker constant was set to HA =  

203 7 10 J-. ´  corresponding to water molecules according 
to Israelachvili (2011) and the surface tension was set to 

0 072 N/mσ = .  which is representative of air–water 
interfaces (Hoppe and Breuer, 2018).  

4.2.4  Comparison of coalescence models 

The probabilities of coalescence delivered by both models 
in the case of air bubbles in pure water at room temperature 
are illustrated in Fig. 4. The stochastic contribution in the 

model of Kamp et al. (2001) leads to a continuous variation 
of the probability coalP . In contrast, the model of Hoppe 
and Breuer (2018) is based on a critical state, thus leading 
to a binary result of the model. On the other hand, it is 
exempt from any random number generation.  

 
Fig. 4    Comparison between the two coalescence models employed 
for the case of air bubbles in pure water at room temperature. (a) 
Probability of coalescence as a function of approach velocity 0u  
and equivalent bubble diameter eqD  for the model of Kamp et al. 
(2001); (b) the same data for the model of Hoppe and Breuer 
(2018). 

 
For both models, as the approach velocity 0u  or the 

diameter eqD  increases, the coalescence of clean bubbles 
may be inhibited. Indeed, in the experiment of Orvalho et 
al. (2015), it was found that the bubble contact time 
monotonously decreases with the bubble approach velocity 
obeying a power law. Further increase in 0u  can lead to a 
regime without coalescence. Ribeiro and Mewes (2006) 
recorded many random bubble collisions in polydisperse 
dilute bubble swarms suspended in a 2D flat downflow cell. 
Two classes of collisions were observed, those leading to 
coalescence for low 0u  and those with pure collision and 
rebouncing for high 0u .  

Small values of eqD  are found to facilitate bubble 
coalescence. According to Orvalho et al. (2015), the reason 
is that small bubbles with large curvature and less 
deformable surface can quickly squeeze out the liquid film. 
On the contrary, between two large bubbles the liquid film 
occupies more area resulting in a longer and more complex 
drainage process.  
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4.2.5  Three bubbles 

The probability that three bubbles collide is very low in the 
flows investigated here. For this reason a simple strategy is 
selected for efficiency, which is sufficient here. If two 
bubbles stay in contact without coalescence and a third 
bubble collides with one of them, coalescence is not 
initiated.  

5  Implementation and verification 

5.1  Flow solver and Lagrange solver 

The governing equations of the liquid phase were solved 
using the code Ansys Fluent v19.2 based on a cell-centered 
Finite Volume method for unstructured grids. The spatial 
derivatives were discretized using a third-order MUSCL 
and the pressure interpolation scheme was PRESTO!. The 
convergence criterion for all equations was to require that 
the scaled residuals have decreased to 510- .  

The disperse bubble phase was computed by solving 
Eqs. (3), (4), and (22) using the in-house solver bTrack 
(standing for “bubble tracking tool”) developed in the 
present study. It was implemented in C and parallelized 
with OpenMPI. The bubble velocity was obtained with the 
2nd order implicit Broyden method. Only one-way 
coupling is considered in this work. The steady solution of 
the liquid phase is exported from Ansys Fluent to bTrack, 

where the transient bubble motion and interactions are 
calculated, as illustrated in Fig. 5.  

5.2  Model verification with well-mixed criterion 

To verify the implementation of the CRW dispersion model 
in bTrack, the well-mixed criterion is used. It states the 
requirement that very low inertia particles which are initially 
uniformly mixed in the domain should remain well mixed 
as time evolves and is commonly employed in the literature 
to verify dispersion models (Thomson, 1987; Dehbi, 2008). 
The random motion of tracer particles from the CRW 
model should fulfill this criterion in turbulence. 

The numerical setup for the verification case is given in 
Fig. 6. The domain is periodic in all three directions for the 
particles and gravity is absent. The flow field with its 
statistics is given explicitly with turbulence assumed to be 
isotropic and inhomogeneous, so that k  and ε  suffice 
for its definition. Both are non-uniform according to the 
relations given in Fig. 6. 

A number of 60,000 tracer particles with very low mass 
are uniformly and simultaneously released on a line along 
the x-axis in the middle of the domain at the start of the 
simulation at 0t = . Hence, the particles need to travel in y 
and z to reach the statistically steady state. The time step 
size for computing CRW was chosen to be L 0 001 s,tD = .  
which fulfills the requirement L L,min 8t τD < /  in order to 
obtain a statistically converged result according to Bocksell 

  
Fig. 5  Schematic of one-way simulations with in-house tool bTrack. 

 
Fig. 6  Numerical setups for the verification with well-mixed criterion.      
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and Loth (2001).  

Figures 7 and 8 provide results of this setup obtained 
with different terms in the model accounted for. Figure 7 
shows the particle distribution in the domain at 15 st =  
resulting from these simulations. Beyond this time, the 
average distribution of the particles remains unchanged. 
Figure 8 reports the normalized particle concentration 
obtained from averaging in y and z. The label “no normali-
zation” stands for a simulation with x x 1

f b f b( ) ( ) 1n nσ σ -/ =  
in the first term on the right-hand side of Eq. (22). The 
drift correction refers to the last term on the right-hand 
side of Eq. (22). The effect of different terms in the CRW 
equation is clearly seen in these graphs. It is apparent that 
only when employing both the normalization and the drift 
correction the well-mixed criterion can be satisfied. If only 
the drift correction is used, the tracer particles still tend to 
migrate to the area with low turbulent kinetic energy.  

6  Model validation 

6.1  Overview of the cases studied 

Table 1 shows a summary of the cases employed for 
validation of the present bubble dispersion and coalescence 
modeling. These cases are based on the experiments of  

 

Fig. 7  Distribution of the tracer particles under the effect of 
different terms at 15 st = . 

 

Fig. 8  Normalized concentration of the tracer particles along the 
x-axis, labels defined in the text. 

Colin (1990) and Colin et al. (1991, 2012). In the experiment 
of the case 0, coalescence was inhibited by adding 

30 0016 mol/m.  of sodium dodecyl sulphate to the tap 
water. Therefore, coalescence modeling is switched off in 
the case 0 and the focus is placed on the validation of the 
bubble laden dispersion in the one-way coupled simulation.  

In the absence of surfactant (cases A to E), it was 
observed that the bubble size drastically increases downstream 
(Colin et al., 1991). Because no break-up was observed and 
the changes in bubble size due to mass transfer or pressure 
variation were found negligible in the experiment (Kamp et 
al., 2001), the effect of coalescence dominates here. Thus, 
bubble coalescence due to the turbulent fluctuations is 
studied in the cases A to E and the assumption of clean 
bubbles for the coalescence models discussed in Section 4.2 
is not violated.  

It might be argued that the transport of the surfactant at 
the bubble surface could promote the Marangoni effect so 
that the drag model (6) for clean bubbles might not be 
suitable in the case 0. According to Colin et al. (2012), 
however, this concentration is still smaller than the minimal 
concentration at which the Marangoni effect is observed for 
a 2 mm  diameter air bubble rising in quiescent water 
(Duineveld, 1995). This justifies to employ the coefficient 
according to (6) for all cases.  

Table 1  Overview of the physical cases studied in this work. The superficial velocity of liquid, lj , and of the gas, bj , are defined by the 
respective volume flow rate divided by the cross-sectional area. The average void fraction for the case B is not provided in the reference 

Case lj  (m/s) bj  (m/s) ReD Averaged void fraction α Inlet mean Db (mm) Coalescence modeling Source 

Validation of bubble laden dispersion in the one-way coupled simulation 

0 1 0.028 40000 0.025 1.2 Negligible Colin et al. (2012) 

Validation of bubble coalescence due to dispersion 

A 0.85 0.05 34000 0.0462 2.48 Yes Colin et al. (1991) 

B 1.56 0.06 62400 — 1.92 Yes Colin et al. (1991) 

C 1.56 0.061 62400 0.0286 2.45 Yes Colin (1990) 

D 0.956 0.05 38200 0.0407 3.12 Yes Colin (1990) 

E 0.954 0.128 38200 0.0912 4.46 Yes Colin (1990) 
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All the experiments were carried out in a pipe of the 

same diameter, 40 mmD = . Gas was injected and mixed 
with the liquid phase through a Venturi mixer at the inlet. 
For the case 0, the local measurement of gas volume 
fraction and axial bubble velocities were performed near 
the pipe outlet. The bubble size spectra in the cases A to E 
were obtained by an optical measuring procedure with a 
camera at 500 frames/s.  

The experiments were performed in microgravity 
conditions on an aircraft that flew a parabolic path to 
achieve a gravity smaller than 2% of the earth’s gravity for 
20–30 s. The most important difference between these 
conditions and an up- or downward bubbly flow on earth is 
the fact that the bubble-induced turbulence (BIT) is negligible, 
so that the flow is dominated by the shear-induced turbulence 
alone (Colin et al., 2012). As a result, the flow is unaffected 
by BIT, giving a clearer picture and removing the need for 
any BIT models in the present work.  

The same Euler mesh was used for all cases. Information 
on turbulence modeling, boundary conditions, mesh and 
solver parameters is assembled in Fig. 9. The symbol xD  
and wrD  stand for the grid spacing in x and the height of 

the first cell adjacent to the wall, respectively. For the liquid 
phase, the properties of water at room temperature are used. 
The pipe Reynolds numbers of the single phase flows 

D l l lRe j ρ D μ= /  are listed in Table 1.  

6.2  Bubble dispersion 

6.2.1  Single phase simulation 

The single phase simulation with the k ε-  realizable model 
was carried out for the case 0. Because the inlet and outlet 
were defined as periodic, the single phase simulation after 
convergence generates the same velocity profile in each 
cross section. A mesh independence study showed that this 
grid of 2 46.  M grid points provides the same results as a 
grid with 8 3.  M cells. Validation of the simulation against 
the experimental measurement is shown in Fig. 10. 

The RMS of the liquid velocity fluctuation was 
computed as 2 3u k¢ = / . Good agreement between the 
experimental data and the single phase simulation is 
observed. The liquid data in the single phase experiment 
and the same data in the multiphase experiment are both 
plotted in the figures. Comparing these, the difference is  

  

Fig. 9  Physical and numerical parameters for the validation cases. 
 

 
Fig. 10  Comparison of the results from the single phase simulation with experimental data of Colin et al. (2012) for the case 0. (a) 
Mean velocity; (b) RMS of velocity fluctuations. 
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found small which means that the presence of the bubbles 
has not significantly affected the liquid phase velocity, as 
stated in Colin et al. (2012). In the absence of buoyancy, the 
bubble slip velocity was smaller than the measurement 
uncertainty in the experiment. Due to a near zero slip 
velocity, the momentum transfer from the bubbles to the 
liquid phase is negligible in this flow. Based on this 
observation, the assumption of one-way coupling is valid in 
the present work.  

6.2.2  Bubble dispersion without modeling of collisions 

Based on the single phase steady RANS results, the random 
bubble motion was computed as a next step using the CRW 
model. Bubbles with a constant diameter b 1 2 mmD = .  
were released uniformly at the pipe inlet at 0x =  every 
0.01 s . The number of released bubbles was determined 
according to the experimental gas volume flow rate. During 
the simulation a maximum of about 120,000  bubbles 
were simultaneously present in the domain. The Lagrange 
time step size LtD  was set to 0.00025 s  and the total 
physical simulation time was 10 s .  

The bubble volume fraction bα  was sampled along the 
radius, with averaging in circumferential direction, at 

2 8 mx = .  in each time step. The bubble velocity in the 
axial direction was also collected every 0.01 s  at this position 
to compare the mean velocity fluctuations of bubbles with 
the experiment. The bubble dispersion near the outlet is 
illustrated qualitatively in Fig. 11, where the bubbles are 
scaled to their real size. Recall that bubble–bubble collisions 
were not accounted for in this simulation.  

Figure 12 illustrates the time averaged bubble volume 
fraction bα  along the radius at 2.8 mx =  with averaging 
in circumferential direction. The standard model employs  

 
Fig. 11  Dispersion of bubbles in the turbulent pipe flow, case 0. 
Bubbles colored with their velocity magnitude. 

 
Fig. 12  Bubble volume fraction over the radius normalized with 

2R D= /  near outlet. 

the forces described in Section 2.2 and the dispersion 
model of Section 3. The simulation results show that with 
the modeling employed in this study the radial distribution 
of the bubbles can be predicted very well for this case. 

Indeed, if no lift force model is employed, there is an 
erroneous peak of volume fraction near the wall as seen in 
Fig. 12. An explanation for this may be that the turbophoresis, 
as the force balance between the drag force and the effect of 
turbulence, leads to a buildup of concentration near the 
wall. Comparing the results from the two lift models it is 
seen that the particular value of the lift coefficient has no 
large influence on the results.  

If no dispersion model is used, peaks of bα  appear in 
the figure, because bubbles near the wall are constantly 
pushed towards the pipe axis by the lift force and they may 
overlap with each other as collision modeling is neglected. 
The lift force decreases as the bubbles move from the wall 
to the center, so that the shift of the peak in bα  is also 
becoming slower with increasing streamwise position.  

Figure 13 shows the results for bα  and for the mean 
velocity fluctuations of bubbles in the axial direction b,xu¢  
with different values of the model parameter τC  in Eq. 
(18). No significant difference in bα  and b,xu¢  is revealed. 
With increasing of τC  the fluctuations b,xu¢  increase a  

 

Fig. 13  (a) Bubble volume fraction; (b) axial bubble velocity 
fluctuations. Results obtained for the case 0 near the outlet with 
different turbulence modeling, changing τC  in Eq. (18) and 
switching between the k ε-  model and the RSM model selected 
here. Collisions were disregarded in all simulations, except one 
with RSM. 
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little. But overall the fluctuation is somewhat underestimated. 
The bubble dispersion based on the liquid phase 

solution with the Reynolds stress model was also computed. 
As mentioned in Section 3.2, for a RSM, the mean velocity 
fluctuation fσ  can become anisotropic in Eq. (22). The 
liquid phase velocity fluctuations in the three directions 
obtained from the RSM simulation are shown in Fig. 14. 
Nearly no difference between them is observed, except in 
the near-wall region. The anisotropic effect, hence, plays a 
minor role in this case.  

Overall, Figs. 12 and 13 demonstrate that in this validation 
case the bubble distribution can be well estimated by the 
CRW model. The underestimation of bu¢  is caused by the 
fact that bubble collisions are neglected in the simulations 
discussed so far here.  

6.2.3  Bubble dispersion with modeling of collisions 

Figure 13 contains one result with collision modeling 
activated. It is apparent that the bubble distribution in the 
domain is not affected by this step. However, the statistics 
of bubble velocity fluctuations are improved markedly. 
Finally, it is worth taking a glance at the performance 
enhancement by the SaP method presented in Section 4.1.2 
reported in Fig. 15. The SaP implementation used is only 
partly parallelized. It consists of parallelized sorting of box 
coordinates, sequential sweep and prune on the root CPU 
according to Capannini and Larsson (2016), and parallelized 
force computing. More improvement can be achieved by 
parallelizing the sweep and prune step using, e.g., the 
algorithm from Capannini and Larsson (2018). But already  

 
Fig. 14  Liquid velocity fluctuations in three directions from a 
RSM simulation of the case 0. 

  
Fig. 15  Mean CPU-time for computing bubble−bubble interaction 
in one time step. 

with this realization, the bounding box method provides a 
speed up of about 50 times compared with the naive 
approach which takes time proportional to 2

b( )O N . This 
makes the interaction modeling of bubble–bubble interactions 
in a flow with substantial bubble loading feasible. 

6.3  Bubble coalescence in turbulent pipe flows 

6.3.1  Single phase simulation 

First, the single phase simulation for the case A is validated. 
Unfortunately, Colin et al. (1991) did not provide measure-
ment data of the single phase flow, so that the experimental 
data of a pipe flow at a similar Reynolds number from 
Lawn (1971) are adopted here for comparison. In this 
reference, the anisotropic fluctuating velocities of the single 
phase flows, when normalized by the wall friction velocity 

τu , were found invariant with respect to Reynolds number 
Re  from around 30,000  to 250,000.  

The continous phase of the case A was computed with 
the Reynolds stress model and the results are plotted in Fig. 
16. The computed liquid velocity fluctuations are 
normalized by τu  obtained from the simulation. The 
x-axis represents the streamwise direction. Basically, good 
agreement between the single phase simulation and 
experiment can be regarded.  

6.3.2  Results of simulating bubble coalescence 

In the simulation, a constant Lagrange time step size LtD =   
0 00001 s.  for the disperse phase was employed over the 
total simulation time of 20 s.  Bubbles were released randomly 
at the inlet every 0.006 s  with their number chosen to  

 

 
Fig. 16  Validation of the single phase simulation of the case A. 
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match the gas flow rate in the experiment. The bubble size 
was randomly chosen from the experimental probability 
distribution function (PDF). Coalescence modeling was 
switched off until the bubbles moved to 10x D> . This 
was done for two reasons. First, this inflow region allows 
the bubble PDF to equilibrate. Second, the experimental 
bubble size PDF at the inlet was actually measured at 

10x D=  of the simulation domain. The simulated bubble 
size near the outlet in the region 70 80D x D< <  was 
determined to compare with the corresponding experimental 
data at the outlet.  

An overview of the bubble dispersion and the size 
distributions is given in Fig. 17. It is apparent that quite 
large bubbles can be obtained, with bD  up to 15 mm  in 
the case A, when bubble injection is performed with an 
initial mean diameter of 2.48 mm  which is a factor of 6 . 
Furthermore, this amounts to bD D/  as large as 0 375. . 
An influence of the Reynolds number and the average void 
fraction is seen when comparing the case A and C. The 
snapshots also reveal that, as expected, the bubbles are not 
distributed uniformly over the cross section. 

A more quantitative analysis of the results is now 
provided with appropriate statistical data. Results of the 
case A are shown in Fig. 18. The bubble size PDF in the 

simulations near the outlet was computed by the 1D kernel 
density estimation function in Python (SciPy, 2019) and it 
was evaluated for bins of width 1 mm , centered at bD =  
1 5 2 5. , . ,...  to 20.5 mm , and normalized to 100% . The 
results show that both coalescence models can reproduce 
the size distribution for the case A fairly well, with the 
model of Kamp et al. (2001) yielding slightly smaller 
bubbles. 

A simulation result for the same case obtained with LES 
by Mattson and Mahesh (2012) employing the model of 
Kamp et al. (2001) is also plotted as a reference. These data 
are very close to the present RANS result. The computational 
effort, however, is much larger with the LES approach, so 
that the present method is more cost effective for this case. 

Figure 19 illustrates the bubble size PDF at the outlet, 
shown in Fig. 18(b), by displaying a snapshot of bubble 
positions and velocity (not size, as in Fig. 17) near inlet and 
outlet. Very large diameters up to 2D /  are observed, 
with bubbles concentrating near the center. A diameter of 
this magnitude yields substantial velocity differences of the 
fluid between the wall-oriented side of the bubble and the 
center-oriented side. Hence, one might expect that bubbles 
of this size undergo deformations of their shape which 
would have to be accounted for in the simulation. However,  

 
Fig. 17  Snapshots of the simulated bubble positions and sizes for the cases A, C, D. Only part of the domain is shown. 

    

Fig. 18  Comparison of the experimental bubble size PDF with the simulation results for the case A. (a) Distribution at the inlet; (b) 
distribution near the outlet. 
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Fig. 19  Snapshots of bubble size variation from the inlet to the outlet in the case A.   

in the microgravity experiments of Kamp et al. (2001) and 
Colin et al. (1991), bubbles stay nearly spherical up to 
bubble diameters of 20 mm . This can be seen also in the 
small Eötvös number for bubbles. If the experiment was 
performed at a gravity equal to 1% of the Earth’s gravity, the 
Eötvös number for bubbles of 20 mm  size would only be 
0 54. . So the approximation of a spherical shape in this 
study is acceptable.  

The bubble size distribution near inlet and outlet in the 
cases B and C are presented in Figs. 20 and 21, respectively. 
In these cases coalescence is not so pronouced, resulting in 
a lower average probability of large bubbles than in the case 
A. Cases B and C have the same liquid flow conditions and 
actually the same gas volume flow rate. The mean bubble 
size at the inlet, however, differs by more than 25% resulting 
in a different size at the outlet. In both cases the model of 
Kamp et al. (2001) yields smaller bubbles, with the model of 
Hoppe and Breuer (2018) generating the same maximum 
size as observed in the experiment. The experimental data 

 
Fig. 20  Comparison of the experimental bubble size PDF with 
the simulation results for the case B. (a) Distribution at the inlet; 
(b) distribution near the outlet. 

 

Fig. 21  Comparison of the experimental bubble size PDF with 
the simulation results for the case C. (a) Distribution at the inlet; 
(b) distribution near the outlet. 

 
are narrow, so that the maximum value is more 
pronounced. 

Figures 22 and 23 show the predictions for the cases D 
and E. Similar to the case A, the simulation results at the 
outlet display a smooth variation from smaller bubbles to 
larger ones. In contrast, the experimental data demonstrate 
irregular shapes in the PDF. As discussed in Kamp et al. 
(2001), a log-normal law should be expected to represent 
the PDF of bubble diameters and the irregularity might be 
caused by accuracy issues of the measurement principle. It 
was reported that for both cases only around 100 bubbles 
were recorded for analysis during the measurement. The 
differences observed with both coalescence models is 
comparatively small and exhibits the same tendency as 
noticed before with the Hoppe and Breuer (2018) model 
yielding slightly larger bubble sizes.  

Several parameters were calculated to characterize the 
bubble size distribution near the outlet in Fig. 24. The  
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Fig. 22  Comparison of the experimental bubble size PDF with 
the simulation results for the case D. (a) Distribution at the inlet; 
(b) distribution near the outlet. 

 
Fig. 23  Comparison of the experimental bubble size PDF with 
the simulation results for the case E. (a) Distribution at the inlet; 
(b) distribution near the outlet. 

parameter bD  is the mean bubble diameter at the outlet, 
and 00D  is a combination of the mean volumetric diameter 

30D  and the Sauter mean diameter 32D  given by 
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where bN  is the total bubble number employed for this 
calculation. Finally the parameter: 

 32

30

ˆ ln Dσ
D

æ ö÷ç= ÷ç ÷çè ø
 (38) 

characterizes the standard deviation of the size distribution.  
Figure 24 displays the correlation of the parameter values 

obtained from the simulations with the corresponding 
experimental data. Good agreement between predicted and 
measured statistical values is obtained for both models. 
With respect to the difference between both coalescence 
models, the model of Hoppe and Breuer (2018) yields 
slightly larger bubble sizes than those from Kamp et al. 
(2001). Nevertheless, their outcomes are quite similar in the 
studied cases. 

7  Conclusions 

A simulation framework for the computation of disperse 
bubbly flows at low Eötvös number was presented which 
can be employed with Eulerian grids for the liquid of 
arbitrary cell size and shape. Specially, a CRW Lagrange 
dispersion model was employed to model turbulence with 
time-averaged fluid parameters and found to be suitable 
and efficient. By applying the sweep and prune method to 
detect bubble collision, the overall performance was 
enhanced furthermore.  

Simulations of bubble collision and coalescence in  

 
Fig. 24  Validation of bubble size statistics for the cases A, C, D, 
E near the outlet. The dotted lines indicate the deviation of plus 
and minus 10%. 
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turbulent pipe flows were undertaken for validation purpose. 
Computed bubble size distributions from the two coalescence 
models of Hoppe and Breuer (2018) and Kamp et al. (2001) 
were in good agreement with the experimental measurement. 
All in all, the proposed combination of physical and 
numerical models was successfully validated. Compared 
with the model in Mattson and Mahesh (2012), the current 
framework was able to predict bubble dispersion and 
collision with a stationary primary phase solution, which is 
proved to be an efficient simulation strategy.  

Further investigations will be concerned with applying 
and assessing the proposed modeling framework to more 
complex configurations. With regard to the numerical 
development, further focus will be placed on the two-way 
coupling. Large bubbles appear due to coalescence and 
their disturbance of the liquid phase may not be negligible. 
However, in the two-way coupled Euler–Lagrange simulation 
with point mass assumption, the accuracy and stability 
strongly depend on the ratio of mesh to bubble size. A 
point source assumption may not be valid for finite size 
bubble whose size is larger than the local grid size. This 
requires a proper interpolation scheme for finite size 
bubbles and appropriate distribution of forces, both being 
topics of ongoing work. 

Appendix 

In the present study turbulence is described by two different 
turbulence models. One is the two-equation realizable 
k ε-  model based on the transport equations: 

 ( )u P Yt
k k

k

μρk μ k
σ

éæ ö ù÷ç⋅ = + + -ê ú÷ç ÷çè øê úë û
 (A.1) 

 ( )u P Yt
ε ε

ε

μρε μ ε
σ

éæ ö ù÷ç⋅ = + + -ê ú÷ç ÷çè øê úë û
 (A.2) 

where the terms Pk  and Pε  represent the production of 
k  and ε , Yk  and Yε  the dissipation terms of k  and ε , 
and kσ  and εσ  the turbulent Prandtl numbers, respectively 
(Fluent Theory Guide, 2019).  

To account for anisotropic effects of turbulence the 
Reynolds stress model (RSM) with linear pressure strain   

 ( )ρ φ¢ ¢⋅ = + - +uu u D P Y  (A.3) 

was adopted. In this equation D , P , and Y  are diffusion, 
production, and dissipation term, respectively. The pressure- 
strain term φ  is modeled by a linear combination of 
different pressure-strain effects (Fluent Theory Guide, 2019). 
Bubble-induced turbulence is not considered in this study, 
since the flows investigated are micro-gravity flows, where 
this effect is known to be small.  
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