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Abstract 
Pressure–Volume–Temperature (PVT) characterization of a crude oil involves establishing its 

bubble point pressure, which is the pressure at which the first gas bubble forms on a fluid sample 
while reducing pressure at a stabilized temperature. Although accurate measurement can be made 
experimentally, such experiments are expensive and time-consuming. Consequently, applying 

reliable artificial intelligence (AI)/machine learning methods to provide an accurate mathematical 
prediction of an oil’s bubble point pressure from more easily measured characteristics can provide 
valuable cost and time savings.  

This paper develops and compares four neurocomputing models applying algorithms 
consisting of a Multilayer Perceptron (MLP), a Radial Basis Function trained with a Genetic Algorithm 
(RBF-GA), a Combined Hybrid Particle Swarm Optimization-Adaptive Neuro-Fuzzy Inference System 

(CHPSO-ANFIS), and Least Squared Support Vector Machine (LSSVM) tuned with a coupled simulated 
annealing (CSA) optimizer. Based on a comprehensive analysis, although the four proposed models 
yield acceptable outputs, the CHPSO-ANFIS model has the best performance with the average 

absolute relative deviation of 0.846, the standard deviation of 0.0126, the root mean square error 
of 43.21, and the correlation coefficient of 0.9902. These algorithms are deployed for the accurate 
estimation of the bubble point pressure from the giant Ahvaz oil field (Iran).  
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1 Introduction 

Determination of reservoir fluid properties, e.g., point 
pressure (BPP), gas oil ratio (GOR), oil formation volume 
factor (Bo), etc., is one of the key factors for reservoir evaluation, 
reservoir performance, inflow performance, surface facility 
design, well test analysis, and material balance calculation 
(Kloubek, 1972; Elsharkawy et al., 1995; Velarde et al., 1997; 
Holcomb and Outcalt, 1999; Mishchuk et al., 2000; Valkó 
and McCain, 2003; Fainerman and Miller, 2004; Sun et al., 
2005; Yazaydin and Martin, 2007; Bandyopadhyay and Sharma, 
2011; Dixit et al., 2012; Ikiensikimama and Ajienka, 2012; 
Li and Yang, 2012; Adeleke et al., 2013; Simjoo et al., 2013). 
The maximum pressure at which the first bubble of gas 

evolves from the corresponding liquid phase is called BPP 
(Farasat et al., 2013). BPP is a critical property of reservoir 
fluids (Standing, 1947; Dindoruk and Christman, 2004; Farasat 
et al., 2013; Arabloo et al., 2014) which needs to be determined 
accurately by reservoir engineers. 

It cannot be computed directly from compositional data 
using basic material balance methods, unlike properties such 
as American Petroleum Institute (API) gravity. BPP can be 
determined either by conducting laboratory analysis or by 
applying numerical prediction methods (Velarde et al., 1997; 
Bandyopadhyay and Sharma, 2011; Farasat et al., 2013). 
However, although standardized procedures of laboratory 
analysis provide the most accurate results, such analyses are 
highly dependent on the quality and validity of reservoir fluid  
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Nomenclature 

API0   API gravity 
BPP   Bubble point pressure 
Bo   Oil formation volume factor 
AARD%  Average absolute relative deviation 
err%   Average absolute error 
MSE   Mean square error 
Pb   Bubble point pressure 
PSO   Particle swarm optimization 
R2   Correlation coefficient 
RMSE  Root mean square error 
Rs   Solution gas oil ratio 
STD   Standard deviation 
T   Temperature 
γg   Gas specific gravity 
γo   Oil specific gravity 

FIS   Fuzzy inference system 
LSSVM  Least squared support vector machine 
ANN  Artificial neural network 
SVM   Support vector machine 
ANFIS  Adaptive neuro-fuzzy inference system 
FCM   Fuzzy C-means 
RBF   Radial basis function networks 
MLP   Multilayer perceptron networks 
PN   Predictive networks 
GA   Genetic algorithm 
CSA   Coupled simulated annealing 
CLM   Coupled local minimizer 
SA   Simulated annealing 
FBPNN  Forward back-propagation neural network 

  
 
samples, especially for under-saturated reservoirs (Velarde 
et al., 1997; Bandyopadhyay and Sharma, 2011; Farasat et al., 
2013). When experimental measurements are not available 
(or reliable), empirical correlations or other predictive models 
are used for estimation of reservoir fluid properties. This is 
essential for certain types of crude oils, e.g., those with medium 
specific gravity, asphaltene base oil, paraffinic oils, and/or 
mixed oils (Proett et al., 2000; Dong et al., 2007; Nnochiri and 
Lawal, 2010; Bandyopadhyay and Sharma, 2011; Deisman 
et al., 2013). Thus, many researchers have attempted to find 
fast and accurate methods for the prediction of BPP and other 
reservoir fluid properties. The early empirical models, such 
as those by Standing (1947), Lasater (1958), and Glaso (1980) 
show the importance of accurate determination of BPP. During 
the last decade, various graphical and mathematically-derived 
equations have been published for estimation of BPP. Some 
of these equations have been developed for specific region 
or oil types, but many have been presented as potentially 
being suitable for generic application. Generally, the statistical 
accuracy of such correlations/equations is unreliable when 
applied to other datasets. 

From the previous studies mentioned, there is a consensus 
that BPP is a function of solution gas oil ratio (Rs), oil 
formation volume factor (Bo), gas specific gravity (γg), API 
gravity (API0) (or oil density γo), and temperature (T). 

 b g s o o( , , , orAPI, )P f γ R B γ T=  (1) 

Standing (1947) published a proposed correlation for 
determination of BPP of crude oil systems based on 105 
experimentally-derived BPP measurements on 22 hydrocarbon 
systems in California of U.S. A log–log plot of Rs/γg defined 
the Standing equation with 11.2% error (Eq. (2)). This 

relationship became the basis of many other methods for 
estimating BPP. 
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Lasater (1958) provided 158 analyses for 137 black oil samples 
from Canada and U.S., to develop a model including non- 
hydrocarbon components of black oil (H2, N2, H2S) with 
an average algebraic error of 3.8% and maximum error of 
14.7%. That relationship identified that the presence of non- 
hydrocarbon components increases negative error. Vazquez 
and Beggs (1980) used 6000 analyses of 600 crude oil samples 
from different parts of world to provide a BPP relationship. 
Glaso (1980) also included non-hydrocarbon components 
(N2, H2, H2S) in North Sea oil samples to develop a BPP 
prediction relationship. 

Al-Marhoun (1988) developed a correlation for estimating 
BPP based on 160 analyses of 69 hydrocarbon mixtures from 
Middle East oil fields. McCain (1991) modified the Standing 
model, based on analysis of 100 samples from around the 
world, to develop a new BPP prediction model. Dokla and 
Osman (1992), based on 51 bottom hole samples from 
reservoirs in the United Arab Emirates reservoirs develop a 
correlation for BPP. Petrosky and Farshad (1993) used 81 
test samples from Gulf of Mexico, Texas, and Louisiana to 
compare the available BPP relationships. Their comparison 
showed that Glaso equation to be more accurate than  
the Standing (1947) or Al-Marhoun (1988) relationships. 
Kartoatmodjo and Schmidt (1994) used 5392 worldwide 
samples to present an alternative BPP. 

Farshad et al. (1996) presented new constants for the 
Glaso (1980) equation based on 98 analyses of Colombian 
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oils. Gharbi and Elsharkawy (1997) used an artificial neural 
network (ANN) algorithm to model the PVT properties of 
reservoir fluids. They used 5200 analyses of 500 test samples 
to develop their ANN model. The correlation coefficient and 
absolute error for this model are 0.96 and 15.38% respectively. 
Elsharakawy (1998) developed an ANN algorithm to compute 
the key fluid properties, i.e., BPP and gas oil ratio (GOR). 
Dindoruk and Christman (2004) used 100 analyses of Gulf 
of Mexico to optimize Petrosky and Farshad (1993) model. 
Al-Marhoun and Osman (2002) applied an ANN algorithm 
to predict BPP with 283 analyses from one Saudi Arabian 
field. They reported a correlation coefficient and absolute 
error of 0.9965 and 5.8915%, respectively, for that model. 
Boukadi et al. (2007) used 24 experimental data of Northern 
Omani oil fields to develop a new equation for BPP. Goda 
et al. (2003) used 160 analyses from Middle East oil fields 
to develop an ANN technique with 2 hidden layers and 10 
neurons in each layer to provide a new BPP model with 
an average absolute error of 3.0704% and a correlation 
coefficient of 0.9981.  

Malallah et al. (2006) based on 5000 analyses of samples 
from around the world, proposed graphical alternating 
conditional expectation (ACE) technique to derive a new 
BPP equation. El-Sebakhy et al. (2007) determined the 
relationship between BPP and oil formation volume factor 
(Bo) by using support vector regression technique (SVR) for 3 
different databases. Hemmati and Kharrat (2007) presented 
a new equation for calculation of BPP based on 287 analyses 
of 30 oil samples from Iran. Moradi et al. (2010) proposed a 
new BPP equation based on 1801 analyses, including 1177 
datasets from previously published papers and 634 datasets 
from various unspecified Iranian oil fields. A key feature of 
their equation is that it spans a wide range of oil gravities 
(i.e., 6–57 API0). They reported an absolute deviation error 
of 16.96% for their equation.  

Dutta and Gupta (2010) developed a new model based 
on 372 analyses involving a feed-forward, back-propagation 
neural network (FBPNN) technique involving two hidden 
layers, reporting an absolute error of 7.66%. Ikiensikimama 
and Ajienka (2012) used 250 analyses for Niger Delta oils 
and developed new BPP model based on the Standing equation 
(1947). Asoodeh and Kazemi (2013) proposed a better solution 
for predicting BPP based on 361 previously published analyses 
and applying the relationships proposed by Standing (1947), 
Velarde et al. (1997), and Al-Shammasi (2001). Arabloo  
et al. (2014) develop a BPP model by using 750 analyses that 
involved normalizing the input variables. Gomaa (2016) 
proposed a new BPP prediction equation based on 441 crude 
oil samples from around the Middle East, reporting the 
highest correlation coefficient (0.98), the lowest average relative 
error (–0.56%), the lowest average absolute error (8.12%), and 
the lowest standard deviation among the other correlations 

mentioned. 
Artificial intelligence (AI)/machine learning is a rapidly 

developing applied branch of computer science which 
significantly arguments understanding through machine 
learning, thereby enhancing human abilities to directly 
measure, predict, and interpret complex, non-linear data sets 
(AlAjmi et al., 2015). AI is now routinely and successfully 
applied to many petroleum engineering systems (Gharbi and 
Elsharkawy, 1997; Elsharkawy, 1998; Gharbi et al., 1999; 
Al-Shammasi, 2001; Al-Marhoun and Osman, 2002; Choubineh 
et al., 2017; Ghorbani et al., 2017, 2018, 2019), providing 
predictions at various levels of accuracy to metrics that can 
only be measured precisely on a few samples, for reasons of 
costs or accessibility. 

In this research, four new models: 1) Multilayer Perceptron 
(MLP), 2) Radial Basis Function trained with Genetic Algorithm 
(RBF-GA), 3) Hybrid Particle Swarm Optimization-Adaptive 
Neuro-Fuzzy Inference System (CHPSO-ANFIS), and 4) Least 
Squared Support Vector Machine (LSSVM) are developed and 
applied and their performance is compared for predicting 
BPP as a function of six input variables from a dataset available 
for the large Ahvaz oil field in Iran. Graphical analysis and 
statistical error measurement are presented for the BPP 
predictions derived for each of the four new models, with 
comparisons made to experimentally-measured values. The 
results and performance of these four new models are 
compared with the performance of previously published 
correlations using statistical error analysis to demonstrate 
that they are superior. 

2 Details of the intelligent models 

2.1 Optimization methods 

Analytical optimization techniques, applying differential 
calculus and gradient-descent techniques and many evolu-
tionary optimization algorithms represent well-established 
and widely used techniques that offer the ability to rapidly 
establish optimum correlations for complex data sets. It is 
the hybridization of such techniques with neurocomputing/ 
machine learning algorithms, such as ANN and LSSVM, and 
fuzzy mathematical algorithms (e.g., ANFIS) that enable these 
methods to provide artificial intelligent learning systems 
capable of providing fast, reliable, and accurate predictions 
from complex systems. 

2.2 Coupled Simulated Annealing (CSA) 

Simulated annealing (SA), developed by Metropolis et al. 
(1953) and generalized by Kirkpatrick et al. (1983), appro-
ximates the global optimum of a given function and has been 
applied in a wide range of disciplines, such as syncretistic 
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and combinatorial optimization. To escape from local optima, 
SA involves heuristics that promote the broader search for 
better optima and thereby improving the chance of ultimately 
locating the global optimal condition. This process is like 
the physical process of annealing in which all crystal grains 
suddenly reach the lowest internal energy state when a molten 
metal is gradually cooled down (Liscic et al., 2010). Instead 
of using multi-start gradient optimizers, Couple Local 
Minimizers (CLMs) employ multiple gradient descent 
optimizers. Couple Simulated Annealing (CSA) (Xavier-de- 
Souza et al., 2010) that is inspired by an extension of CLMs, 
is used in this study to improve the accuracy and rapidity 
of convergence of the LSSVM model (see Section 3.2.4). It 
does so by seeking to minimize the Root Mean Squared Error 
(RMSE) between predicted and measured BPP values. 

2.2.1 Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is a well-established 
(Kennedy and Eberhart, 1995) and widely-used evolutionary 
algorithm. PSO is now widely applied to many petroleum 
engineering challenges (Onwunalu and Durlofsky, 2010; 
Ahmadi et al., 2013; Atashnezhad et al., 2014). PSO is inspired 
by the swarm behavior of birds and insects. Because of low 
memory and CPU requirements, this method achieves rapid 
computation in short processing periods.  

To solve a problem by PSO method, the locations of 
particles are initially distributed in an arbitrary way throughout 
the possible solution space. A performance analysis via a 
fitness test is performed on each particle position in each 
iteration of the model. The best particle positions for each 
iteration, plus the global best position found by all iterations 
performed so far are used to modify the positions of the 
other particles for the following iteration. Once the fitness 
score of the best particle meets the stopping criteria or the 
designated number of iterations is completed, the values 
associated with the global best particle provide the optimum 
solution. 

2.2.2 Genetic Algorithm (GA) 

Genetic algorithms are inspired by the process of natural 
selection based on Darwin’s theory of biological evolution 
(Darwin, 1859). They represent one of the most widely used 
evolutionary algorithms in computer science and operational 
research with many applications in the oil and gas industry, 
including the optimization of multiple objective (Yasari et al., 
2013; Mansouri et al., 2015). There are five main steps involved 
in classic genetic algorithms: initialization, evaluation, selection, 
crossover, and mutation. The population is randomly 
generated and spread as widely as possible across the possible 
solution space in the initializing iteration. Each member 
of the population (an individual solution) is evaluated with 

a fitness test to assess how well it fits with the objective 
function (in this case BPP prediction). In the selection step 
the “unfit” individuals (those with low fitness scores) are 
discarded and only the best individuals of the population 
are kept for the next iteration. During the crossover step, 
some aspects of selected individuals are combined and create 
many new individuals for the evolving population. To 
introduce some diversity into the population (helping to 
avoid becoming trapped at local minima) a controllable 
degree of randomness is introduced into the populations’ 
genetics during the mutation stage. Repeating the last 
four steps through multiple iterations gradually causes the 
population to converge on optimum solutions. The algorithm 
also enables many high-performing solutions to be preserved 
and compared. 

2.3 Predictive Networks (PN) 

2.3.1 Multilayer Perceptron Networks (MLP) 

The multilayer perceptron (MLP) is one of the most 
commonly applied neural network (Hush and Horne, 1993; 
Haykin, 1994) and is used for the approximation of functions 
relating system output to input variables with complex and 
poorly correlated relationships. A MLP is a network that 
consists of one input layer consisting of several input nodes, 
one or more hidden layers, and one output layer. A MLP is 
trained using a systematic algorithm applied to a sufficiently 
representative sample of the dataset being modelled (i.e., 
the training set). Once trained the MLP is tuned to match 
with reasonable accuracy outputs with an input dataset  
by approximating rather than precisely defining functional 
relationships between the input and output variables. 

Selecting the appropriate number of iterations during the 
training of a MLP can be challenge (Haykin, 1995); both 
undertraining (lack of sufficient time to finish the learning 
procedure) and overtraining/overfitting (remembering rather 
than learning) can result in the poor forecasting outcomes.  

2.3.2 Radial Basis Function Networks (RBF) 

Radial basis function networks (RBF) (Broomhead and Lowe, 
1988) formulate activation functions as RBFs and the output 
is the sum of radial basis function values relating the input 
and network parameters.  

Although MLP’s involve different internal network 
calculations from Radial Basis Function (RBF), there are 
similarities between the methods. The main advantage of 
an RBF is the simplicity of its design. With only three layers, 
an RBF has a high tolerance of noise associated with the input 
variables, while retaining a significant learning capacity 
(Sayahi et al., 2016). The main differences between RBF and 
MLP networks are: 
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1) RBF networks involve a simpler design; 
2) while the internal architecture of MLP networks can 

vary (e.g., one or several hidden layers), the structure of RBF 
networks is fixed; 

3) RBF networks tend to focus on local approximations, 
whereas MLP networks seek global outputs determined by 
neuron connections; and, 

4) clustering in RBF networks is attributed to hyperspheres 
(points defined in one or more dimensions less than the 
ambient space), while in MLP networks it is attributed to 
hypersurfaces (an n–1-dimensional surface embedded in 
an n-dimensional ambient space). 

2.3.3 Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 

An adaptive neuro fuzzy inference system (ANFIS) is a 
neural network combined with fuzzy logic that is typically 
based on a first-order Sugeno fuzzy model (Jang, 1993; Jang 
et al., 1997). ANFIS essentially hybridizes Artificial Neural 
Network (ANN) with a fuzzy logic methodology. In recent 
years the technical has been successfully applied to predicting 
many complex oil and gas systems (Zoveidavianpoor et al., 
2013; Basarir et al., 2014; Yavari et al., 2018). Fuzzy logic 
deals with the vagueness of human assessments and changes 
it from qualitative knowledge into more rigorous quantitative 
analysis. Fuzzy logic is highly adaptable to uncertainty and 
vagueness, which are common features of many naturally 
occurring systems and environments. By combining ANN 
with fuzzy logic, the machine learning input tends to 
reduce the rate of errors associated with the defined fuzzy 
membership functions. 

A Fuzzy Inference System (FIS) has three main com-
ponents which are basic IF-THEN rules, reasoning fuzzy 
inference techniques, and output. In an FIS, by using the 
fuzzification process, the input values are converted into 
fuzzy values in a range between 0 and 1. These fuzzy numbers 
ultimately need to be processed through a defuzzification 
process to provide meaningful output. The database on 
which an FIS is based, is a crucial component in determining 
its decision-making capabilities. FIS development involves 
defining a universe of relationships and the determination 
of the number of linguistic terms describing the membership 
functions to those relationships. 

2.3.4 Least Squares Support Vector Machines (LSSVM) 

Support vector machines (SVM) can be used for classifications 
and non-linear function estimation and, in some cases, 
duplicate and/or complement the capabilities of neural 
networks. Unlike multilayer perceptrons (MLP) and radial 
basis functions (RBF), the networks developed by SVM involve 
no constraints regarding local minima and the choice of the 
number of hidden units (Vapnik, 2013). The advantages of 
SVM compared to the conventional ANN are: 

1) SVM networks involve fewer adjustable parameters; 
2) SVM networks do not involve hidden nodes; 
3) SVM networks can be generalized with precision and 

accuracy; 
4) overfitting is less likely to occur with SVM models; 

and, 
5) Standard applications of quadratic programming 

algorithms (i.e., minimizing or maximizing quadratic functions 
involving several variables subject to linear constraints) 
typically provide more rapid solutions for SVM networks.  

3 Results 

3.1 Characterization of Ahvaz field dataset 

The accuracy and reliability of the measured experimental 
data making up the dataset to be optimized clearly influence 
the achievable accuracy of any model regardless of the 
algorithms involved. The dataset used in this study include 
79 data points from oil samples collected from the Ahvaz 
oil field, located in south of Iran (Fig. 1). The Ahvaz oil field 
extends for 67 km and is 6 km wide. It is located within a 
prolific oil province: north of Ramin oil field, east of Maroun  

 
Fig. 1 Location of Ahvaz oil field in Iran in respect of surrounding 
oil fields and infrastructure. 
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oil field, south of Shadegan and Mansouri oil fields, and west 
of Ab Teymour and Susangerd oil fields. The oil-bearing 
reservoirs are in the asymmetrical Ahvaz anticline within 
the Zagros province at undulating elevations below the 
Aghajari Formation. The base of the oil-bearing part of 
the anticline lies about 2500 meters below the sea level 
in the Asmari Formation. The sandstone and limestone 
reservoirs display an average porosity of 18 percent and 
oil produced from the Asmari Formation averages about 
30 API0.  

Bubble point pressure (BPP defined by the symbol Pb in 
the subsequent analysis) is a function of temperature, oil 
formation volume factor and gas specific gravity, solution 
gas ratio, oil specific gravity and/or API, as defined in Eq. (1). 
The relationship between these parameters in the Ahvaz field 
dataset is illustrated graphically in Fig. 2. The bubble point 
pressure (Pb) shows a moderate positive correlation with 
temperature (T) and oil formation volume factor (Bo) and a 
strong positive correlation with the solution gas–oil ratio 
(Rs). On the other hand, it demonstrates poor correlations 
with gas specific gravity (γg) and oil specific gravity (γo) and 
oil API gravity (the latter two possessing a strong negative 
correlation between them as oil specific gravity is, of course, 
involved in the API gravity calculation). Gas specific gravity 
(γg) and oil specific gravity (γo) show poor inverse correlations 
with Pb, while oil API gravity shows a poor positive correlation 
with Pb. These relationships are summarized by Eq. (3). 

 b o s( , , ,API)P T B Rµ   and  
( )b

g o

1
,

P
γ γ

µ  (3) 

From this dataset, 80% (63 data) of the samples were selected 
randomly to be used for training of the fuzzy-PSO algorithm, 
while the remaining 20% (16 data) of samples became the 
testing subset to test the validity of the trained BPP 
prediction models. Statistical analysis of the input variable 
values for the training and testing data subsets are provided 
in Tables 1 and 2. For the testing data subset (Table 2) the 
solution gas–oil ratio with a standard deviation of 131.669 
and the oil specific gravity with an average deviation of 
0.01013 have the maximum and minimum standard deviations 
for the input variables, respectively. The bubble point pressure 
(BPP) mean and standard deviation for testing data subset 
are 3541.03 and 400.662, respectively. 

3.2 Data preparation and subset selection 

The values of each metric within each data record are initially 
normalized using Eq. (4) to produce values between –1 and 
1. This removes data biases and speeds up the optimization 
process associated with each algorithm. 

 ( )( )
( ) ( )( )N

Min
2 1Max Min

X X
X X X

-
= ´ -

-
 (4) 

After the normalization, the data is randomly split into two 

 

Fig. 2 Relationships of bubble point pressure individually with its input calculation variables: temperature (T), oil formation volume 
factor (Bo), gas specific gravity, solution gas ratio, oil specific gravity, and oil degrees API gravity for each of 79 data records of the Ahvaz
oil field dataset. 
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data subsets: the training subset and the testing subset. 
This process is repeated several times to ensure that data 
points in each subset have a homogeneous distribution and 
local aggregation of data points is avoided. 80% of data records 
(63 data records in total) are used to construct the model as 
the training subset, while the remaining 20% (16 data records 
in total) is used to as the testing subset to evaluate and 
compare the performance of each model. 

3.2.1 Multilayer Perceptron (MLP) model description  

Multilayer Perceptrons (MLP) are artificial neural networks 
(ANN) connecting multiple layers in a directional network. 
Cybenko (1989) demonstrated mathematically that an MLP 
using backpropagation as its supervised learning technique 
can predict the combined outcomes of a series of non-linear 
relationships between variables accurately with just one 
hidden layer. MLP networks with just one hidden layer are 
therefore utilized here. By varying the MLP network 
architecture with 4 to 25 neurons in their hidden layer, the 
optimum performing MLP architecture for application  
to the Ahvaz dataset was established. Figure 3 compares the 
RMSE of the various MLP networks evaluated with their 
hidden layer having different numbers of neurons. As can 
be seen in Fig. 3, the best performance for the training 
subset was achieved with an MLP networks consisting of 
less than 18 neurons.  

3.2.2 Radial Basis Function (RBF) model description 

RBF networks have two main tuning parameters, which are 
spread and maximum number of neurons (MNN). The 
optimum determination of these parameters improves the  

 
Fig. 3 Performance of different MLP networks with numbers of 
neurons in the hidden layer varying from 4 to 25. The MLP 
networks with about less than about 18 neurons in the hidden 
layer present the best models for the combined performance of the 
training and testing subsets. 

accuracy of a model’s performance. The nonlinearity of 
RBF model makes a trial-and-error approach to finding the 
optimum model architecture time-consuming. Consequently, 
a genetic algorithm (GA) is used here to determine the 
optimum value of RBF spread and MNN tuning parameters. 
Three control parameters also need to be tuned to optimize 
performance of the GA in order to solve constrained and 
unconstrained optimization problems (Vapnik, 2013). GA 
are widely adopted and hybridized as optimizers and have 
been applied to optimize many systems in the oil and gas 
industry (Yasari et al., 2013; Mansouri et al., 2015).  

For the model developed, the GA algorithm was initialized 
with a population size of 50. Calculating the RMSE (for 

Table 1 Statistical summary for the 63 data records of the training subset. Statistical analysis performed using SPSS software 

 γg γo API Rs T Bo Pb 

Min 0.92 0.69 25.93 648.25 120.00 1.27 2176.00 

Max 1.22 0.90 61.54 1111.30 200.00 1.61 4246.00 

Mean 1.03 0.87 31.01 864.30 190.00 1.48 3426.00 

Average 1.04 0.86 31.74 871.31 169.82 1.47 3411.10 

Variance 0.002984 0.001840 34.75 14690.89 937.00 0.00642 202379.55 

Standard deviation 0.0541 0.04250 5.84 120.09 30.33 0.0794 445.7576 

Table 2 Statistical summary for the 16 data records of the testing subset. Statistical analysis performed using SPSS software 

 γg γo API Rs T Bo Pb 

Min 0.93 0.86 26.00 681 120 1.23 2794 

Max 1.15 0.90 33.30 1147 250 1.61 4190 

Mean 1.02 0.87 31.42 919 185 1.46 3606 

Average 1.02 0.87 30.66 902 170 1.47 3541 

Variance 0.00239 0.00010 3.62 18091 1181 0.01 167510 

Standard deviation 0.04785 0.01013 1.86 131.66 33.64 0.0934 400.66 
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measured versus predicted BPP) for each individual in the 
population, enabled the individuals with the highest fitness 
score to be retained and modified to produce the next 
generation of the population. This process in conjunction 
with cross-over and mutation actions was perpetuated over 
several generations to determine the optimum values for the 
spread and MNN parameters of the RBF network. Thirty 
GA generations were evolved and evaluated to determine 
the optimum value of spread and MNN values of 0.57 and 
43, respectively. The RMSE values for the GA generation 
sequence perpetuated are displayed in Fig. 4, which shows 
that convergence of the GA during the optimization process 
occurred after about 12 generations (iterations of the 
algorithm).  

3.2.3 Combined Hybrid Particle Swarm Optimization- 
Adaptive Neuro-Fuzzy Inference System (CHPSO-ANFIS) 
model description 

The first step is to develop the logic that determines the 
underlying FIS. There are three common options used to 
structure FIS: 1) grid partitioning of the data, which is time 
consuming to build and slow to compute; 2) Sugeno-type 
FIS structure using the subtractive clustering method; and 
3) fuzzy C-means (FCM) clustering. These equate to functions 
genfis1, genfis2, and genfis3 in the MATLAB toolbox, 
respectively. 

The Sugeno-type FIS structure (genfis2) algorithm was 
used here to create the FIS. Initially rules and antecedent 
membership functions are established for the FIS, followed 
by least-squares estimation to determine each rule’s con-
sequent equations. The influence radius is an important 
parameter in this method, with a range between 0 and 1. 
Although a value near to zero for the influence radius often 
results in a better performance, it makes the training process 
more complex and inefficient. Consequently, a value between  

 
Fig. 4 Convergence of genetic algorithm (GA) to optimum 
maximum number of neurons (MNN) and spread values used to 
tune the RBF algorithm. 

0.7 and 1 was evaluated for the influence radius. In order to 
be more systematic, a genetic algorithm (GA) was applied 
instead of a trial and error approach to find optimal values 
for the influence radius for the evaluated range. The GA 
determined that an influence radius of 1.0 was optimal for 
this dataset. This value for influence radius generates FIS with 
an acceptable accuracy and simplifies the training process. 
Figure 5 shows the convergence of the GA for a radius 
influence of 1. The vertical axis indicates the GA fitness (cost) 
function and the horizontal axis shows the number of 
generations with the GA method.  

Applying an influence radius of 1, four FIS rules were 
established. The membership functions for those four 
rules are presented in Fig. 6. As the data is normalized, all 
membership functions are constrained between variable 
values of between –1 and 1. 

The rules for the six variables shown in Fig. 6 can be 
expressed in a compressed numerical format based on the 
membership function indices, for example, as used by the 
MATLAB fuzzy logic tool box that form might be displayed 
as follows: 

1 1 1 1 1 1, 1 (1): 1 
1 2 1 4 3 2, 2 (1): 1 
4 3 1 2 2 3, 3 (1): 1 
2 1 3 4 4 4, 4 (1): 1 
For coding and quick interpretation/model verification 

purposes, it is often useful to express rules in such com-
pressed forms. Each line describes a single rule. The first six 
digits of each line refer to the six independent variables in 
sequence. The first digit after the comma refers to a condition 
of the output variable. The digit in brackets refers to an 
optional weight applied to each specific rule (values of 1 in  

 
Fig. 5 Convergence of the genetic algorithm (GA) to the optimum 
value of the cost function for the developing the initial FIS for the 
ANFIS model. 



Performance comparison of bubble point pressure from oil PVT data: Several neurocomputing techniques compared 

 

233

the brackets of each rule mean that equal weighting is 
applied to all rules). The number at the right-hand end of the 
compressed rule format, after the colon, is a code to describe 
the type of rule being applied; in MATLAB, for example, a 
“1” refers to an AND rule, and a “2” refers to an OR rule. 
The values associated with the first six digits in the code 
refer to the dominant cluster (Figs. 6 and 8) for the specific 
input variables, which the model described can be one of 
clusters 1 to 4. 

In order to establish the optimum membership functions, 
the initial FIS is trained by minimizing the RMSE of the 
objective function. Common ways to achieve this are by 
back propagation and hybrid methods. An alternative is to 
apply an optimization method to tune the FIS training process. 
A particle swarm optimization (PSO) algorithm is applied 
here to find the optimum tuning parameters for the FIS by 
minimizing the RMSE of the objective function. 

Combining and hybridizing the PSO with ANFIS (CHPSO- 
ANFIS) involves running the PSO algorithm in two distinct 

stages. The hybrid stage employs PSO to tune and train the 
initial FIS (constructed with the aid of the GA) with five 
runs of the PSO algorithm. In the final stage, the tuned FIS 
is combined with a subsequent single hybrid PSO run to 
complete the algorithms combined training. For the hybrid 
stage of training the PSO application involves just 10 iterations, 
whereas the final training stage involves the PSO being 
applied for 250 iterations. Table 3 lists the key control and 
tuning parameters of the ANFIS training functions combined 
with the CHPSO method. 

The performance of the hybrid training stage of the initial 
FIS with the CHPSO method is presented in Fig. 7, where 
the vertical axis shows the RMSE cost function in terms of 
achieving the objective function (lower RMSE represents 
better performance) and the horizontal axis shows the number 
stages over which the hybrid CHPSO-ANFIS is run to further 
tune the initial FIS. Monitoring the RMSE value for both the 
training subset and the testing subset over runs involving 
various numbers of stages to train the network helps to avoid  

 
Fig. 6 Membership functions of the initial FIS for data variables used to determine BPP for the Ahvaz field training subset aided by a 
genetic algorithm. 
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overfitting. The best performance was achieved by running 
the CHPSO-ANFIS algorithm with greater than 20 tuning 
stages (Fig. 7) with no evidence of overfitting.  

 
Fig. 7 Performance following training the initial FIS with the PSO 
during the hybrid stage of CHPSO by varying the number of runs 
of the PSO (10 iterations for each PSO run at the hybrid stage). 

The final membership functions obtained from CHPSO- 
ANFIS method for each of input data variables are shown 
in Fig. 8. Clearly, by comparing Figs. 6 and 8, it can be 

 
Fig. 8 Membership functions of the CHPSO-trained FIS for data variables used to determine BPP for the Ahvaz field training subset.

Table 3 Control parameters for ANFIS training functions applying 
the CHPSO method 

Parameter Value

(Initial FIS) minimum value of influence radius 0.7 
(Initial FIS) maximum value of influence radius 1 
(Initial FIS) maximum number of GA iterations 20 
(Initial FIS) number of individuals in the initial GA population 30 
(Hybrid) number of iterations of PSO in training 10 
(Hybrid) training error goal 0 
(Hybrid) initial PSO step size 0.01
(Hybrid) PSO step size decline rate 0.9 
(Hybrid) PSO step size increase rate 1.1 
(Hybrid) number runs selected for the hybrid training 5 
(PSO) number of PSO iterations 250 
(PSO) number particles in initial PSO population 100 
(PSO) number of runs for final PSO optimization training 1 
Number of tuning stages evaluated 25 
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observed that following FIS training at the hybrid PSO 
stage, there is a significant change in the form of some of the 
membership functions of the FIS. Table 4 reveals that the 
RMSE value of the trained CHPSO-ANFIS model applied to 
the whole dataset and each of the training and testing subsets 
is less than the RMSE value for the initial FIS applied to each 
of those sets. Table 4 presents the statistical parameters for 
both the initial FIS and the trained FIS applying the CHPSO 
method.  

3.2.4 Least Squared Support Vector Machine (LSSVM) model 
description 

LSSVM models involve two key control parameters, γ and 
σ2, that need to be established for specific datasets as they 

influence the accuracy and globalization ability of the models. 
γ is a tuning factor related to the error term influencing the 
LSSVM network structure. σ2 is the width term associated 
with the RBF kernel function also used to tune the LSSVM 
network. Here, a coupled simulated annealing (CSA) algorithm 
(Xavier-de-Souza et al., 2010) firstly optimizes/tunes the 
values of the two control parameters (γ and σ2). The algorithm 
combination CSA plus LSSVM has been described 
mathematically and successfully applied to predicting the 
densities of ionic liquids. The tuning of the CSA-LSSVM 
algorithm employed here resulted in the determination of 
optimum values for γ and σ2 of 32.53 and 29.76, respectively.  

Figure 9 provides a flow diagram for the four artificial 
intelligence/machine learning algorithms developed and 

Table 4 Comparison of a range of statistical performance measurements for the initial and CHPSO-trained FIS 

Predictor Dataset R2 AARD STD RMSE N 

Train data 0.9173 2.1439 0.0517 125.4860 63 

Test data 0.9768 1.7914 0.0209 76.3412 16 Initial FIS 
All data 0.9283 2.0725 0.0472 117.2090 79 

Train data 0.9934 0.7453 0.0107 35.3778 63 

Test data 0.9775 1.2415 0.0186 65.4885 16 CHPSO trained FIS 

All data 0.9902 0.8458 0.0126 43.2055 79 

 
Fig. 9 Sequence of steps involved in training, testing, and performance comparison of four AI algorithms to predict bubble point pressure.
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described here, and the sequence of steps involved in their 
training, evaluation, testing, and comparison of their statistical 
accuracy when applied to predicting bubble point pressure 
for the Ahvaz field PVT dataset. 

4 Statistical-graphical analysis 

4.1 4 Developed AI models applied to the Ahvaz field 
dataset 

A dataset of 79 PVT data from wells drilled in the Ahvaz oil 
field, located onshore southwest of Iran, is used here to evaluate 
four developed models for predicting BPP from PVT data. 
Tables 5 and 6 show detailed measured variable values for 
each of the 79 individual data records divided into training 
and testing subsets.  

Figure 10 shows cross plots with correlation coefficients 
displayed of measured versus predicted BPP values for the 
entire dataset (79 data records) for each of the four AI models 

developed. Acceptable correlation coefficients with values 
greater than 0.90 were obtained for all models and the trends 
for measured versus predicted data approximately follow 
a 45° line in each case. These results indicate acceptable 
accuracy is achieved by each of the AI prediction models 
developed and evaluated.  

The ANFIS and RBF models achieved the highest 
correlation coefficients value of above 0.98. Figure 11 indicates 
the relative deviations of predicted versus measured BPP values 
for the four AI models for each record of the training and 
testing subsets distinguished. The root mean squared error 
achieved by each of the models for the total dataset was 
107.45, 48.84, 43.20, and 115.98 for MLP, RBF, ANFIS, and 
LSSVM, respectively. Figure 11 is revealing as it identifies 
those few records that have been poorly predicted by the 
respective models. In the case of the MLP and LSSVM 
models it is the data record with the lowest BPP (data record 
38 of the training subset) that achieved the worst predictions. 
A case could be made to exclude data record 38 as an outlier.  

Table 5  Ahvaz oil field bubble point pressure data—FPSO training subset (63 records, 80% of full dataset) 

Ahvaz oil field PVT training subset 

Data record details Independent variables Dependent 
variable 

Data record 
number Status Gas specific 

gravity (γg) 
Oil specific 
gravity (γo) 

Oil degrees 
API gravity 

(API) 

Solution gas 
to oil ratio 
(RS, scf/stb) 

Temperature  
(T, °F) 

Oil formation 
volume factor 
(Bo, bbl/stb) 

Bubble point 
pressure (Pb)

1 Training 1.0400 0.8776 29.7352 1146.70 250 1.5680 4190.0 

2 Training 1.0007 0.8670 31.7065 1042.00 180 1.2340 3940.0 

3 Training 0.9283 0.8586 33.3032 935.70 130 1.4492 3640.0 

4 Training 0.9781 0.8658 31.9327 1002.10 185 1.5678 3870.0 

5 Training 1.0287 0.8669 31.7253 1076.00 200 1.5933 4067.0 

6 Training 1.0350 0.8705 31.0503 1057.76 180 1.5680 3960.0 

7 Training 1.0320 0.8674 31.6312 1023.71 180 1.5680 3950.0 

9 Training 1.0260 0.8679 31.5372 979.00 185 1.5398 3794.0 

10 Training 0.9740 0.8636 32.3490 1030.20 135 1.4854 4003.0 

11 Training 1.0243 0.8707 31.0129 1096.10 190 1.5917 4237.0 

13 Training 0.9965 0.8665 31.8006 1024.40 185 1.5948 3874.0 

14 Training 1.0535 0.8718 30.8079 944.20 185 1.5312 3630.0 

15 Training 0.9436 0.8583 33.3608 992.50 135 1.2712 3786.0 

16 Training 0.9569 0.8605 32.9393 912.00 130 1.4298 3528.0 

17 Training 1.0141 0.8673 31.6500 977.00 185 1.5285 3788.0 

18 Training 1.0535 0.8708 30.9943 937.60 185 1.5495 3632.5 

19 Training 0.9802 0.8660 31.8949 901.30 135 1.4300 3539.0 

20 Training 1.0375 0.8733 30.5291 968.70 190 1.5250 3783.0 

21 Training 1.0076 0.8694 31.2559 958.20 190 1.5264 3826.0 

23 Training 1.0770 0.8988 25.9321 753.30 200 1.4415 3340.0 

24 Training 1.0015 0.8577 33.4761 839.70 135 1.4137 3202.0 

26 Training 1.0534 0.8736 30.4734 864.00 200 1.4897 3426.0 
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(Continued)

Ahvaz oil field PVT training subset 

Data record details Independent variables Dependent 
variable 

Data record 
number Status Gas specific 

gravity (γg) 
Oil specific 
gravity (γo) 

Oil degrees 
API gravity 

(API) 

Solution gas 
to oil ratio 
(RS, scf/stb) 

Temperature  
(T, °F) 

Oil formation 
volume factor 
(Bo, bbl/stb) 

Bubble point 
pressure (Pb)

27 Training 1.0430 0.8737 30.4549 848.70 200 1.4879 3418.0 

29 Training 1.0576 0.8728 30.6219 844.20 190 1.4788 3358.0 

31 Training 0.9901 0.8608 32.8820 897.39 135 1.4379 3476.5 

32 Training 1.0828 0.8691 31.3121 866.30 185 1.5640 3728.4 

33 Training 0.9946 0.8709 30.9756 779.90 135 1.3844 3115.0 

34 Training 1.0721 0.8782 29.6250 849.30 200 1.4924 3401.0 

35 Training 1.0390 0.8741 30.3808 968.90 190 1.5377 3788.0 

37 Training 1.0886 0.8954 26.5299 736.60 200 1.4299 3183.0 

38 Training 1.0923 0.8947 26.6536 735.00 200 1.4360 2176.0 

39 Training 1.0177 0.8908 27.3460 707.10 135 1.3485 3042.0 

40 Training 0.9630 0.8610 32.8438 960.40 135 1.4583 3814.0 

41 Training 1.0913 0.8984 26.0022 757.60 200 1.4409 3339.0 

43 Training 1.0032 0.8682 31.4809 1048.60 190 1.5680 4059.0 

44 Training 1.0610 0.8639 32.2921 900.50 190 1.5062 3465.0 

46 Training 0.9815 0.8649 32.1027 795.60 135 1.3902 3125.0 

47 Training 1.0404 0.8688 31.3683 966.47 135 1.5386 3726.1 

48 Training 1.0640 0.8796 29.3686 862.56 190 1.4880 3499.0 

49 Training 1.0029 0.8610 32.8438 900.45 135 1.4360 3476.5 

50 Training 1.0760 0.8784 29.5883 848.90 200 1.4896 3413.0 

71 Training 1.0066 0.8866 28.0985 681.20 135 1.3444 2875.0 

73 Training 0.9164 0.7414 29.3551 654.34 200 1.3710 3248.0 

106 Training 1.2230 0.8615 32.7500 864.30 120 1.5044 3320.0 

107 Training 0.9852 0.8713 30.9000 835.95 190 1.5369 3254.0 

135 Training 0.9566 0.8616 32.7293 994.30 135 1.4708 3844.0 

136 Training 1.0689 0.6929 30.2800 935.44 180 1.5181 3550.0 

137 Training 1.0789 0.6916 30.0500 956.79 190 1.5311 3617.0 

159 Training 1.0590 0.8860 28.2065 733.38 200 1.4341 3088.0 

161 Training 1.0681 0.8772 29.8087 765.00 190 1.4365 3009.0 

171 Training 1.0396 0.8777 29.7168 722.68 120 1.3369 2683.0 

172 Training 1.1101 0.8853 28.3328 735.00 190 1.4523 2880.0 

186 Training 1.0889 0.8755 30.1219 929.00 190 1.5126 3605.0 

187 Training 1.0364 0.8771 29.8271 704.42 120 1.3496 2794.0 

188 Training 1.1088 0.8817 28.9854 760.06 190 1.4642 2969.0 

201 Training 1.0215 0.8864 28.1345 648.25 120 1.3117 2638.0 

202 Training 1.1414 0.8971 26.2305 694.59 190 1.4138 2869.0 

238 Training 1.0029 0.8795 29.3869 672.00 120 1.3170 2689.0 

239 Training 1.1186 0.8887 27.7213 724.00 190 1.4247 2928.0 

350 Training 1.0798 0.8741 30.3808 895.00 190 1.4929 3469.0 

377 Training 0.9990 0.8692 31.2934 710.00 120 1.3545 2727.0 

400 Training 0.9836 0.8627 32.5199 870.00 120 1.4143 3243.0 

401 Training 1.0676 0.8711 30.9383 951.00 190 1.5398 3566.0 
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Table 6  Ahvaz oil field bubble point pressure data—FPSO testing subset (16 records, 20% of full dataset) 

Ahvaz oil field PVT testing subset 

Data record details Independent variables Dependent 
variable 

Data record 
number Status Gas specific 

gravity (γg) 
Oil specific 
gravity (γo) 

Oil degrees 
API gravity 

(API) 

Solution gas 
to oil ratio 
(RS, scf/stb) 

Temperature  
(T, °F) 

Oil formation 
volume factor 
(Bo, bbl/stb) 

Bubble point 
pressure (Pb)

8 Testing 1.0130 0.8675 31.6124 1070.00 200 1.6053 4056.0 

12 Testing 1.0320 0.8715 30.8637 1111.30 190 1.6069 4246.0 

22 Testing 1.0140 0.8697 31.1998 963.10 190 1.5123 3824.0 

25 Testing 1.0502 0.8644 32.1974 898.90 190 1.5052 3466.0 

28 Testing 0.9944 0.8663 31.8383 795.00 135 1.3865 3112.0 

30 Testing 1.0510 0.7330 31.5423 849.00 190 1.4809 3363.0 

36 Testing 0.9480 0.8635 32.3680 901.40 135 1.4336 3581.0 

42 Testing 1.0024 0.8682 31.4809 1031.90 190 1.5596 4018.0 

45 Testing 1.0210 0.8687 31.3871 1066.20 190 1.5814 4064.0 

105 Testing 1.0160 0.8683 31.4621 1042.80 190 1.5776 4036.0 

160 Testing 1.0080 0.8698 31.1811 699.00 120 1.3281 2673.0 

173 Testing 0.9710 0.8732 30.5476 782.64 135 1.3764 3217.0 

185 Testing 0.9886 0.8658 31.9327 842.00 120 1.3881 3253.0 

349 Testing 0.9677 0.8638 32.3111 802.00 120 1.3764 3150.0 

378 Testing 1.1037 0.8770 29.8455 775.00 190 1.4500 3075.0 

402 Testing 1.1495 0.8848 28.4231 764.85 190 1.3973 2988.0 

 
Fig. 10 Predicted BPP values for (a) MLP, (b) RBF, (c) ANFIS, and (d) LSSVM models versus experimentally measured values. 



Performance comparison of bubble point pressure from oil PVT data: Several neurocomputing techniques compared 

 

239

However, for the RBF and ANFIS models do manage to 
successfully predict data record 38. On the other hand, it is 
data records in the testing subset with mid-range BPP values 
that achieved the worst predictions for the RBF and ANFIS 
models (i.e., data record 402 for RBF; data record 71 for 
ANFIS). Figure 12 illustrates the prediction sequence for 
individual data records by each of the four models for the 
training subset, showing clearly that the pattern of prediction 
by ANFIS and RBF models is close; on the other hand the 
pattern of prediction by MLP and LSSVM although similar 
is distinct. 

The different manner in which the four AI models fit 
the data for the Ahvaz field data set suggests that for other 
field datasets the performance of the MLP, RBF, ANFIS, and 
LSSVM models might be ranked differently. It is therefore  

not justified, based on just the results of the Ahvaz field, to 
conclude that the RBF model will always outperform the 
other three models in applications to other datasets. A case 
can be made to use more than one AI model to evaluate the 
data from other fields.  

In addition to the deviation error four other commonly 
used statistical measures of accuracy were calculated for each 
model. These are: correlation factor (R2) (Eq. (5)), Average 
Absolute Relative Deviation (AARD) (Eq. (6)), Root Mean 
Squared Error (RMSE) (Eq. (7)), and Standard Deviation 
(STD) (Eq. (8)). In the Eqs. (5) to (8) λ  denotes the BPP.  
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Fig. 11 Relative deviation [(BPPmeasured – BPPpredicted)/BPPmeasured] of predicted BPP values achieved by (a) MLP, (b) RBF, (c) ANFIS, and
(d) LSSVM models with data records of the training and testing subsets distinguished. 

 
Fig. 12 Simultaneous representations of the predicted BPP values for the training subset applying (a) MLP, (b) RBF, (c) ANFIS, and
(d) LSSVM models against index sequence number for each data record of the training subset. 
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Table 7 shows the results for the four AI models applying 
all statistical measures of accuracy calculated. Displaying 
the highest correlation coefficient and lowest values of 
AARD%, RMSE, and STD applied to the entire dataset 
(all 79 records), the RBF model exhibits superior results in 
comparison with the other models. However, in terms of 
performance on the testing subset only the LSSVM model 
(followed by the MLP) outperforms the other models. If 
data record #40 (lowest BPP) were excluded from the training 
dataset the overall performance of the LSSVM and MLP 
models would be improved significantly, rivalling the RBF 

model. The statistical data (Table 7) suggest that the ANFIS 
model performs the best overall for this dataset, closely 
followed by the RBF model. The LSSVM model does though 
perform well with the testing dataset. However, all AI models 
perform well and outperforms historically published 
correlations for Ahvaz field dataset (see Section 4.2). 

Figure 13 displays in radar diagrams the results for the 
R2 and RMSE statistical measures of accuracy for the four 
AI models applied to the Ahvaz field PVT dataset with 
performances for training and testing subsets, and the full 
dataset distinguished. Table 7 and Fig. 13 identify that the 
ANFIS and RBF models perform more accurately than the 
other models in the prediction of BPP for the entire dataset. 
However, LSSVM and MLP models perform better than 
the RBF model when applied only to the testing subset. 

4.2 Comparison of models developed with published 
PBB prediction models 

Since the first bubble point pressure equation was developed 
during the 1940s, many researchers have tried to adapt and  

Table 7 Statistical parameters values for four artificial intelligence models developed in this study 
Intelligent predictor Dataset R2 AARD STD RMSE N 

Train data 0.9378 2.0408 0.0446 109.2357 63 
Test data 0.9506 2.4239 0.0292 100.1158 16 MLP 
Total data 0.9504 2.1184 0.0418 107.4511 79 

Train data 0.9999 0.0407 0.0009 3.8321 63 
Test data 0.9381 2.4692 0.0311 108.2706 16 GA-RBF 
Total data 0.9875 0.5326 0.0137 48.8456 79 

Train Data 0.9934 0.7453 0.0107 35.3778 63 
Test Data 0.9775 1.2415 0.0186 65.4885 16 ANFIS 
Total Data 0.9902 0.8458 0.0126 43.2055 79 

Train Data 0.9135 2.0936 0.0533 128.3316 63 
Test Data 0.9923 0.8998 0.0120 39.5873 16 LSSVM 
Total data 0.9295 1.8518 0.0478 115.9780 79 

 
Fig. 13 Statistical accuracy measures for BPP prediction: (a) RMSE, (b) R2 comparing performance of the four developed AI models 
applied to the entire Ahvaz field PVT dataset (79 records). 
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improve upon its performance, as addressed in the intro-
duction. Here we have designed, developed, and evaluated 
four novel models using artificial intelligence algorithms that 
achieve low error rates and high accuracy when applied to 
the Ahvaz field PVT dataset. It is appropriate and instructive 
to compare the performance, with respect to the Ahvaz 
field dataset, of the four model developed here in terms of 
accuracy with those historically proposed BPP prediction 
models published by other researchers including: Standing 
(1947), Lasater (1958), Glaso (1980), Vasquez and Beggs (1980) 
(API30), Al-Marhoun (1988), McCain (1991), Dokla and 
Osman (1992), Kartoatmojo and Schmidt (1994) (API<30), 
Farshid et al. (1996), Almehaideb (1997), Velarde et al. (1997), 
Al-Shammasi (2001), Dindoruk and Christman (2004), 
Bolondarzadeh et al. (2006), Mehran et al. (2006), Hemmati 
and Kharrat (2007), Ikiensikimama and Ogbaja (2009). 

Appendix 1 lists details for 19 published correlation 
formulas for calculating the bubble point pressure including 
the data ranges for which each correlation is applicable.  
Table 8 compares the statistical accuracy achieved by these 
correlations applied to the entire Ahvaz field dataset. 
Figure 14 illustrates the comparative accuracy achieved 
by the historically published correlations versus the four 
AI models presented here. Table 8 and Fig. 14 confirm the 
significantly superior performance of all four AI models 

compared to historically published BPP prediction correlations 
when applied to the Ahvaz field dataset. They also identify 
the ANFIS and RBF neural network model as the most 
accurate BPP prediction model.  

5 Conclusions 

Precision in calculations and accurate measurement of fluid 
PVT properties, such as bubble point pressure, are key 
concerns for petroleum engineers associated with reserve 
evaluation, determination of recovery plans and estimation of 
the quantity and the quality of production fluid associated 
with oil field reservoir development. To improve the accuracy 
of predicting bubble point pressure from reservoir PVT data, 
we have developed models based on artificial intelligence/ 
machine learning algorithms (i.e., MLP, RBF-GA, CHPSO- 
ANFIS, and LSSVM) and evaluated and compared their 
performance. The PVT-derived variables, temperature (T), 
oil formation volume factor (Bo), gas specific gravity (γg), 
solution gas oil ratio (Rs), oil specific gravity (γo), and API 
gravity (API) provide input to each model from multiple 
records of field datasets divided randomly into training (80%) 
and testing (20%) subsets. Here, 79 data records from Ahvaz 
oil field in southern Iran have been used as the PVT dataset to 
train, test, and compare the four AI models in the prediction  

Table 8 Statistical measures of accuracy calculated to compare the performance of the various BPP prediction models applied to the 
entire Ahvaz field PVT dataset. The superior performance of the AI models developed in this study is highlighted. The four AI models 
are positioned in the final rows 

Correlation R2 AARD STD RMSE N 

Standing (1947) 0.709431 16.79519 0.075907 604.7738 79 

Lasater (1958) 0.449244 10.43311 0.120441 428.0071 79 

Glaso (1980) 0.709826 9.539167 0.08411 382.4983 79 

Farshad et al. (1996) 0.769647 4.7785 0.076531 224.1987 79 

Al-Marhoun (1988) 0.509781 38.00561 0.08116 1350.635 79 

Dokla et al. (1992) 0.504278 31.84684 0.071076 1153.006 79 

Almehaldeb (1997) 0.507551 25.0963 0.080534 924.2731 79 

Dindoruk and Christman (2004) 0.800778 12.29052 0.062495 461.8827 79 

Vazquez and Beggs (1980) 0.709826 9.539167 0.08411 382.4983 79 

McCain (1991) 0.709431 16.79519 0.075907 604.7738 79 

Velarde et al. (1997) 0.787577 29.13315 0.052413 1028.594 79 

Al-Shammasi (2001) 0.401844 18.40284 0.11969 742.5581 79 

Bolondarzadeh et al. (2006) 0.807687 23.24218 0.055435 818.3258 79 

Mehran et al. (2006) 0.512104 26.39188 0.100092 965.609 79 

Gomaa (2016) 0.480333 96.84225 0.240478 3411.509 79 

MLP 0.940472 2.118443 0.041816 107.4511 79 

RBF 0.987530 0.532629 0.013758 48.84562 79 

ANFIS 0.990234 0.845837 0.012619 43.20551 79 

LSSVM 0.929555 1.851888 0.047890 115.9780 79 
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of bubble point pressure. Statistical error and accuracy 
analyses identify that the CHPSO-ANFIS model performs 
the best of the four models developed, displaying superior 
Average Absolute Relative Deviation (0.846), Standard 
Deviation (0.0126), and Root Mean Square Error (43.21), and 
Correlation Coefficient (0.9902) when applied to all 79 data 
records of the Ahvaz field dataset. Moreover, all four of 
the AI models developed here significantly outperform 
historically published correlations for predicting bubble 
point. Notably, the four models developed hybridize established 

learning network algorithms with high-performing optimization 
algorithms, both of which have many useful applications when 
employed on a standalone basis. The results of this study 
justifying the application of such hybridized AI-based and 
optimization-based algorithms for predicting bubble point 
from PVT data. Indeed, they suggest that for practical 
applications associated with specific fields predictions of 
bubble point pressure should use AI methods in preference 
to the traditional approach of adopting one of the less accurate 
published correlation formulas. 

 
Fig. 14 Comparison of different correlations and the ANFIS and RBF model as the best prediction model in this study as measured by
R2 and RMSE values. 

Appendix 1 Published correlations that predict BPP for crude oil. This list is modified and expanded after the earlier compilations of 
Moradi et al. (2010) and Gomaa (2016) 

Publication Origin Data No. Correlation 

Standing (1947) California 105 
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a1 = 379.3, a2 = 350, a3 = 725.32143, a4 = 16.033, a5 = 0.09524, a6 = 0.38418,  
a7 = 1.20081, a8 = 9.6486 

Vazquez and  
Beggs (1980) World Wide 5008 
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If API30, a1 = 27.64, a2 = 1.0937, a3 = 11.172 
If API>30, a1 = 56.06, a2 = 1.187, a3 = 10.393 
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(Continued)

Publication Origin Data No. Correlation 

Glaso (1980) North Sea 41 
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a1 = 1.7669, a2 = 1.7447, a3 = 0.3021, a4 = 0.86, a5 = 0.172, a6 = –0.989 
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