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Abstract 
Transport of micron particles in a displacement ventilated room was simulated using both the 
Eulerian–Eulerian model and the Eulerian–Lagrangian model. The same inter-phase action 

mechanisms were included in both models. The models were compared against each other in 
the aspects of air velocity, particle concentration, and particle–wall interactions. It was found 
that the two models have similar accuracy in predicting the airflow field while each of them has its 

own advantage and drawback in modelling particle concentration and particle–wall interactions. 
The E–E model is capable of providing a mechanistic description of the inter-phase interactions, 
whilst the E–L model has obvious advantage in modelling particle–wall interactions. Advices were 

given for choosing an appropriate model for modelling particulate contaminant transport in 
indoor environments.   
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1 Introduction 

Particulate pollutants in indoor environments have drawn 
increasing attentions in recent years since a number of 
diseases including asthma, neurogenic diseases, and lung 
cancer have been found to be related to exposure to inhalable 
airborne particles (Mølhave et al., 2000; Fucic et al., 2011). 
In addition, virus could be carried by the particles or droplets 
and widely spread due to particle dispersion. Recalling the 
global outbreaks of SARS in 2003 and H1N1 flu in 2009, a 
great concern of infectious disease transmission through 
airborne particles in building environments and in small 
enclosed spaces, such as vehicle and airliner cabins, has 
been raised (Rothman et al., 2006). Epidemiologic studies 
(Buonanno et al., 2013) have proven that health risk associated 
with particulate matters is subject to the exposure dose 
which could be represented by the pollutant concentrations. 
Thus, knowledge about the concentration and distribution 
of particulate matters in indoor environments is crucial  
to risk assessment and disease prevention associated with 

particle exposure. 
The computational fluid dynamics (CFD) technique has 

been proven to be an efficient approach to analyse transport 
of particulate matters in indoor environments as CFD is not 
only able to provide full-scale simulations and visualisation 
of the transport processes in a cost-efficient way, but also 
capable of leading to an in-depth understanding of the 
complicated physical phenomena. Basically, two distinct 
approaches, namely the Lagrangian approach and the 
Eulerian approach, each having its own advantages and 
drawbacks, have been employed in CFD simulations of 
particulate transport in indoor air. Both the Lagrangian 
approach and the Eulerian approach simulate the airflow 
using the same set of conservation equations, but use different 
methods to model particle movement through the air. 

The Lagrangian approach, which tracks a number of 
representative particles separately through the air, has its 
unique advantage in whole-process description of particle 
movement from the injection point to the final destination. 
However, this approach cannot give direct prediction to the 
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particle concentration as only particle dynamic equations are 
solved. Therefore, additional post-process is required to 
calculate particle concentrations through the statistics of a 
large number of particle trajectories yielded from CFD 
computations. During the past years, the so-called sampling 
volume method (Zhang and Chen, 2007; Salmanzadeh et al., 
2012) and the kernel method (Chang et al., 2012a, 2012b) 
have been developed to estimate particle concentration based 
on the Lagrangian CFD results. However, the stability and 
accuracy of these post-process procedures are still not 
satisfactory as reported by Chang et al. (2012a, 2012b).  

On the other hand, the Eulerian approach, which treats 
the dispersed particles as a continuous phase, has gained 
relatively higher reputation in saving computational cost and 
simulating pollutant concentration, whilst it cannot predict 
particle motions or provide particle transport tracks. The 
Eulerian approach comes with different models depending 
on the integrality of the description of the gas–particle 
interactions. During the past years, some simplified Eulerian 
models have been utilized to model gas–particle flows in 
indoor environments, including the single fluid model by 
Zhang and Chen (2007), the mixture model by Zhao et al. 
(2008), and the drift-flux model by Chen et al. (2006) and 
Zhao et al. (2008). Zhao et al. (2008) found that when 
compared with the mixture model, the drift-flux model has 
better accuracy since more mechanisms such as gravitational 
settling are included in the latter model. In fact, all of the 
aforementioned Eulerian models are simplified by assuming 
the gas–particle mixture as a pseudo fluid whose physical 
properties are calculated based on the local volume or mass 
fractions of the two phases. Despite a transport equation is 
solved for a dimensionless transportable scalar representing 
the particle concentration in some models, it should be 
noted that only one set of transport equations are solved 
for the balance of mass, momentum, and energy of the two 
phases. This drawback actually makes the inter-phase actions 
between the phases could not be fully described. Therefore, 
a more comprehensive Eulerian model which is capable of 
describing the transport of each phase as well as the inter-phase 
actions is in demand.  

In this study, another type of Eulerian approach, known 
as the Eulerian–Eulerian two-fluid model (Tu and Fletcher, 
1995; Mohanarangam and Tu, 2007), is employed to simulate 
the transport and concentration distribution of particulate 
pollutants in an indoor environment. Being different to the 
aforementioned Eulerian models, the Eulerian–Eulerian model 
solves two sets of conservation equations governing the 
balance of mass, momentum, and energy for each phase. Since 
the macroscopic fields of one phase are not independent 
of the other phase, the interaction terms which couple the 
transport of mass, momentum, and energy across the interfaces 
are solved in the field equations. The Eulerian–Eulerian  

model is believed to be capable of leading to a more 
mechanistic modelling of two-phase flows than the simplified 
Eulerian models. Although the Eulerian–Eulerian model 
has rarely been utilized to analyse contaminant transport 
in indoor environments, it has been widely employed in 
modelling aerosol (Armand et al., 1998) and other gas–particle 
flows (Chen and Wang, 2014). It was found that the Eulerian– 
Eulerian model is not only more cost-efficient, but also 
more accurate when the particle concentration is relatively 
high (Chen and Wang, 2014).  

For the purpose of comparison, the Lagrangian approach, 
termed as the Eulerian–Lagrangian model in this study, was 
also employed with the same inter-phase action terms included. 
The Eulerian–Eulerian model and the Eulerian–Lagrangian 
model are abbreviated as the E–E model and the E–L model 
in the following sections, respectively.  

2 Methodology  

2.1 CFD model and boundary conditions 

A displacement ventilated room with dimensions of 5.5 m 
(length) × 4.5 m (width) × 2.7 m (height) was built for the 
purpose of model test, as illustrated in Fig. 1. All the room 
walls were assumed to be adiabatic. Air with constant tem-
perature of 18 °C was supplied from a square inlet (0.53 m × 
0.53 m) located near the floor and exhausted through a 
circular outlet (diameter 0.25 m) located near the ceiling. 
This ventilation layout created a displacing airflow pattern 
in the room. The air exchange rate was carefully selected to 
be 3 h−1 in terms of the ASHRAE standard (2013b), which 
yielded an air supply rate of 0.066 kg/s at the inlet.  

For the dual purposes of a realistic simulation and 
achieving a low-momentum airflow condition at the inlet, a 
separate computation was firstly conducted to simulate air 
flowing through a displacement diffuser with the same 
dimensions as those of the inlet (0.53 m × 0.53 m) and 
containing 3200 small holes (each with 3 mm in diameter) 
on its discharging plate. The predicted velocity profile at 
the perforated plate was extracted and then set as the inlet 
velocity boundary condition at the room inlet. The numerical 
procedure of obtaining the inlet boundary condition is 
illustrated in Fig. 1 as well.  

As demonstrated in our previous study (Li et al., 2013), 
when an occupant’s thermal plume overlaps with its breathing 
zone, the thermal plume has a significant effect on the 
characteristics of particle inhalation. Therefore, in order to 
create a breathing zone affected the thermal plume in this 
study, a seated female manikin model with detailed body 
features (available at www.ie.dtu.dk/manikin) was place in 
the middle of the room with its back towards the inlet. 
Detailed information about the manikin geometry could be  
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Fig. 1 Displacement ventilated room. 

found in Sørensen and Voigt (2003). The original manikin 
was slightly modified in this study to achieve a surface area 
of 1.50 m2. In terms of the ASHRAE handbook (2013a), the 
heat release rate from a sedentary human body (by both 
radiation and convection) with that skin area magnitude is 
around 85 W. As heat transfer by radiation is not taken into 
account in this study, a convective heat release rate of 45 W 
was equally applied at the manikin surface, as recommended 
by Rim and Novoselac (2009). Particles with a density of 
1000 kg/m3 and different sizes were released from a circular 
area with diameter of 0.5 m and located 0.5 m upstream of 
the manikin so that the particle trajectories could be effectively 
affected by the thermal plume of the manikin, as illustrated 
in Fig. 1. It should be noted that the shape and location of 
the particle injection area are for computational purpose 
only and they donot stand for any scenario. The selected 
particle sizes were 0.2, 0.77, and 2.5 μm, representing ultra- 
fine, fine, and coarse aerosol particles, respectively. The 
rate of particle release was 0.1 g/s and the injection velocity 
was 0.15 m/s. In fact, it was found that the particle velocity 
dropped immediately after being released so that the particle 
injection velocity just had an invisible effect on the overall 
particle trajectories or particle concentration distribution. 
This is because that for particles with such small sizes, their 
movement is mainly controlled by the airflow due to the 
low inertial and gravitational effects (Longest et al., 2004). 
Furthermore, comparative computations also demonstrated 
that even the particle injection rate is as high as 0.1 g/s, the 
normalized particle concentration pattern is free from the 
effects of particle injection concentration. This means that 
for CFD simulations of particulate transport in most indoor 
environments, it is safe to ignore the effects of particle 
injection concentration on the overall concentration pattern.  

2.2 Mathematic equations 

2.2.1 The Eulerian–Eulerian (E–E) model 

In an E–E model, the particle phase is treated as an additional 

continuous phase inter-penetrating with the continuous air 
phase and two sets of conservations governing the balance 
of mass, momentum, and energy of each phase are solved. 
As inter-phase heat and mass transfers are not considered 
in this study, the conservation equations take the following 
form (Ansys, 2011): 
the continuity equation 

 ( ) ( ) 0i i i iα ρ α ρUt
¶

+⋅ =
¶

  (1) 

the momentum equation 
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and the energy equation 
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where i and j are the phase denotations (i, j = a for the air 
phase and i, j = p for the particle phase). ,α  ,ρ  ,U


 P, H, T, 

and λ  represent the volume fraction, density, velocity, 
pressure, enthalpy, temperature, and thermal conductivity, 
respectively. It should be noted that the energy equation 
(Eq. (3)) was solved only for the air phase while heat transfer 
within the particle phase was ignored.  

BuoyS  is the momentum source due to buoyancy, which 
is defined in terms of a reference density refρ  which takes 
value of air density at the inlet: 

 Buoy ref( )iS ρ ρ g= -  (4) 

When calculating the thermal buoyancy force induced 
by the thermal plume, the Buossinesq approximation is 
employed in the momentum equation to take into account 
thermal expansion of the air.  

 a ref a ref[1 ( )]ρ ρ β T T= - -  (5) 

where β  is the coefficient of thermal expansion and refT  is the 
reference temperature which takes value of air temperature 
at the inlet.  

ijF


 in the momentum equation (Eq. (2)) represents the 
interfacial forces, which is formulated based on the assumption 
of spherical particles and includes the drag force DF


, the 

turbulent dispersion force TDF


, and the virtual mass force 
VMF


 in this study. 
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where DC  is the drag coefficient correlated to the particle 
Reynolds number, TDC  is the turbulent dispersion coefficient, 
and VMC  is the virtual mass coefficient.  

2.2.2 The Eulerian–Lagrangian (E–L) model 

When an E–L model is employed for a gas–particle flow, the 
air phase is still governed by the Eulerian equations (Eqs. (1)–(3) 
with a 1α = , which means the volume fraction occupied by 
the particles is negligible), while the particles are tracked 
using the Lagrangian method separately through the airflow 
field.  

Being different to the E–E model, the effect of turbulent 
dispersion on particle transport is modelled by adding an 
eddy fluctuating component onto the mean air velocity. It is 
the fluctuating component of the air velocity which causes 
the dispersion of particles in turbulent flow. Therefore, the 
local air velocity is redefined by 

 ( )
0 5

a a
2
3
kU U Φ

.

= +


 (10) 

where Φ  is a normally distributed random number which 
accounts for the randomness of turbulence about a mean 
value.  

In the E–L model, the particles are tracked using the 
equation of motion. For a spherical particle with a diameter 
of pd  immersed in continuous air, the drag force DF


, the 

buoyancy force BuoyF


, and the virtual mass force VMF


 are 
considered here in order to keep the same inter-phase 
momentum transfer mechanisms as those considered in the 
E–E model.  

 p
p pa ap D Buoy VM

d
d
U

m F F F F F
t

= =- = + +
    

 (11) 

 
2
pD

D a p a p a
π

( )
2 4

dCF ρ U U U U= - -
    

 (12) 

 
3
p

p aBuoy

π
( )

6
d

ρ ρ gF = -
  (13) 

 
3
pVM P a

VM a
π d d

2 6 d d
dC U UF ρ

t t
æ ö÷ç ÷= -ç ÷ç ÷çè ø

 
 (14) 

2.3 Numerical procedures 

The room model containing the manikin (Fig. 1) was 
discretized using unstructured tetrahedral and prism meshes. 
Fine meshes were used around the manikin surface in order 
to capture the geometric features and the human thermal 
plume. The grid sensitivity test proved that mesh independence 

was achieved at 3.4 million cells for the both models.  
The Re-Normalisation Group (RNG) k–ε model was 

chosen for the airflow turbulence because of its successful 
utilization in the simulations dilute gas–particle flows (Tu 
and Fletcher, 1995). To resolve the boundary layer in the 
near wall regions, the scalable wall function (Ansys, 2011) was 
used for the air phase in all the models. Particle deposition 
was not considered in this study. In the E–L model, the particles 
are assumed to bounce back with the same momentum 
magnitude after they collide with the solid walls. However, 
as the particles are treated as a continuous phase in the E–E 
model, their bouncing behaviour is hard to be modelled 
(Tu and Fletcher, 1995). As an approximation, a free-slip 
boundary condition was applied at the solid walls for the 
particle phase in the E–E model. The models were solved 
by the commercial CFD code CFX 14.5 (Ansys Inc.) and 
convergence was achieved when the RMS residual of the 
continuity equation dropped down to 1.0 × 10−6. 

3 Results and discussion 

3.1 Airflow field 

A typical airflow field yielded from the computations is 
illustrated in Fig. 2(a). It was found that due to the effect of 
manikin body heat, a significant thermal buoyancy flow was 
observed above the manikin head. The thermal buoyancy 
flow was so strong that it was the major airflow in the room, 
besides the airflow near the floor which was induced by the 
ventilating jet. Salmanzadeh et al. (2012) also simulated   

 
Fig. 2 Predicted human thermal plume in displacement ventilated 
rooms. 
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the airflow in a displacement ventilated room containing a 
seated thermal manikin, and the predicted thermal plume 
is illustrated in Fig. 2(b) for the purpose of comparison. It 
was found that this study predicted a very close pattern of 
the human thermal plume to that by Salmanzadeh et al. 
(2012); especially, the low-velocity region immediately above 
the head was successfully predicted. As shown in Fig. 2, as 
the uprising airflow detaches the manikin head, it keeps 
accelerating until it reaches its maximum velocity. Therefore, 
the highest speed of thermal plume exists at somewhere above 
the manikin head. As the thermal plume hits the ceiling, it 
then changes its direction to horizontally spread. This actually 
contributes to the temperature stratification in a displacement 
ventilated room. However, due to the difference in the 
geometry and boundary conditions such as the ventilating jet 
direction and velocity, as well as the heat flux at the manikin 
surface, this study predicted a slightly lower buoyancy flow 
velocity than that by Salmanzadeh et al. (2012). 

The numerical results demonstrated that the both 
models yielded very similar airflow fields. For the purpose of 
quantitative comparison of these models, velocity distributions 
along a horizontal line (Line 1, Fig. 2(a)) crossing the whole 
computation domain at a height of 2.0 m and a vertical line 
(Line 2, Fig. 2(a)) which has a length of 200 mm and is 
located 20 mm in front of the manikin nose tip were plotted 
in Figs. 3(a) and 3(b), respectively. Air velocity distribution 
along Line 1 could represent the overall airflow field while 
the air velocity distribution along the short vertical line 
could represent the local airflow pattern. It was found that the 
two models gave very close predictions for the air velocity 
profile. Especially in the breathing zone (Fig. 3(b)), the value 
difference between the E–E model and E–L model was less 
than 1%. 

Rim and Novoselac (2009) once investigated experimentally 
the airflow field and human thermal plume in a displacement 
ventilated room containing a seated manikin, which had a 
very similar setup with the model of this study. The mea-
surements revealed that the air velocity in the bulk region 
was negligibly small (less than 0.05 m/s), which agreed well 
with the predictions of this study. As shown in Fig. 3(a), the 
models predicted almost quiescent air in the bulk region 
with air velocity less than 0.02 m/s.  

Rim and Novoselac (2009) also measured the average 
thermal plume velocity in a circular plane with 0.25 m 
diameter above the manikin head using 8 velocity sensors. 
The experimental data was analysed in this study and an 
average air velocity of 0.215 m/s was obtained and compared 
to the numerical results, as shown in Fig. 4. The area-averaged 
air velocities in the circular region were found to be 0.201 
and 0.203 m/s for the E–E and E–L model, respectively. This 
small difference (less than 5%) is within the uncertainty of 
the experimental measurement and computational model   

 
Fig. 3 Local air velocity distributions along selected lines. 

 
Fig. 4 Experimental data by Rim and Novoselac (2009) and velocity 
in the circular region (250 mm in diameter) 250 mm above the 
manikin head. 

prediction. The predicted air velocities in the thermal plume 
region also agreed well with most experimental measurements 
(Craven and Settles, 2006) and numerical simulations 
(Sørensen and Voigt, 2003). Again, the E–E model and E–L 
model yielded very close predictions. This indicates that  
a complete description of inter-phase actions would help 
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further improve the model reliability. 

3.2 Particulate contaminant transport 

Typical particulate contaminant distributions in the room 
predicted by the aforementioned models are illustrated in 
Fig. 5. It is clear that the E–E model (Fig. 5(a)) gives a direct 
prediction to the particle concentration while the E–L model 
(Fig. 5(b)) predicts the particle trajectories (0.77 μm). Despite 
this, the overall transport or distribution patterns of the 
particles predicted by the both models are very close. As the 
particles approach the manikin, they bend their way upwards 
due to the buoyancy effect of the thermal plume, then after 
the particles hit the ceiling, they bend their way again into 
the horizontal direction, which causes the particles spreading 
all over the room. Locally, it is important to notice that 
some of the particles which are released at lower height are 
entrained into the breathing zone by the thermal plume 
(Fig. 5(a)). The particle concentration in the breathing zone 
is therefore larger than the ambient concentration. This is 
consistent with a number of experimental observations that 
the human thermal plume is capable of increasing the 
exposure risk of the occupants to particulate contaminants 
by entraining particles from a lower level into the breathing 
zone (Bjorn and Nielsen, 2002; Rim and Novoselac, 2009).  

 
Fig. 5 Typical particulate contaminant distributions yielded by the 
models (0.77 μm). CN presents the normalized particle concentration, 
which was normalized based on the average particle concentration 
in the circular region of particle injection. 

In order to keep the comparability of the models in 
predicting particle transport, the so-called Particle Source in 
Cell (PSI-C) method developed by Zhang and Chen (2007) 
was utilized to calculate the particle concentration based on 
the particle trajectories yielded from the E–L model.  

1
d ( )m

i
j

j

M t i j
C

V
=

,
=

å
            (15) 

where Cj is the local particle concentration in the jth cell 
and Vj is the volume of that cell, M is the mass flow rate 
represented by a particle trajectories, and dt(i, j) is the 
residence time of the ith particle in the jth cell. It should 
be noted that the control volume here for concentration 
calculation is different from the computational mesh for 
model solution.  

In terms of the PSI-C method, the computational domain 
needs firstly to be divided into a number of small control 
volumes (or cells, which are for post-processing purpose 
only and are different to the computational meshes), then a 
number of particle trajectories are selected for concentration 
calculation from the numerical results yielded from the E–L 
model. It was found that the resultant particle concentration 
is highly sensitive to both the cell size and the particle trajectory 
number. At first, the cell size needs to be carefully determined 
so that an appropriate number of particle trajectories are 
contained in the each cell. Then, for a given cell division 
scheme, the number of particle trajectories needs to be tested 
to obtain an acceptable concentration calculation. For the 
issue of this study, when the computational domain was 
divided into 100(X) × 80(Y) × 50(Z) cells, sensitivity test 
proved that 50,000 particle trajectories were sufficient for 
a stable particle concentration since a further increase to 
60,000 trajectories just caused a negligible change in the 
concentration profile along a randomly selected vertical line, 
as shown in Fig. 6. In fact, since the stability of the PSI-C   

 
Fig. 6 Sensitivity test of particle trajectory number on particle 
concentration calculation. 
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method and its resultant particle concentration are not only 
affected by the trajectory number, but also highly impacted 
by the cell size, when a quantitative index is absent for the 
assessment of optimal cell size, it is anything but an easy job 
to obtain a stable solution. Therefore, more advanced post- 
processing procedures for particle concentration calculation 
based on the E–L model are in urgent demand. 

The predicted particle concentration distributions in a 
vertical plane cutting through the manikin (Y = 2.25 m) 
and a horizontal plane close to the ceiling (Z = 2.50 m) are 
compared in Fig. 7, which clearly illustrates the process of 
particle transport. After the particles are released from the 
injection area, they follow the airflow and move forward. 
When approaching the manikin, most of the particles bend 
their way upwards before reaching the manikin while 
minority of them go around the manikin and then are brought 
up by the thermal plume. After the particles approach the 
ceiling, they bend their way and move horizontally and 
finally to the whole room. This is consistent with the airflow 
velocity pattern as illustrated in Fig. 2. A comparison of Fig. 2 
and Fig. 7 reveals that the size of the particle plume, which is 
the region in which the particle concentration is obviously 
higher than the ambient concentration, is significantly smaller 
than that of the thermal plume (Fig. 2) in which the air 
velocity is higher than the ambient air velocity. Furthermore, 
the particle plume exists mainly upstream of head-top point 
where it detaches the manikin. This is physically reasonable 
since the solid manikin behaves as an obstacle against particle 
movement, most of the particles have to change their way 
upward and then were brought further by the uprising 
airflow and finally detach the manikin before reaching the 

head-top point. On the other hand, the heat-releasing manikin 
works as a driving force of the thermal plume, which causes 
uprising airflow exists mainly on the downstream side. 
Therefore, in the plane cutting through the manikin (Y = 
2.25 m), the particle plume was observed to exist mainly 
upstream of the head top while the thermal plume exists in a 
wider area. In the plane of Z = 2.50 m, it was found that the 
particle transport in horizontal directions was successfully 
predicted by the both models, although the patterns and the 
local values of particle concentration yielded from different 
models were slightly different.  

Figure 7 also demonstrates that the E–E model and the 
E–L model yield similar overall particle concentration profiles 
in the room, and they give significantly different particle 
concentration prediction in some local areas close to the 
walls. As shown in Fig. 7(b), several distinct local regions with 
high particle concentration were predicted by the E–L model, 
while the E–E model just predicted a smoothly changing 
concentration distribution near the walls. It is supposed 
that this is caused by the different methods employed by 
the models to describe the particle–wall interactions. In the 
E–L model, the particles are assumed to bounce back after 
they hit the wall. This actually enables a near-mechanistic 
description of particle behaviours in the wall boundary 
layer. It is physically reasonable that due to uprising airflow 
caused by the thermal plume, particles close to the ceiling 
would be pushed back again to the ceiling after they bounce 
back from it, which would cause particle gathering and lead 
to higher local particle concentration in some local regions. 
On the other hand, since particles are treated either as a 
continuous phase in the E–E model, it is hard to realize 

 
Fig. 7 CN distributions predicted by different models (0.77 μm). 
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an accurate modelling of their actual behaviours such as 
bouncing-back in the boundary layers. In this study, the E–E 
model actually failed to achieve a mechanistic modelling of 
particle–wall interactions and the particle movement in the 
boundary layer. For the purpose of a mechanistic modelling 
of gas–particle flows using the Eulerian method, Tu and 
Fletcher (1994, 1995) derived a wall boundary condition 
for the particulate phase, through which the particle–wall 
interactions such as the momentum exchange between the 
particles and the solid walls could be included in the particle 
momentum equation. This mechanistic method is believed 
to be promising in improving the Eulerian model for 
gas–particle flows.  

For the purpose of quantitative comparison, particle 
concentration profiles along Line 1 (Fig. 2(a)) and Line 3 
which is located 20 mm in front of the nose tip (Fig. 7(a)) 
are shown in Fig. 8. Line 1 and Line 3 penetrate through the 
whole computational domain horizontally and vertically 
respectively, and Line 3 is also located in the thermal plume 

region; therefore, they could be used to verify both the overall 
and local particle concentration predictions. It seems that 
the agreement between the two models increases with 
increasing particle size up to 2.5 μm. For the overall particle 
concentration (Figs. 8(a), 8(c), and 8(e)), the E–E models 
predicted obviously higher particle concentration in the bulk 
region, except the E–L model predicted a higher particle 
concentration in the area above the manikin head. With 
increasing particle size, the predicting error of particle con-
centration in the bulk region decreases. However, the E–L 
model still gave a higher prediction than the E–E model. It is 
supposed that the peak distribution of particle concentration 
is caused by the PSI-C algorithm which actually deals with 
the particle resident time. Comparatively, the particle 
concentration profiles predicted by the models along Line 3 
agree better with each other and the agreement for coarse 
and fine particles is better than that for ultra-fine particles. 
This is especially true for regions close to the walls. However, 
as experimental data is unavailable at this moment to validate 

 
Fig. 8 Particle concentration profiles along selected lines. 
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the models, it’s hard to tell which model behaves better for 
ultra-fine particles. Further research is still needed.  

Recalling Fig. 7 and Fig. 8, the particle concentration 
patterns predicted by the E–L model seem discontinuously 
distributed while the E–E model yields smoothly changing 
particle concentration fields. It is suspected that the discon-
tinuous concentration pattern is induced by the PSI-C 
method for converting particle trajectories into particle 
concentration. It was found the PSI-C method is not stable 
enough as its results are highly sensitive to both the domain 
discretization and the number of particle trajectories. The 
complicated geometry of the manikin of this study further 
increased the instability. Even a large amount of efforts 
have been devoted; however, the final results of the particle 
concentration field were still not satisfactory. Therefore,  
a more robust model or algorithm for converting particle 
trajectories into particle concentration is in urgent demand.  

4 Conclusions 

Both the Eulerian–Eulerian model and the Eulerian– 
Lagrangian model were employed in this study to simulate 
particulate contaminant transport in a displacement ventilated 
room containing a thermal manikin. The two models were 
compared against each other in terms of airflow velocity 
and particle concentration. It was found the both models 
give very close prediction to the airflow field; however, 
each of the models have its own advantages and drawbacks 
in modelling particle transport. This study not only 
highlighted the advantages of each model, but also gave 
detailed recommendations for improving the both models. 
Conclusions arising from this study mainly include:  

(1) The E–E model, which treats the dispersed particles 
as a continuous phase, not only gives a direct prediction to 
the particle concentration, but also is capable of providing 
a mechanistic description of the inter-phase interactions. 
However, since the particles are treated as a continuous 
phase, their interactions with the solid walls are hard to be 
modelled accurately. Further research is needed to develop 
a model to describe particle behaviours in the boundary 
layer.  

(2) The E–L model, which tracks the particles through 
the air separately, not only can give a whole-process tracking 
of particle movement, but also has obvious advantage in 
modelling particle–wall interactions. However, further study 
is still need to develop a reliable post-processing procedure 
for converting particle tracks into particle concentration.  
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