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Understanding the negative impacts of inorganic fertilizers 
has sparket interest in the use of organic nutrient sources 
(Mahmud et al. 2018).

Waste from agricultural activities is considered an impor-
tant source of pollution and has not been widely used to 
produce organic fertilizers through composting and vermi-
composting (Hernández et al. 2010). Composting and ver-
micomposting are the biological processes commonly used 
to convert organic wastes into organic fertilizers (Nurhi-
dayati et al. 2017). Composting is a method of aerobic and 
thermophilic (45–65  °C) decomposition of organic matter 
(OM) into a stable, nutrient-rich amendment (Ahmad et 
al. 2021; Finore et al. 2023; Sanasam and Talukdar 2017; 
Singh et al. 2022). This process involves mineralization and 
partial humification of OM by microorganisms and their 
associated enzymes (Mahapatra et al. 2022; Waqas et al. 
2023). However, composting has the disadvantages of being 
a long-term process (≥ 5 months), often requiring mixing, 
presenting nutrient losses during the prolonged composting 
process, and providing heterogeneous material (Alidadi and 
Shamansouri 2005; Munnoli et al. 2010; Papadimitriou and 

1  Introduction

In recent decades, agriculture has relied heavily on inor-
ganic nutrients to fertilize crops and achieve higher yields 
(Gómez-Brandón et al. 2020a). Despite the intention to 
increase production and feed a growing population, the 
overuse of chemical fertilizers leads to the loss of soil 
fertility and water pollution, reducing agricultural pro-
ductivity and food quality (Kifle et al. 2017; Savci 2012). 
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Abstract
Vermicompost is an organic amendment rich in nutrients, humic substances, growth regulators, hormones and beneficial 
microorganisms. Vermicompost is produced by the bio-oxidation of various organic wastes through the combined action 
of earthworms and microorganisms. Because of its components, vermicompost helps maintain soil health, improve plant 
development and reduce environmental pollution. Compared to other organic fertilizers, vermicompost provides higher 
levels of macronutrients and micronutrients. However, it has been reported that the nutrient content of vermicompost 
depends on the proper management of some factors involved in the vermicomposting process. The main limitation to 
the widespread use of vermicompost in agriculture has been its low nutrient content compared to inorganic fertilizers. 
Research has been conducted to improve the nutrient content of vermicompost during the vermicomposting process; 
however, the available information on optimizing the factors involved in increasing the nutrient content of vermicompost 
is limited and scattered. This review, in addition to highlighting the effect of vermicompost on soil quality and crop 
development, has examined and concentrated the current literature on the progress of research aimed at improving the 
nutrient content of vermicompost by optimizing the factors involved in the vermicomposting process. It is expected that 
the information provided will encourage and guide new research aimed at improving the nutrient content of vermicompost.

Keywords  Nutrient content · Earhtworms · Microorganisms · Black gold

Received: 7 February 2024 / Accepted: 11 June 2024
© The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024

Benefits of Vermicompost in Agriculture and Factors Affecting its 
Nutrient Content

García Santiago Juana Cruz1 · Pérez Hernández Hermes1 · Sánchez Vega Miriam2 · Alonso Méndez López3

1 3

http://orcid.org/0000-0002-4356-0409
http://crossmark.crossref.org/dialog/?doi=10.1007/s42729-024-01880-0&domain=pdf&date_stamp=2024-6-26


Journal of Soil Science and Plant Nutrition

Balis 1996). On the other hand, vermicomposting is the non-
thermophilic biodegradation of OM by the combined action 
of earthworms and microorganisms (Fig.  1) (Sharma and 
Garg 2023; Thakur et al. 2021), which converts the unstable 
OM into a stabilized form called vermicompost (Saranraj 
and Stella 2012). Vermicompost is a product rich in humic 
acids, vitamins, antibiotics, enzymes, plant growth-promot-
ing substances, beneficial microbes and nutrients (Arancon 
et al. 2006; Adhikary 2012; Banerjee et al. 2019).

Unlike composting, vermicomposting has a shorter pro-
cessing time (< 2 months), higher nutrient content, and 
provides a homogeneous product (Nurhidayati et al. 2017; 
Ramos et al. 2022; Thirunavukkarasu et al. 2022). The ver-
micomposting process consists of an initial and a final phase 
(Domínguez et al. 2017). The initial phase is characterized 
by the activity of the earthworm in aerating and fragmenting 
the OM, increasing the surface available for the adequate 
activity of the microorganisms (Domínguez et al. 2017), 
while in the final or maturation phase, the microorganisms, 
through enzymatic digestion, continue the transformation of 
the organic compounds digested by the earthworm, causing 
the maturation of the vermicompost, while the earthworms 
move to new layers of fresh substrate (Gómez-Brandon et 
al. 2020b). In the first phase of vermicomposting, earth-
worms and microorganisms preferentially use easily assimi-
lated molecules, while in the final phase, microorganisms 
convert complex molecules (Gómez-Brandón et al. 2019; 
Gómez-Brandon et al. 2020b). During the vermicompost-
ing process, a moisture content between 65 and 75%, a pH 
range between 5.5 and 8.5, and a temperature between 12 
and 28 °C in the substrate must be guaranteed to favor the 
activity of earthworms and microorganisms in the biodeg-
radation of OM (Singh et al. 2022). It is also necessary to 

ensure adequate aeration in the substrate to be vermicom-
posted by selecting porous waste and, most importantly, 
controlling the amount and frequency of irrigation (Kaur 
2020). In addition, a high salt content in the substrate should 
be avoided when vermicomposting (Kaur 2020). Many 
types of manure have a high salt content, so it is necessary 
to perform heavy washing prior to starting the vermicom-
posting process to leach out excess salts.

This organic fertilizer has demonstrated its ability to 
restore soil fertility, improve overall plant growth and, most 
importantly, reduce environmental pollution (Bellitürk and 
Soyturk 2020; Hassan et al. 2022; Soobhany 2019). Despite 
its versatility, one of the limitations of the extensive use of 
vermicompost in crop production is the variation in its nutri-
ent content and its low nutrient contribution compared to 
inorganic fertilizers (Gómez-Brandón et al. 2020a; Jafari et 
al. 2021). Vermicompost mainly provides N, P, K, Ca, Mg, 
S, and micronutrients; however, it has been shown that its 
nutrient content depends on the factors involved in the pro-
duction process (Singh et al. 2008; Theunissen et al. 2010).

Although there is a large amount of research in which 
the suitability of different residues for the production of 
vermicompost has been evaluated and the ability of vermi-
compost to improve the development and production of dif-
ferent crops has been assessed, limited works have reported 
information on the proper management of the factors that 
improve the nutritional content of the final vermicompost, 
in addition to the fact that the little information available 
is scattered. In this review work, in addition to highlight-
ing the effect of vermicompost on the improvement of soil 
fertility and plant development, the available information 
on the reported advances related to the optimization of the 

Fig. 1  Synergistic role of earth-
worms and microorganisms in 
the vermicomposting of organic 
waste
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factors involved in improving the content has been concen-
trated nutritional value of vermicompost.

2  Agricultural Implications of 
Vermicomposting

2.1  Effects on the Soil

Vermicompost has demonstrated a high capacity to improve 
various physical, chemical and biological properties of 
soil. The physical properties of the soil that are modified 
by the addition of vermicompost inclide structure, poros-
ity, water retention, bulk density, and resistance to soil 
erosion (Gómez-Brandón et al. 2020a; Parthasarathi et al. 
2008; Piya et al. 2018) (Table 1). The increase in aeration, 
water retention and soil structure is naturally related to the 
stability of soil aggregates (Gómez-Brandón et al. 2020a). 
Therefore, the incorporation of vermicompost increases the 
stability of the aggregates due to the presence of humic sub-
stances and the polysaccharides present in the OM, which 
act as cementing agents between the soil particles (Demir 
2019; Lim et al. 2015; Mupambwa and Wakindiki 2012). In 
addition, by improving soil aggregation, vermicompost can 
reduce soil erosion caused by water or air (Piya et al. 2018). 
Meanwhile, the reduction in soil bulk density is due to the 
increase in OM in the soil (Ahmad et al. 2022a; Uz et al. 
2016), increase in aggregate formation and increase in soil 
porosity (Manivannan et al. 2009).

As a result of vermicompost incorporation, it is possible 
to increase the availability of nutrients in the soil (Bellitürk 
et al. 2022; Wang et al. 2023) (Table 2). The increase in soil 
nutrient content is due to: (1) the nutrient content of the ver-
micompost; (2) the activity of microorganisms responsible 
for fixation, mineralization and/or solubilization of nutrients 
present in the vermicompost which increase the availability 
of nutrients in the soil during mineralization of OM (Yatoo 
et al. 2020); (3) the high molecular weight acids present in 
the vermicompost components that help to solubilize some 
nutrients in the soil (Wang et al. 2023); and (4) the reduc-
tion of nutrient leaching due to the increase of the negative 
charges of the soil by the OH− present in the vermicompost 
(Ernani et al. 2012).

Other chemical parameters that are improved by the 
addition of vermicompost are electrical conductivity, cation 
exchange capacity, and pH of the amended soil (Piya et al. 
2018; Sinha et al. 2011) (Table 2). It has been reported that 
the incorporation of vermicompost into the soil, increases 
the electrical conductivity of the soil due to the high nutrient 
content (Bagheri et al. 2021; Demir 2019), with increasing 
values of electrical conductivity as the dose of vermicom-
post (Atiyeh et al. 2001). Similary, vermicompost increases 

the cation exchange capacity of the soil due to the high 
content of humic acids in the OM (Adhikary 2012; Aktaş 
and Yüksel 2020), thus keeping most of the cations in the 
exchange sites available for uptake by plants. Studies such 
as Wei et al. (2018) have shown that humic acids act as weak 
acid polyelectrolytes in compost retaining cations through 
cationic bonding.

On the other hand, soil pH controls plant nutrient avail-
ability and microbial activity (Demir 2019; Vuković et al. 
2021). Demir (2019) and Manivannan et al. (2009) showed 
that vermicompost application causes a decrease in soil 
pH. The release of organic acids during microbial metabo-
lism in vermicompost and/or increased permeability and 
leaching of salts may contribute to the decrease in pH of 
the amended soil (Manivannan et al. 2009; Vuković et al. 
2021). On the contrary, vermicompost has also been shown 
to increase soil pH (Gopinath et al. 2008). The increase in 
pH of vermicomposted-treated soils was reported to be the 
result of an increase in the availability of nutrients in the soil 
(Gómez-Brandon et al. 2020a; Sinha et al. 2011). However, 
the direction of the change in soil pH as a result of vermi-
compost application depends on the initial pH, the appli-
cation rate and the duration of vermicompost application, 
since the higher the value of these parameters, the greater 
the increase in soil pH value (Angelova et al. 2013; Manyu-
chi et al. 2013). Likewise, it has been pointed out that the 
effect of vermicompost on soil pH may vary depending on 
the initial pH of the soil (Zhang et al. 2020). For example, 
Fernández-Bayo et al. (2009) showed that the addition of 
vermicompost to acidic soils increased soil pH, whereas the 
addition of vermicompost to alkaline soils decreased soil 
pH.

The OM, nutrient content, growth promoters, and 
microbial communities present in vermicompost not only 
improve soil physicochemical properties, but also increase 
soil microbial diversity and activity (Gómez-Brandón et al. 
2020a; Kaur 2020; Vuković et al. 2021; Yatoo et al. 2021) 
(Table 3). Indeed, in a two-year study, Koskey et al. (2023) 
showed that the addition of liquid vermicompost extract 
increased soil microbial diversity, including N-fixing, 
P-solubilizing, C-degrading bacteria, and arbuscular mycor-
rhizal fungi. Similary, Zhao et al. (2020) reported that by 
adding vermicompost to the soil they observed an increase 
in the population, activity and diversity of microorganisms, 
the abundance of which was attributed to the increase in 
OM and organic carbon in the soil. For their partWang et 
al. (2021a); Zhao et al. (2017) showed that the application 
of vermicompost increased the microbial population in the 
soil, attributing this effect to indirect changes in the soil 
environment and to the improvement of its chemical prop-
erties (pH, organic carbon, electrical conductivity, P, NH4

+, 
and NO3

−).
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2017; Yatoo et al. 2021; Zhao et al. 2019). Liu et al. (2021) 
isolated 374 bacterial strains from fresh cow dung vermi-
compost, of which 28 strains showed antagonistic activity 
against Fusarium oxysporum f. sp. cucumerinum. Similary, 
Zhao et al. (2019) revealed that the bacteria of the genus 
Nocardioides, Ilumatobacter and Gaiella, present in vermi-
compost played an important role in inhibiting Fusarium 

In addition to increasing the population of beneficial 
microorganisms in the soil, vermicompost application has 
been shown to suppress the growth of pathogenic fungi 
through volatile organic compounds produced by bacteria 
and actinomycetes present in the vermicompost and bioac-
tive compounds present in the coelomic fluid, mucus and 
skin secretions of earthworms (Gudeta et al. 2022; Mu et al. 

Application 
rate

Macroaggregates Porosity Apparent 
density

Water reten-
tion capacity

References

(%) (%) (g cm− 3) (%)
%
0 - 44.29 1.33 30.83 (Nada et al. 2011)
3 - 44.34 1.31 32.70
12.5 - 48.17 1.18 58.22
25 - 52.59 1.04 72.60
%
0 - 50.4 1.32 - (Aksakal et al. 2016)
0.5 - 52.7 1.26 -
1 - 53.5 1.24 -
2 - 55.2 1.19 -
4 - 56.9 1.15 -
t ha− 1 (Liu et al. 2019a)
0 39.23 - - -
3.75 63.61 - - -
% (Usmani et al. 2019)
0 46.24 1.32 43.75
3 47.66 1.34 45.78
6 46.54 1.28 45.42
9 46.28 0.96 47.76
12 45.27 0.94 46.84
15 44.89 0.89 48.32
t ha− 1

10 - - 0.92 63.7 (Sahariah et al. 2020)
20 - - 0.90 65.9
30 - - 0.92 63.4
t ha− 1

0 - - 1.30 - (Hafez et al. 2021)
10 - - 1.25 -
t ha− 1

0 52.32 8.77 - - (Liu et al. 2020)
3.75 54.85 9.14 - -
t ha− 1

0 - - 1.14 - (Pasha et al. 2020)
9.8 - - 1.09 -
t ha− 1

0 - 52.8 1.25 - (Emamu and Wak-
gari 2021)

10 - 56.5 1.15 -
t ha− 1

0 - - 1.40 - (Shen et al. 2022)
25 - - 1.37 -
50 - - 1.34 -
125 - - 1.23 -
250 - - 1.00 -

Table 1  Effect of vermicompost 
on soil physical properties
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2.2  Effects on Plants

The use of vermicompost as an alternative to synthetic fertil-
izers stimulates plant production. The effects of vermicom-
post and its derivatives on plant growth and yield have been 
reported in several studies, such as the one carried out by 
Esmaielpour et al. (2020), who reported that by replacing the 
base medium with 20% vermicompost, greater plant height, 
leaf area, stem dry weight, root dry weight and fruit yield 
of cucumber plants were obtained, exceeding the control by 
15.0, 23.5, 53.5, 53.4 and 64.3%, respectively. For their part, 
Feizabadi et al. (2021), by adding 5 t ha− 1 of vermicompost 

oxysporum f. sp. Lycopersici in the soil by acting as antago-
nistic microorganisms. Przemieniecki et al. (2021) showed 
that the addition of vermicompost to the soil reduced the 
presence of pathogens such as Fusarium spp. and Penicil-
lium spp. and increased Bacillus spp., Clostridium spp. and 
Actinomycetes. These authors attributed the reduction in 
soil to the increase in Bacillus spp. because of this bacte-
rium’s ability to produce antifungal metabolites.

Table 2  Effect of vermicompost on soil chemical properties
Dose pH ECα OM OCβ N P K References
% dS m− 1 % mg kg− 1 mg kg− 1 mg kg− 1 (Abdeen 2020)
0 7.7 1.73 0.45 – 44.5 10.0 78.5
1 7.4 1.78 0.55 - 58.5 11.8 83.6
2 7.2 1.90 0.65 - 64.5 12.5 88.4
t ha− 1 dS m− 1 meq L− 1 (Hafez et al. 2021)
0 8.0 3.70 - - - - 0.40
10 8.0 3.45 - - - - 0.42
t ha− 1 dS m− 1 g kg− 1 µg g− 1 (Liu et al. 2020)
0 8.2 5.54 16.9 - 129.2 - -
3.75 8.1 5.26 18.97 - 140.0 - -
t ha− 1 % % % (Mahmud et al. 2020)
0 3.6 - - - 0.10 0.02 0.04
10 4.9 - - - 0.18 0.04 0.05
t ha− 1 dS m− 1 % % (Pasha et al. 2020)
0 6.2 0.43 - 1.22 0.18 - -
9.8 6.7 0.56 - 1.71 0.25 - -
% % % % (Adiloglu et al. 2021)
0 - - - - 0.13 0.25 1.14
8 - - - - 0.27 1.13 4.29
t ha− 1 % % mg kg− 1 (Baghbani-Arani et al. 2021)
0 - - - 0.64 0.065 15.33 -
2.7 - - - 0.82 0.084 19.70 -
t ha− 1 % mg kg− 1 mg kg− 1 mg kg− 1 (Salma and Hossain 2021)
0 5.7 - - 0.89 60 38.3 409.8
5 5.6 - - 1.14 100 61.8 412.5
% dS m− 1 % mg kg− 1 mg kg− 1 (Przemieniecki et al. 2021)
0 6.8 2.08 - - 0.21 92.2 142
10 7.0 2.42 - - 0.15 358 1199
20 0.7 2.66 0.19 521 1912
t ha− 1 dS m− 1 mg g− 1 g kg− 1 mg kg− 1 mg kg− 1 (Benaffari et al. 2022)
0 8.2 0.71 196.1 0.9 29.2 5983
5 7.9 0.87 234.3 1.4 135.9 5835
10 8.2 0.69 259.8 1.9 91.0 5428
t ha− 1 dS m− 1 g kg− 1 g kg− 1 (Shen et al. 2022)
0 8.6 6,92 - - 0.305 0.521 -
25 8.6 6,42 - - 0.470 0.652 -
50 8.4 5,62 - - 0.768 0.874 -
125 8.1 4,94 - - 1.100 0.792 -
250 7,8 3,96 - - 1.530 0.879 -
αEC = electrical conductivity; βOC = organic carbon
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for increasing the growth of plants treated with this amend-
ment (Ahmad et al. 2022a; Arancon et al. 2020). The effect 
of humic acid on the positive responses of plants begins 
with the association of the humic fraction with the mem-
brane of the root cells, which induces a positive stress effect 
and causes the regulation of the hormonal signaling path-
ways, followed by an improvement in the metabolism of 
plants (Mora et al. 2010; Van Tol de Castro et al. 2021). In 
this regard, Van Tol de Castro et al. (2021) reported that the 
addition of humic acids extracted from vermicompost to rice 
plants resulted in changes in the performance of the photo-
chemical step of photosynthesis and in soluble nitrogen and 
carbon metabolites. These changes stimulated the growth 
and development of the plants. It has also been suggested 
that the positive effects of humic acids on plant growth are 
due to the fact that they stimulate the supply of nutrients to 
the plant through changes in the activity of enzymes, such 
as nitrate reductase, glutamine synthetase and H+-ATPase 
(Mora et al. 2010; Zanin et al. 2018, 2019).

Regarding the growth hormones present in vermicom-
post, Aremu et al. (2015), when analyzing vermicompost 
leachate, found the presence of cytokinins, indole-3-acetic 
acid, gibberellins and brassinosteroids, suggested that these 
substances may be responsible for favorable physiological 

to the soil, obtained an increase in plant height, biomass and 
grain yield of rapeseed, exceeding the control by 5.5, 8.1 
and 7.8%, respectively. The results obtained by Ahmadpour 
and Armand (2020) showed that by adding 30% vermicom-
post to the growth medium, they achieved an increase in 
leaf area, number of leaves and root dry weight of tomato 
plants, exceeding by 14.0, 22.7 and 21.0% compared to the 
control. Esringü et al. (2022) showed that an application of 
60% vermicompost in the growth medium is an effective 
growth medium for the production of ornamental plants 
(Vinca rosea valiant rosea, P. patio rose, and P. peltatum), 
since they achieved an improvement in the number of flow-
ers, plant height, stem diameter, and fresh flower weight, 
exceeding the control by 264, 71, 58, and 255% for Vinca 
rosea valiant rosea, 138, 12, 160, and 55% for P. patio rose, 
and 50, 14, 23, and 61% for P. peltatum, respectively.

The improvement in plant development with the addition 
of vermicompost has been attributed, in part, to its potential 
to retain water and its physicochemical properties, which 
correct soil fertility and consequently improve plant devel-
opment (Gómez-Brandón et al. 2020a; Houshmandfar et al. 
2019; Joshi et al. 2015). Likewise, it has been reported that 
humic acids and plant growth hormones (cytokinins, auxins 
and gibberellins) present in vermicompost are responsible 

Table 3  Effect of vermicompost on soil biological properties
Microorganisms Vermicompost dose References
CFU g− 1 0 t ha− 1 2.5 t ha− 1 (Mahanta et al. 2012)
Bacterial population (x106) 5.3 16.6
Fungal population (x105) 4.3 9.0
CFU g− 1 0% 3% 6% 9% 12% 15% (Usmani et al. 2019)
Phosphate solubilizing bacteria ( x104) 14 74 85 97 106 116
Azotobacter (x103) 10 65 73 84 92 101
Potash mobilizing bacteria (x102) 7 15 19 21 23 31
CFU g− 1 0% 1.3% (Zhao et al. 2020)
Bacteria (x106) 2.98 6.88
Fungi (x103) 5.70 6.34
Actinomycetes (x105) 1.78 3.38
CFU g− 1 0 t ha− 1 10 t ha− 1 20 t ha− 1 (Przemieniecki et al. 2021)
Total bacteria (x107) 8.61 14.20 37.93
Total fungi (x104) 0.61 1.56 4.42
Penicillium spp. (x103) 3.96 5.31 0.10
Fusarium spp. 12.0 0.00 2.00
Pseudomonadaceae (x106) 2.03 3.50 3.01
Bacillus spp. (x106) 0.003 2.86 10.40
Clostridium spp. (x105) 1.05 9.11 7.38
Actinomycetes (x106) 4.67 14.8 8.53
lg copies g− 1 0% 3% 5% (Wu et al. 2023)
Proteobacteria 56.63 50.34 46.43
Acidobacteria 10.11 14.72 12.99
Actinobacteria 8.21 10.71 7.74
Ascomycota 47.58 70.98 62.70
Anthophyta 41.43 14.72 29.28
Mortierellomycota 0.32 0.68 3.10
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which play an important role in eliminating the concentra-
tions of reactive oxygen species, increasing the stability of 
membranes, reducing the penetration of Na ions, and reduc-
ing the leakage of electrolytes (El-Dakak et al. 2021; Juleel 
et al. 2023). The increase in the synthesis of antioxidant 
enzymes in plants treated with vermicompost under stress 
is favored by the contribution of microelements (Fe, Cu, 
Mn, and Zn) by the vermicompost, which act as prosthetic 
groups and serve for the synthesis of these enzymes (Hos-
seinzadeh et al. 2018). El-Dakak et al. (2021) have indicated 
that vermicompost improves the salt tolerance of plants 
because this organic amendment increases the expression 
of the SOS1 signaling gene, which acts in the export of Na 
from the cytoplasm to the external environment when this 
ion is present in high concentrations, inducing a lower Na 
content along with a higher K content in the plant. For their 
part, Ahmadi and Akbari (2021) indicated that the preven-
tive mechanism of plants treated with vermicompost under 
salt stress conditions is the activation of osmotic adjustment 
through the production of proline and the accumulation of K 
in the leaves and a higher concentration of sugars in the root 
to allow water absorption by the plant and thus maintain its 
growth.

As a mechanism of action of vermicompost that allows 
plants to tolerate stress caused by drought, it has been 
reported that vermicompost increases the activity of 
enzymes SOD, POD, and CAT, which reduce the level of 
reactive oxygen species in the cell, thus increasing the stabil-
ity of membranes and reducing lipid peroxidation of the bio-
logical structure of the cell membrane (Ahmad et al. 2022b; 
Kiran 2019). In other works, it has been pointed out that 
the improvement of water potential, balanced absorption of 
nutrients, leaf area of plants, and the decrease of chlorophyll 
photooxidation activity in plants treated with vermicompost 
through the positive regulation of antioxidant system causes 
the increase of soluble sugars and proline in plants, which 
is a mechanism to tolerate drought stress because they help 
osmotic regulation (Ghaffari et al. 2022; Hosseinzadeh et 
al. 2017).

In addition, there is evidence that the supply of vermi-
compost to soils or growth substrates leads to an improve-
ment in the yield and quality of fruits of various crops such 
as eggplant (Ebrahimi et al. 2021), jalapeño pepper (Espi-
nosa et al. 2020), tomato (Boyacı et al. 2024), pepper (Alam 
et al. 2023), and beans (Mahmoud and Gad 2020), among 
others of commercial interest. In addition to the mecha-
nisms of action of vermicompost that improve plant growth, 
the effect of which is reflected in crop yield, some research-
ers have suggested that the increase in fruit yield can be 
attributed to the hormone gibberellin present in vermicom-
post (Kist Steffen et al. 2019; Kilic et al. 2023). The influ-
ence of gibberellin on fruit growth occurs mainly in the first 

responses of plants after vermicompost application. For 
their part, Rekha et al. (2018), when comparing the effect of 
vermicompost application to soil (50%) and foliar applica-
tion of synthetic plant growth regulators (100 µg ml− 1 of 
auxin or gibberellin) on the growth of sweet pepper plants, 
reported that plants treated with vermicompost showed 
better growth (shoot length, internode length, number of 
leaves, and number of branches) than plants treated with 
gibberellin and synthetic auxin. Likewise, Arancon et al. 
(2020) evaluated the development of cuttings of sugarcane, 
mint and begonia cuttings treated with vermicompost tea 
and a commercial rooting hormone, which showed that the 
rooting of the cuttings obtained with the addition of vermi-
compost behaved in a similar way to that of the commercial 
hormone. The increase in root development of the cuttings 
was attributed to the presence of auxin, cytokinin, gibberel-
lin and humic acid in vermicompost tea.

Vermicompost also improves plant growth by increasing 
plant tolerance to certain types of biotic and abiotic stresses 
(Kiran 2019; Vuković et al. 2021). Several studies have 
shown that vermicompost helps to prevent diseases caused 
by pathogens (Amooaghaie and Golmohammadi 2017; 
Domínguez et al. 2019; Öztürkci̇ and Akköprü 2021; Szc-
zech et al. 2002), reduce pest populations (Jangra and Gulati 
2019; Liu et al. 2019b; Mondal et al. 2021), and alleviate 
stress caused by salinity and drought (Abdel-Magied et al. 
2023; Benazzouk et al. 2020; Beyk-Khormizi et al. 2023; 
El-Dakak et al. 2021). The mechanisms by which vermi-
compost and its derivatives suppress pests and diseases are 
diverse. Among the most important mechanisms are (1) the 
release of phenolic compounds such as anthocyanins and 
flavonoids, which are repellent compounds and deterrents 
to pests and diseases (Rehman et al. 2023; Theunissen et 
al. 2010); (2) increasing the availability of nutrients in the 
growth medium, thereby improving the nutritional status 
and resistance of plants (Arancon et al. 2007); (3) improve-
ment of the physical properties of the soil, promoted by 
the humic substances, which reduces soil-borne diseases 
(Adhikary 2012); (4) increase in the population of predatory 
nematodes in the amended soil, which negatively affects the 
pest population by directly attacking it (Rehman et al. 2023); 
(5) release of coelomic fluid by earthworms, which contains 
bioactive molecules (lumbricin PG, bioactive amino acid 
residues, and lysenin) that negatively affect the physiologi-
cal functions of pests and combat pathogens (Gudeta et al. 
2022; Rehman et al. 2023); and (6) improvement of the 
microbial population in the growth medium, which reduces 
the availability of nutrients, space, and energy for pathogens 
(Mazzola and Freilich 2017; Rehman et al. 2023).

While the positive response of plants to salt stress treated 
with vermicompost has been attributed to the increase in 
the activity of antioxidant enzymes (SOD, CAT, and APX), 
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SO4
2−), and high EC (Amooaghaie and Golmohammadi 

2017; Erşahin et al. 2017; Lim et al. 2015). The above con-
ditions lead to osmotic and oxidative effects, resulting in 
cell death, root destruction, and inhibition of plant growth 
(Wang et al. 2021b).

Despite all the above, it is evident that vermicompost 
continues to have a beneficial role for plants, depending 
on the amount added to the soil. However, as reported by 
Ievinsh (2020), the negative response of plants to vermi-
compost application depends on the sensitivity, diversity of 
nutrient availability and variability of vermicompost char-
acteristics. While, Lazcano et al. (2011) reported that the 
effect of vermicompost on plants will depend on the spe-
cies and genotype of the plant and the dose used. Therefore, 
when using vermicompost as an organic fertilizer or as a 
substrate component, it is necessary to ensure the appropri-
ate level of vermicompost for each plant species to obtain an 
adequate crop (Lim et al. 2015).

3  Nutrient Content of Vermicompost

Vermicompost is the best option for farmers to replace 
chemical fertilizers because it contains high levels of essen-
tial nutrients necessary for proper plant development com-
pared to other organic fertilizers (Gómez-Brandón et al. 
2020a). The main nutrients present in vermicompost are C, 
H, O, N, P, K, Ca, Mg, S and micronutrients (Na, Fe, Mn, 
Zn, Cu and B) (Adhikary 2012; Singh et al. 2008, 2020b; 
Theunissen et al. 2010). The nutrients in vermicompost are 
in a form that is readily available to plants (Gómez-Brandón 
et al. 2020a). In addition, vermicompost contains nutrients 
for a longer period of time compared to inorganic fertilizers, 
which generally deliver a large amount of nutrients to the 
soil in a relatively short period of time, resulting in environ-
mental pollution (Hoque et al. 2022). According to Adhikary 
(2012), vermicompost contains an average of 1.5–2.2% N, 
1.8–2.2% P, and 1.0–1.5% K. On the other hand, Singh et 
al. (2020b) reported that vermicompost contains between 
2 and 3% N, 1.55–2.25% P and 1.85–2.25% K. Similary, 
Kale (1995) states that vermicompost contains on average 
of 05-1.5% N, 0.1–0.30% P, 0.15–0.56% K, 0.06–0.30% 
Na, 22.67–47.60 meq 100  g− 1 Ca and Mg, 128–548  mg 
kg− 1 S, 2-9.50 mg kg − 1 of Cu, 2-9.30 mg kg− 1 of Fe and 
5.70–11.50 mg kg− 1 of Zn.

The increase in the N content in the substrate during 
vermicomposting is the result of the degradation of protein-
containing OM and the conversion of the released N (NH4

+, 
NO2

−, NH3) to NO3
− by microorganisms and enzymes 

(Garg and Gupta 2011; Gusain and Suthar 2020; Kumar et 
al. 2017); the activity of N2− fixing bacteria in the intesti-
nal microflora of the earthworm; the excretion of mucus, 

phase of fruit development (Kilic et al. 2023). In this phase, 
gibberellin facilitates the transition from cell division to cell 
enlargement and also facilitates the mobilization, transport, 
and accumulation of nutrients within the fruit (Kist Steffen 
et al. 2019). For their part, Ghimire et al. (2023) indicate that 
the better development of plants treated with vermicompost 
is the result of better root development, which leads to better 
absorption of water and nutrients in the pre-fruiting stage 
and greater availability of nitrogen during the fruiting stage. 
These factors contribute to accelerated plant growth, ear-
lier onset of flowering and fruiting, and improved crop yield 
(Sahu et al. 2020).

2.3  Adverse Effects of Vermicompost on Plants

Although vermicompost has been shown to significantly 
improve plant growth when used as a component of hor-
ticultural soils or growing media, the proper concentration 
of vermicompost to be added for optimal plant growth and 
production should be considered, as applying vermicompost 
at high concentrations may inhibit plant growth (Lim et al. 
2015; Piya et al. 2018). Seed germination and the early stages 
of seedling growth are more sensitive to the negative effects 
of vermicompost, but this detrimental effect may decrease 
over time (Ievinsh 2020). Furthermore, it has been shown 
that the reduction in plant growth is linear to the increase in 
the addition of vermicompost as reported by Esmaielpour et 
al. (2020) who replaced the base medium with 0, 10, 20, 30, 
40, 50 and 60% by volume of vermicompost and observed 
plant height, leaf area, stem dry weight and yield of cucum-
ber plants it was reduced when more than 30% vermi-
compost was applied to the growth medium. Yuvaraj et al. 
(2018b) evaluated the development of T. foenum graecum 
plants in different concentrations of vermicompost (25, 50, 
75, and 100%) and reported that plant height, leaf area, leaf 
number, root length, shoot, root dry weight, and total plant 
dry weight were reduced when a high dose (100%) of ver-
micompost was added to the growth medium. In the study 
conducted by Amooaghaie and Golmohammadi (2017), 
they reported that adding 75% vermicompost to the growth 
medium negatively affected the growth of roots and shoots 
of Thymus vulgaris plants, which was associated with lower 
chlorophyll content and carotenoids in the plants.

It has been suggested that the reduction in plant growth 
when vermicompost is used as a growing medium is due 
to the reduction in pore space of the growing medium, 
especially when the concentration of vermicompost in the 
potting medium approaches 100% (Atiyeh et al. 2001). 
Similarly, it has been pointed out that the negative effect 
of vermicompost on plant growth is due to toxicity caused 
by phenolic compounds, mainly when immature vermicom-
post is used, high concentration of soluble salts (Na, Cl, and 
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rich in mineral nutrients (Chang and Chen 2010; Manna 
et al. 2003). Likewise, it has been reported that the devel-
opment of the microbial community in vermicomposting 
also depends on the organic waste used, whose behavior 
is related to changes in the quantity and quality of nutrient 
supply during the course of the vermicomposting process 
(Gómez-Brandón et al. 2020a). Therefore, the selection 
of wastes and the proportion in which they are used is an 
important step in vermicomposting, since the type of waste 
or mixture of wastes affects the activity of earthworms, 
microorganisms and, consequently, the nutrient content 
in vermicompost (Tables 4 and 5) (Gómez-Brandón et al. 
2020a; Vuković et al. 2021; Wei et al. 2012).

In addition to considering the initial nutrient content of 
the organic waste for adequate activity of earthworms and 
microorganisms, it is necessary to consider the nutrient 
content of the waste to be vermicomposted, since the nutri-
tional value of the produced vermicompost depends largely 
on the initial value of content of the waste used (A’ali et 
al. 2017; Gusain and Suthar 2020). In this regard, Askari et 
al. (2020) when evaluating wastes of plant and animal ori-
gin, indicated that the nutrient content in the vermicompost 
improved when wastes with higher N content were incor-
porated, i.e., animal origin wastes, due to the higher protein 
content of animal tissues compared to plant tissues. Like-
wise, Mahanta and Jha (2009) reported that the nutrient con-
tent in vermicompost prepared from different wastes (rice 
straw, Ipomoea carnea, Eichhornia crassipes) increased 
significantly compared to the initial level in the respective 
waste, since initially Ipomoea carnea presented the highest 
content of N, P and K, followed by Eichhornia crassipes 
and rice straw, observing the same behavior in the nutrient 
content at the end of vermicomposting.

Another characteristic to consider when selecting the 
waste, combination, or ratio for vermicomposting is the C/N 
and C/P ratio, as the adequate degradation and mineraliza-
tion of nutrients present in organic waste is correlated with 
the C/N and C/P ratio of the waste (Li et al. 2019). This 
is because C, N, and P are the main elements required for 
protein formation, energy production, and microbial growth 
(Mupambwa and Mnkeni 2018). Some researchers have 
indicated that organic wastes with high initial C/N (> 20) 
and C/P (≥ 200) ratios result in net N and P immobiliza-
tion, while amendments with low initial C/N (< 20) and 
C/P (≤ 200) ratios result in mineralization of these nutrients 
(Alamgir et al. 2012; Truong and Marschner 2018). In the 
work of Shrimal and Khwairakpam (2010), they evaluated 
the best C/N ratio (16.4, 20.39, 31.85 and 40.18) for vermi-
composting of vegetable waste mixed with cow dung and 
sawdust for 42 days. They concluded that the C/N ratio of 
30:1 was the best ratio for vermicomposting based on the 
quality of vermicompost finally obtained.

body fluids, growth-stimulating hormones, and enzymes 
by earthworms (Soobhany 2019); and the decomposition 
of N- rich dead worm tissues (containing 60–70% protein) 
(Gusain and Suthar 2020; Mahanta and Jha 2009). While 
the increase in P content in the substrate during the ver-
micomposting process is due to the mineralization of OM 
by earthworms and microorganisms, the action of organic 
acids released by P-solubilizing microorganisms, and to 
the action of phosphatase enzymes and phytase (Deepthi et 
al. 2021; Singh et al. 2020a). The increase in K content in 
the substrate during the vermicomposting is caused by the 
physical decomposition of the OM of the waste by biologi-
cal grinding during its passage through the intestine of the 
earthworms and the production of acids (carbonic acid and 
sulfuric acid) that promote the dissolution of insoluble K 
(Das et al. 2016; Kaviraj and Sharma 2003). Similary, it has 
been suggested that the increase in the Ca content during 
vermicomposting is due to enzymatic solubilization in the 
worm gut and the release of CaCO3 by the worm calcar-
eous glands (Domínguez 2004; Gusain and Suthar 2020), 
while the subsequent release of the Ca after vermicompost-
ing is carried out by fungi and actinomycetes that invade 
the worm excreta (Domínguez 2004; Pramanik and Chung 
2011). While the degradation of OM, the mineralization and 
volume the reduction of the matter by the bacteria and fungi 
in the gut of the worm result in a higher content of micronu-
trients in the vermicompost (Kızılkaya 2004).

4  Factors Affecting the Nutrient Content of 
Vermicompost

The main limitation for its commercial adoption is the wide 
variation in the quality of vermicompost, which may depend 
mainly on the characteristics and proportions of the organic 
substrates used, the species and density of the earthworms, 
the maturity of the vermicompost, the microbial population 
involved, and the interaction between these factors (Durán 
and Henríquez 2007; Gómez-Brandón et al. 2020a; Kumar 
et al. 2011; Soobhany 2019; Sarker and Kashem 2021).

4.1  Types and Proportions of Vermicompostable 
Wastes

Plant, animal, urban and industrial wastes, although hetero-
geneous in nature, their biodegradable nature provides an 
opportunity for their transformation into organic fertilizers 
rich in nutrients and beneficial to the environment through 
vermicomposting (Sharma and Garg 2023). Earthworms 
and microorganisms are responsible for the biodegrada-
tion of wastes during vermicomposting; however, earth-
worms have shown a preference for consuming wastes 
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of the vermicompost (Mupambwa and Mnkeni 2016; Unu-
ofin and Mnkeni 2014). This effect has been reported in 
the work of Kumar et al. (2021) who by vermicompost-
ing groundnut shells mixed with cow dung (1:1) under the 
action of two species of epigeal earthworms (Eisenia fetida 
and Perionyx sansibaricus) observed that Eisenia fetida 
presented better decomposition of agricultural residues and 
production of vermicompost rich in N, P and K. Likewise, 
Pattnaik and Reddy (2009), when evaluating three species 
of epigeal earthworms (Eudrilus eugeniae, Eisenia fetida, 
and Perionyx excavates) in vermicomposting of urban green 
waste (vegetable and floral waste), reported that the vermi-
compost where Eudrilus eugeniae was used had higher con-
centrations of nutrients (N, P, K, Ca, and Mg) followed by 
Eisenia fetida and P. excavates. For their part, Usmani et 
al. (2017), when evaluating the vermicomposting of fly ash 
amended with cow dung under the action of three epigean 
species (Eisenia fetida, Eudrilus eugeniae, and Lumbricus 
rubellus), reported that the maximum content of N, P, and K 
was observed with Eudrilus eugeniae.

4.2  Earthworm Species and Density

Earthworms perform the function of aeration, mixing, frag-
mentation, and enzymatic digestion of the substrate dur-
ing vermicomposting, which improves the population and 
activity of OM-degrading microorganisms (Domínguez et 
al. 2019; Lazcano et al. 2008; Maji et al. 2017). For the 
degradation of organic and inorganic debris in soils, three 
groups of earthworms have been used, including epigeal, 
anecic, and endogeal (Ratnasari et al. 2023). However, epi-
geal earthworms are considered the most suitable for vermi-
composting due to their high feeding rate, high reproductive 
rate, short life cycle, and high tolerance to different environ-
mental conditions (Bhat et al. 2017; Gajalakshmi and Abbasi 
2004). Among the epigeal earthworms, the species Eisenia 
fetida, Eisenia andrei, Perionyx excavates, and Eudrilus 
eugeniae have been extensively used in vermicomposting 
(Dominguez and Edwards 2010; Vuković et al. 2021).

The species and population density of earthworms used 
in the vermicomposting process determine the final quality 

Vermicompost waste Relation Observation Reference
Lantana camara: CM§ 2:1 Lantana camara: CM had a higher N 

content (2.53%). The P content was higher 
in the mushroom culture residues: CM 
(1.46%). While the K content was highest in 
Ageratum conyzoides: CM (3.29%).

(Bajal et 
al. 2019)Ageratum conyzoides: CM

Banana pseudostem: CM
Garden waste: CM
Vegetable wastes: CM
Mushroom culture residue: CM
CM - Mixed paper mill sludge: CM: Tephrosia 

purpurea presented a higher content of N 
(31.26 g kg− 1) and P (23.15 g kg− 1), while 
the highest K content (27.48 g kg− 1) was 
obtained by vermicomposting paper mill 
sludge: CM: Gliricidia sepium.

(Karme-
gam et al. 
2019)

Paper factory sludge: CM 1:1
Paper factory sludge: Tephrosia 
purpurea: Gliricidia sepium

2:1:1

CM: Tephrosia purpurea: Gliri-
cidia sepium

2:1:1

Paper factory sludge: CM: Teph-
rosia purpurea

2:1:1

Paper factory sludge: CM: Gliri-
cidia sepium

2:1:1

Bean residue: CM 1:2.5 The highest content of N (4.26%) and avail-
able P (1227.62 mg kg− 1) was obtained by 
vermicomposting grass residues, while the 
highest content of available K (7327.7 mg 
kg− 1) and Fe (54.24 mg kg− 1) was obtained 
by vermicomposting teff residues. The Mn 
content was higher when bean residues were 
used and the Cu (6.67 mg kg− 1) and Zn 
(58.72 mg kg− 1) contents were higher when 
sorghum residues were vermicomposted.

(Geremu 
et al. 
2020)

Grass residue: CM
Teff residue: CM
Corn residue: CM
Sorghum residue: CM
Mixture of all residues: CM

Potato crop residue - The highest content of N, P, K, Ca, and Mg 
was observed in the potato crop residue 
substrate: EV (18.2 g kg− 1, 8402.4 mg kg− 1, 
278.9 mg kg− 1, 8.27 mg kg− 1 and 998.6 mg 
kg− 1, respectively).

(Das and 
Deka 
2021)

Potato crop residue: CM 5:1

Aquatic plants: CM 1:1 The highest contents of N (2.87%), P 
(0.86%) and K (3.74%) were obtained by 
vermicomposting the mixture of aquatic 
plants: CM: kitchen waste.

(Yatoo et 
al. 2022)Aquatic plants: CM: Kitchen 

waste
1:1:2

Table 4  Effect of the type of 
organic waste vermicompost on 
the nutritional quality of the final 
product

§CM = cow manure
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resulted in better P mineralization. Similary, Mupambwa 
and Mnkeni (2016) evaluated the vermicomposting of a 
mixture of waste paper and dung (CD) with incorporation 
of fly ash (FA) in a PC: FA ratio of 2:1 under different popu-
lation densities of Eisenia fetida (0, 12.5, 25, and 37.5 g of 
earthworms per kg of waste). The nutrient mineralization 
was better at higher worm population densities (25 to 37.5 g 
of earthworms per kg of waste).

4.3  Aging of Vermicompost

Vermicomposting time plays an important role in modifying 
the physical, chemical, and biological properties of organic 
wastes and thus stabilizing vermicompost for use as organic 
fertilizer (Ramos et al. 2022). Maturity is one of the most 
important criteria commonly used to evaluate the quality 
of vermicompost (Tippawan et al. 2022). C/N ratio, NO3

−/
NH4

+ ratio, and humification index are reliable indicators 
to provide information on the maturity and stability of the 
composted material (Lim et al. 2015; Wang et al. 2021b); 
however, C/N ratio is the criterion traditionally used to 
evaluate the decomposition and maturity of vermicompost 
(Wang et al. 2021b).

Mature vermicompost tends to be characterized by a low 
C/N ratio, which is associated whit a higher rate of organic 
waste decomposition and higher nutrient content (Das et al. 
2016; Wang et al. 2021b). According to Lim et al. (2015); 
Wang et al. (2021b), a ratio below 20 reflects an advanced 
level of OM stabilization and an acceptable level of maturity 
of the vermicomposted material. The decrease in the C/N 
ratio of the vermicomposted substrate is due to the increase 
in mineralized N, the loss of C in the form of CO2 caused by 
the respiration of earthworms and microorganisms during 
the degradation and conversion of the initial feed mixtures, 
the use of organic C as an energy source for microorganisms 
or earthworms, and the conversion of part of the organic 
fraction of the substrates to earthworm biomass (Ajibade et 
al. 2020; Li et al. 2020; Wang et al. 2021b).

Vermicompost is usually harvested after a production 
period of only 40 to 60 days (Che et al. 2020; Rini et al. 
2020), without considering the final C/N ratio. In a study 
conducted by Sharma and Garg (2019), when evaluating the 
vermicomposting of different proportions of lignocellulosic 
waste: cattle manure in different proportions (10:90, 20:80, 
30:70, 40:60 and 50:50) for 105 days, they found that the 
10:90 ratio reached maturity 60 days after vermicomposting 
(C/N ratio around 20) and at the end of vermicomposting it 
presented the lowest C/N ratio (12.26) than the rest of the 
treatments, while the other ratios reached maturity after 75 
days of vermicomposting. In addition, the authors indicated 
that the 10:90 ratio presented the highest content of N, P 
and K. Likewise, Ramos et al. (2022) reported that in the 

The optimal population density of earthworms for organic 
waste vermicomposting depends on the worm species which 
are widely used (Malińska et al. 2017). In this regards, Unu-
ofin and Mnkeni (2014) evaluated the vermicomposting 
of a mixture of organic waste (cow dung and waste paper 
amended with 2% phosphorus as phosphate rock) with dif-
ferent population densities of Eisenia fetida (0, 7.5, 12.5, 
17.5, and 22.5 g of earthworms per kg of waste), where they 
observed that a population density of 12.5 g of earthworms 

Table 5  Effect of the ratio of different organic residues used on the 
nutritional quality of vermicompost
Vermicompost 
substrate

Relation Observation Reference

Paper factory 
sludge: CM§

1:1 The highest N (5.97 g 
kg− 1), P (11 g kg− 1) 
and K (2.99 g kg− 1) 
contents were obtained 
at the 1:1 ratio.

(Yuvaraj et 
al. 2018a)1:2

2:1

Walnut shell: 
CM

9:1 The highest contents of 
N (1.75%), P (0.38%), 
K (1.12%), Ca (1.7%) 
and Mg (0.38%) were 
obtained in the 1:9 
ratio.

(Bellitürk 
and Soyturk 
2020)

3:1
1:1
1:3
1:9

Urban green 
waste: sugar-
cane bagasse

1:3 The contents of N 
(0.73 g kg− 1), P 
(0.60 g kg− 1) and K 
(1.8 g kg− 1) tended to 
be higher in the 1:0 
ratio.

(Cai et al. 
2020)1:1

3:1
1:0

Household 
waste: CM

3.5:6.5 The vermicompost 
obtained from the 1:1 
ratio registered the 
highest amount of N 
(2.40%), P (1.34%) 
and K (1.79%).

(Chiranjeeb 
and Prasad 
2020)

1:1
6.5:3.5

Ageratum 
conyzoides: 
CM

1:3 Total N (34.87 g kg− 1) 
was higher in the 3:1 
ratio, while available 
P (20.49 g kg− 1) was 
higher in the 1:1 ratio 
and total K (105.69 g 
kg− 1) was higher in the 
1:3 ratio.

(Gusain 
and Suthar 
2020)

1:1
3:1

Buffalo 
manure: lawn 
waste: kitchen 
waste

2:1:2 The highest N content 
(1.89%) was observed 
in the 2:1:2 ratio, while 
the highest content of 
K (1.06%), P (0.44%) 
and Ca (0.99%) was 
observed in the 6:1:3 
ratio.

(Karwal and 
Kaushik 
2021)

6:1:3
3:1:6
1:0:1

Biochar (0, 
2, 4, and 
6%) + banana 
leaf waste: 
CM

1:1 The highest contents of 
N (1.82%), P (1.18%) 
and K (1.67%) were 
observed in the vermi-
compost obtained from 
the 1:1 ratio (with 4% 
biochar).

(Kumar et 
al. 2023)2:1

3:1

§CM = cow manure
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genera that favor compost maturity and quality (Cellvibrio 
and Pseudomonas) increased, and pathogenic Enterobacter 
decreased. On their part, Chitrapriya et al. (2013) showed 
that vermicompost made from cow manure and sawdust 
contained Bacillus, Streptomyces, and Pseudomonas sp. 
as phosphate solubilizers and Azotobacter as N2-fixing 
bacteria.

It has been found that the biological mechanisms 
involved in vermicomposting, such as the activity and type 
of microorganisms, determine the dynamics of the process 
and the properties of the final product (Gómez-Brandón 
et al. 2020a). While Pramanik et al. (2007) evaluated the 
development of the microbial population in the vermicom-
posting of cow manure, grass, aquatic weeds and municipal 
solid waste residues, they found that cow manure allowed 
the highest microbial population, as well as a higher enzy-
matic status and nutrient content. With the above informa-
tion, it is evident that the population and microbial activity 
present in the gut of the worm and the processed material 
influence the nutrient content of the vermicompost. How-
ever, despite having research in which the microbial popula-
tion present during the vermicomposting process has been 
evaluated, little is known about the effect of the population 
and microbial diversity during the vermicomposting process 
on the nutrient content of the final vermicompost.

Undoubtedly, the improvement of the nutrient content 
in vermicompost as a result of the adequate control of the 
factors that determine the nutritional quality of the final 
vermicompost, already mentioned above, will allow vermi-
compost to be an efficient organic fertilizer to improve crop 
production, improve soil fertility and, above all, reduce the 
use of inorganic fertilizers. Currently, some reports empha-
size the importance of proper management of factors such as 
type of waste, proportion of each waste used, type of worm 
used in the process, and vermicomposting time to improve 
the nutrient content of vermicompost. However, most stud-
ies focus only on evaluating the physicochemical and bio-
logical characteristics of the final vermicompost. Currently, 
there is a limited number of complete studies that include 
the evaluation of the optimization of the factors that deter-
mine the nutritional quality of vermicompost and the effect 
of these vermicomposts on the growth and yield of crops. 
Considering that the quality of vermicompost is determined 
by its high nutrient content and its beneficial effect on plant 
development, it is important to promote more comprehen-
sive research, such as that carried out by Rath et al. (2020) 
and Chatterjee et al. (2021). These researchers evaluated 
the efficiency of different residues and different propor-
tions of residues to obtain vermicompost with high nutri-
ent content; likewise, the researchers evaluated the effect 
of each vermicompost obtained on the development of the 
crop, observing that each vermicompost obtained affected 

vermicomposting bovine of cattle manure, due to the high 
activity of earthworms and microorganisms at the beginning 
of the process, it was, it was possible to use the vermicom-
post as an organic fertilizer after 30 days of vermicompost-
ing; however, they observed that the highest earthworms 
population, the lowest C/N ratio, and the most pronounced 
increase in P, K, Ca, Mg, Cu, and Zn occurred between 45 
and 120 days, with a higher nutrient value after 120 days of 
vermicomposting. Biruntha et al. (2020) when vermicom-
posting algae, sugarcane, coconut and vegetable residues 
for 50 days, observed that the vermicompost obtained a 
lower C/N ratio (11.03 for algae residues and 19.12 for sug-
arcane residues) at the end of the process presented higher 
content of N, P and K, comparated to the waste that obtained 
a higher C/N ratio (27.12 for coconut residues and 28.05 for 
vegetable residues). Therefore, the vermicomposting time 
and the C/N ratio in which the best nutrient content will be 
presented depend on the vermicomposted waste.

4.4  Microbial Activity

Earthworms are key players in the vermicomposting pro-
cess; however, microorganisms perform the actual bio-
chemical decomposition of OM (Vuković et al. 2021). The 
microorganisms present in the worm gut and vermicompost 
produce enzymes and organic acids that are responsible for 
accelerating the biodegradation and mineralization of nutri-
ents (Aira et al. 2007; Alshehrei and Ameen 2021; Lores 
et al. 2006). In the initial phase of vermicomposting, the 
first microbial colonizers are characterized by consuming 
substrates rich in nutrients and easily assimilable molecules 
(simple carbohydrates, peptides, proteins, vitamins, etc.) 
(Gómez-Brandón et al. 2019; Ho et al. 2017). In the final 
phase of vermicomposting, late decomposers take control, 
with a low growth rate and better efficiency in metabolizing 
complex (recalcitrant) carbon compounds (Gómez-Brandón 
et al. 2019; Ho et al. 2017). Likewise, it has been shown 
that the increase in population and microbial diversity, time 
of appearance, and microbial dominance during vermicom-
posting are influenced by worm species, vermicomposting 
procedure, and substrate characteristics (Domínguez et 
al. 2019; Gómez-Brandón et al. 2020a; Lores et al. 2006; 
Vuković et al. 2021). In this context, Domínguez et al. 
(2019) evaluated the microbial community present in the 
vermicomposting of scotch broom (Cytisus scoparius), and 
observed that the microbial community during this process 
was mainly divided into Proteobacteria, Bacteroidetes, 
Actinobacteria, and Firmicutes, but mainly dominated by 
Proteobacteria (99.8%). While Miao et al. (2023) indicated 
that in the process of vermicomposting of kitchen waste, 
the phyla that promote OM degradation (Actinobacteria, 
Firmicutes, and Acidobacteria) increased, the bacterial 
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et al. 2020a). Although the concentration of nutrients in 
phosphate rock and fly ash is high, they have low solu-
bility when applied directly to the soil (Mupambwa and 
Mnkeni 2018; Wei et al. 2012); however, by adding these 
inorganic materials in the organic waste vermicomposting 
process, the solubility of nutrients is improved (Bhattacha-
rya and Chattopadhyay 2006). A study conducted by Wei 
et al. (2012) indicated that by adding phosphate rock in the 
vermicomposting process of rice straw and cow dung (4:1), 
17% more extractable P was obtained in the vermicompost 
compared to vermicompost without adding phosphate rock; 
similarly, the availability of N, P and Ca was improved by 
adding phosphate rock in the process. Mupondi et al. (2018) 
reported that the application of 2, 4, and 8% P as phosphate 
rock in the vermicomposting process of cow manure and 
waste paper resulted in 19, 28, and 33% more available P, 
respectively, compared to the control.

In addition to the aforementioned minerals, studies have 
also been conducted on the enrichment of vermicompost 
with K-containing minerals including Zhu et al. (2013), who 
evaluated the addition of K-rich mineral dust in the vermi-
composting of cow manure, and found that the amount of 
available K increased significantly. In other works, inor-
ganic fertilizers have been incorporated into the vermicom-
posting process to enrich the vermicompost, as in the case 
of Sengupta et al. (2020), who applied Fe and Zn in vermi-
composting of cow manure and plant residues (6:4) with E. 
fetida, based on the hypothesis that vermicompost enriched 
with Fe and Zn will result in a better mediated slow release 
by complexation to utilize the nutrients without causing 
them to precipitate. These researchers reported an increase 
in total and available Fe and Zn in vermicompost and plant 
tissue.

Likewise, other studies have evaluated the combined 
effect of microbial inoculation and the incorporation of 
inorganic minerals during the vermicomposting process to 
obtain increases in the nutrient content of the final product. 
Among the works carried out, the one reported by Rahbar 
et al. (2020) stands out, who tried to improve the content of 
P and Fe in the vermicompost by adding phosphoric rock, 
mineral sulfur (as source of energy for the metabolism of 
the bacteria) and steel dust (as a source of Fe) with the help 
of Halothiobacillus neapolitanus, a sulfur-oxidizing bacte-
rium. The Halothiobacillus neapolitanus bacteria converted 
inorganic sulfur into sulfuric acid, thereby lowering the pH 
of the vermicompost, and the resulting acidic condition 
improved the availability of P and Fe during the enrichment 
process. Similary, Busato et al. (2012) evaluated the effect 
of incorporating phosphate rock and inoculating N2-fixing 
and P-solubilizing bacteria (Burkholderia silvatlantica, 
Burkholderia spp, and Herbaspirillum seropedicae) dur-
ing vermicomposting of cow mature and sunflower residue 

the morphological characteristics of the plants differently, 
obtaining greater development when the plants were grown 
with vermicompost with higher nutrient content.

5  What else has been done to Increase the 
Nutrient Content of Vermicompost?

In addition to vermicomposting different substrates, differ-
ent proportions of the substrate, and using different earth-
worms to obtain nutrient-rich vermicompost, incorporating 
of microbial inoculants, minerals, and inorganic fertilizers 
into the vermicomposting process is one technique used to 
increase the nutrient content of the final vermicompost. Sev-
eral researchers have explored the possibility of using micro-
bial inoculants to increase biological activity, optimize the 
biodegradation of organic waste, and improve the nutrient 
content of soil vermicompost (Ajibade et al. 2020; Lukashe 
et al. 2019). The microorganisms inoculated in the vermi-
composting process are mainly P-solubilizing and N2-fixing 
microorganisms. Mal et al. (2021) studied the feasibility of 
inoculating with N2-fixing and P-solubilizing bacteria (Azo-
tobacter chroococcum and Pseudomonas fluorescens) in the 
vermicomposting process of cow dung and vegetable waste 
(1:1) to improve the availability of N and P in the prod-
uct, they observed a significant increase in the amount of 
mineralized N and P solubilized in the vermicompost when 
the microorganisms were added. Singh and Sharma (2002) 
incorporated P-solubilizing and N2-fixing microorganisms 
(Pleurotus sajor-caju, Trichoderma harzianum, Aspergil-
lus niger, and Azotobacter chroococcum) in the vermicom-
posting of wheat straw and showed that the inoculation 
reduced the time required for vermicompost production 
and increased the content of N, P, and K. Das et al. (2016) 
evaluated the effect of the type of vermicomposted substrate 
(water hyacinth, rice straw, and sawdust, each mixed with 
cow dung at a ratio of 70:30%) and the inoculated micro-
organism (Trichoderma viride, Azotobacter chroococcum, 
Bacillus polymixa, Bacillus firmus, and a mixture of the four 
microorganisms) on the content of N, P and K in the vermi-
compost. These researchers found that the highest levels of 
N, P and K were obtained by inoculating the vermicompost 
material with the mixture of microorganisms; however, the 
highest levels of N and K were obtained by vermicompost-
ing water hyacinth and the highest levels of P were obtained 
by vermicomposting rice straw.

Similary, to improve the nutrient content of vermicom-
post, nutrient-rich inorganic materials have been added to the 
vermicomposting process (Mupambwa and Mnkeni 2018). 
Among the inorganic materials that have shown the poten-
tial to increase the content of bioavailable nutrients in ver-
micompost are phosphate rock and fly ash (Gómez-Brandón 
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