
ORIGINAL PAPER

Journal of Soil Science and Plant Nutrition (2024) 24:3943–3952
https://doi.org/10.1007/s42729-024-01813-x

of phosphate fertilizers, organic matter, wastewater irriga-
tion, etc.) can cause Cd pollution in agricultural soils. Once 
the Cd is absorbed by the root system, it can migrate through 
the xylem to shoot and accumulate in the grain. Under Cd 
stress, the plant can produce some toxic symptoms, like 
inducing reactive oxygen species and competing for nutri-
ent transporters, damaging photosystemII, decreasing pho-
tosynthetic pigments, destructs chloroplast structures, which 
causes water stress, nutrient imbalance, and death (Çatav 
et al. 2020; Qin et al. 2020a). However, there were com-
plex mechanisms for plants to alleviate Cd toxicity, such as 
preventing Cd uptake by root cells and transport to shoot, 
detoxifying Cd by increasing antioxidant enzyme activity 
and sulfur-containing ligands, sequestering Cd by cell wall 
fixation and vacuole isolation (Singh et al. 2016; Abbas et 
al. 2017). Some agronomic strategies could also reduce Cd 
accumulation and toxicity in wheat, such as soil removal 
and replacement (Wang et al. 2011; Uraguchi & Fujiwara 
2012), phytoremediation (including hyperaccumulator and 
low accumulation variety), crop rotation, gene regulation 

1  Introduction

Wheat is a main source of calories and play an important 
role in feeding the human population. Therefore, it is impor-
tant to ensure the dietary safety of wheat grains. Cd con-
tamination and toxicity to wheat have been widely reported 
for the past few years (Rezapour et al. 2019; Zhang et al. 
2020a, 2020b). Various human activities (e.g., application 
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Abstract
Boron (B) is a microelement and has been demonstrated to alleviate cadmium (Cd) stress and inhibit Cd uptake in wheat. 
However, the effect of B on accumulation of Cd and mineral elements accumulation in wheat are rarely investigated. A 
hydroponics experiment was performed with different treatments (CK for without B and Cd application, Cd + B, preB + Cd 
for B, Cd, and B was added 24  h earlier than Cd added) to explore the effect of B on the growth, subcellular compo-
nent distribution of Cd, and the mineral distribution. Here, the dry weight of shoot and root were decreased under Cd 
application compared with CK treatment, while increased under B application, especially under preB + Cd treatment. The 
root parameters showed a similar trend, including surface area, root length and volume, and tips. The Cd concentrations 
increased under Cd application in root and shoot, while decreased under B application, especially under preB + Cd treat-
ment in the root. In addition, the B concentration showed a decreasing trend under Cd stress, especially in roots. Sub-
cellular component analysis showed that more than 50% Cd was distributed in soluble fractions in the root, while more 
than 40% Cd of cell wall (CW) fractions in the shoot, respectively. This suggests that CW fractions and soluble fractions 
are the main Cd storage sites. The correlation analysis was also discussed among B, Cd, and other elements. Thus, we 
concluded that Cd toxicity was alleviated under B application in wheat by inhibiting Cd uptake, non-organ distribution, 
and changing nutrient absorption.
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and inorganic amendments (Rizwan et al. 2016; Zhang et 
al. 2020a, b; Yang et al. 2022). Moreover, the application 
of soil amendment (like mercapto-modified palygorskite) 
could prevent Cd bioaccumulation by the thiols and bacte-
ria community composition (Li et al. 2021b). Glutathione 
(GSH), as a short peptide consisting of three amino acids, 
was reported that alleviate Cd stress by regulating the Cd 
transporter genes and GSH synthesis gene expression (Qin 
et al. 2018; Li et al. 2021a).

Among these strategies, inorganic amendments are low-
cost and effective approaches, which can balance plant 
nutrition and inhibit Cd absorption. For example, some 
essential nutrient elements, like calcium (Ca), manganese 
(Mn), iron (Fe), and zinc (Zn), efficiently compete with Cd 
in uptake (Duan et al. 2018; Qin et al. 2020a, 2023). Some 
beneficial elements, like selenium (Se) and silicon (Si), have 
been proved to inhibit Cd uptake and alleviate Cd stress in 
crops (Hu et al. 2014; Wang et al. 2015; Ma et al. 2015). 
The mechanisms are summarized to include (1) promot-
ing plant growth to dilute toxic effects, (2) competition for 
transmembrane transport, (3) improving the homeostasis of 
antioxidant enzymes, (4) reducing Cd ion toxicity by bind-
ing phytochelatin and cysteine-rich peptides (Semane et al. 
2007; Qin et al. 2018, 2020a; Fahad et al. 2015).

Boron was first discovered as an essential trace element 
for plants in 1923 (Warington 1923). The main function of B 
in plants is thought to be a component of the cell wall, where 
it cross-links pectin polysaccharides through diol bonding 
of two rhamnogalacturonan II molecules (Kobayashi et al. 
1996). Boron is mainly present in the form of boric acid 
(H3BO3) and borate (B(OH)4

−), and the effectiveness is 
mainly affected by pH and water runoff in the soil environ-
ment (Klochko et al. 2006). Boron availability in soil is lim-
ited in many parts of the world, including USA, Brazil, Japan 
and China, while B toxicity often naturally occurs in soils of 
arid and semi-arid regions or anthropogenic activities, such 
as fertilization and irrigation (Parks and Edwards 2005; 
Yan et al. 2006; Camacho-Cristobal et al. 2008). In plant, 
boron has also been showed that B was involved in several 
physiological metabolic processes, such as photosynthesis, 
nitrogen (N) and carbon (C) metabolism, cell division and 
elongation, etc. (Shireen et al. 2018). Therefore, the symp-
toms of B deficiency and toxicity were reported include 
stunted leaf and root elongation, unhealthy flower develop-
ment, oxidative damage, hormone homeostasis disordered, 
reduction in crop yield and quality (Tanaka and Fujiwara 
2008; Hua et al. 2020; Chen et al. 2023). The range between 
deficiency and toxicity of B is narrow, while B application 
can ameliorate abiotic stress, such as salinity, drought, alu-
minum (Al) excess and biotic stresses (García-Sánchez et 
al. 2020). In addition, boron, as an essential mineral nutri-
ent for plant growth, also affects the state of macronutrients 

(N, phosphorus P, potassium K, Ca, magnesium Mg, and S), 
micronutrients (Fe, Mn, Zn, copper Cu, and molybdenum 
Mo), beneficial elements (sodium Na, Se, and Si), and toxic 
elements (Cd and Al) (Long and Peng 2023). Actually, it 
has also been reported that B can inhibit Cd accumulation 
to alleviate Cd toxicity in wheat and rice (Chen et al. 2019; 
Qin et al. 2020b). Studies showed that Cd mitigation with B 
application by enhancing more Cd-binding sites on cell wall 
fraction and isolation of soluble fraction, and increase ionic 
soluble pectin, antioxidant system (Wu et al. 2020a, b; Riaz 
et al. 2021a, b). Here, we further analyzed Cd uptake and 
subcellular distribution under Cd stress and/or with B appli-
cation in wheat seedlings. We also discussed the different 
nutrient element concentrations and the correlation among 
elements. These results explore the alleviating Cd absorp-
tion and toxicity with B application and provide a perspec-
tive on the nutrient status of B application under Cd stress.

2  Materials and Methods

2.1  Experimental Conditions and Treatments

A conventional and Cd-tolerant wheat variety, Zhengmai 
379, was screened and used as materials for a hydroponic 
experiment at Henan Agricultural University, Zhengzhou, 
China (Zhang et al. 2022). Wheat seeds were surface-ster-
ilized in 0.5% Na-hypochlorite for 15 min and then rinsed 
carefully with deionized water. The seeds were germinated 
on a plastic seedling tray on deionized water. Uniform 
7-day-old wheat seedlings were transferred to the a plastic 
container (26 cm × 17 cm × 7 cm, length/width/height; 15 
seedlings/container) filled with 4  L nutrient solution, and 
growth in a controlled chamber with photoperiod 16 h/8 h 
day/night, light intensity 200 µmol m− 2 s− 1, temperature 
25℃/20℃, and relative humidity 75%. The full nutrient 
solution containing (µmol L− 1): Ca(NO3)2·4H2O 4000, 
NH4H2PO4 1000, KNO3 6000, MgSO4·7H2O 2000, H3BO3 
46.2, ZnSO4·7H2O 0.8, MnCl2·4H2O 9.1, CuSO4·5H2O 
0.3, FeNaEDTA 100, and (NH4)6Mo7O24·4H2O 0.2. Half-
strength nutrient solution was applied for the first 7 d and 
then changed to full strength solution for every 4 d until 
harvest. Treatments with four times replicated were set as 
follows: (1) CK (no B and Cd added), (2) Cd, (3) Cd + B, (4) 
preB + Cd (24 h pretreatment before Cd exposure). CdCl2 
was used as Cd treatment. The B and Cd were added at the 
first full strength solution (after 7 d of half-strength nutri-
ent solution treatment) with 5 µmol L− 1 and 46.2 µmol L− 1 
selected from the earlier experiments of Qin et al. 2020b); 
Al-Huqail et al. (2020); Zhang et al. (2022), respectively. In 
addition, B and Cd were added on 6 d and 7 d after treatment 
with half-strength nutrient solution for preB + Cd treatment, 
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respectively. The root and shoot samples rinsed were har-
vested and rinsed for further analysis after 30 d culture.

2.2  The Determination of Root Parameters

Root parameters were scanned and calculated according 
to Qin et al. (2019). Briefly, wheat was harvested and its 
roots were scanned using a root scanner (Win RHIZO 2009; 
Canada). The image of the root was analyzed by ImageJ 
software. The root parameters, including total root length, 
surface area, root volume, average diameter, and number of 
root tips, were also calculated by ImageJ software.

2.3  Isolation of Cell Wall Fractions, Organelle 
Fractions and Soluble Fractions

Different subcellular fractions were separated by differ-
ential centrifugation referenced to Qin et al. (2017). The 
fresh of root and shoot samples (0.5 g) were homogenized 
in 12 mL extraction buffer, which contains 0.25  mol L− 1 
sugar, 0.05 mol L− 1 Tris-HCl, 0.01 mol L− 1 cysteine, and 
0.001 mol L− 1 MgCl2. The differential centrifugation was 
used to separate subcellular fractions, where 2.0 × 103 g and 
10 min for cell wall fractions, 1.3 × 104 g and 50 min for 
organelle fractions and soluble fractions. The above steps 
were performed on ice.

2.4  Elements Concentration Analysis

The harvested plants were divided into roots and shoots. 
The samples were weigh and oven-dried at 70℃ to constant 
weight. The dried tissues were digested in a Microwave 
Digestion System with HNO3:HClO4 (4:1, volume ratio). 
Cadmium concentration of digestion solution was deter-
mined by graphite furnace atomic absorption spectrometry 
(GFAAS PinAAcie900T, USA). The concentrations of B, 
phosphorus (P), potassium (K), magnesium (Mg), calcium 
(Ca), iron (Fe), copper (Cu), manganese (Mn), and zinc 
(Zn) were measured by Inductively Coupled Plasma Optical 
Emission Spectrometer (ICP-OES, Varian 710ES, USA).

2.5  Statistical Analysis

All data showed means ± standard error (SE) of four inde-
pendent replicates. Statistical data were analyzed with SPSS 
20.0 (SPSS, Chicago, IL, USA) using LSD’s multiple range 
test (P < 0.05).

3  Results

3.1  The Dry Weight (DW) and Root Parameters of 
Wheat under Different Treatments

The perspective of growth (dry weight DW) and root param-
eters (root length, root surface area, root volume, average 
diameter and root tips) are the main indexes of plant growth 
and stress resistance (Table  1). Compared with CK treat-
ment, the shoot DW decreased by 43.5% (P < 0.05), 22.7% 
(P < 0.05) and 4.5% under Cd, Cd + B, preB + Cd treat-
ments and the root DW decreased by 32.9% (P < 0.05) and 
13.3% (P < 0.05) under Cd and Cd + B treatments, respec-
tively. A similar trend was observed in the root parameters. 
The total length of root decreased by 51.30% (P < 0.05), 
49.0% (P < 0.05) and 48.0% (P < 0.05) under Cd, Cd + B, 
preB + Cd treatments compared with CK treatment, and 
45.6% (P < 0.05), 45.8% (P < 0.05) and 32.1% (P < 0.05) 
for root volume, 48.4% (P < 0.05), 47.3% (P < 0.05) and 
40.5% (P < 0.05) for surface area, 52.8% (P < 0.05), 58.5% 
(P < 0.05) and 52.1% (P < 0.05) for tips, respectively.

3.2  Effect of Different Treatments on Cd 
Concentration and B Concentration of Wheat

The Cd concentrations in root and shoot were significantly 
increased under Cd added treatments (Fig. 1). The maximum 
Cd concentrations of wheat root and shoot were 1014 mg/kg 
and 222 mg/kg under Cd treatment. The Cd concentration 
decreased by 21.02% and 31.90% (P < 0.05) in the root, and 
by 10.74% and 8.38% in the shoot at Cd + B and preB + Cd 
treatments compared with Cd treatment, respectively. In 
addition, B application obviously increased the B content in 
root and shoot of wheat. However, B concentration showed 
a decreasing trend under Cd stress, especially in roots. The 

CK Cd Cd + B preB + Cd
Shoot dry weight (g plant− 1) 0.18 ± 0.01a 0.12 ± 0.01b 0.14 ± 0.02ab 0.17 ± 0.02a
Root dry weight (g plant− 1) 0.06 ± 0.00a 0.04 ± 0.00b 0.05 ± 0.01ab 0.06 ± 0.00a
Total root length (cm plant− 1) 993 ± 56a 484 ± 7b 506 ± 135b 516 ± 92b
Surface area (cm2) 88.74 ± 2.69a 45.79 ± 1.28b 46.77 ± 10.98b 52.82 ± 9.03b
Root volume (cm3) 0.64 ± 0.04a 0.35 ± 0.02b 0.34 ± 0.07b 0.43 ± 0.07b
Avgage diameter (mm) 0.29 ± 0.02b 0.30 ± 0.01ab 0.30 ± 0.01ab 0.33 ± 0.01a
Tips 1146 ± 121a 541 ± 35b 476 ± 81b 549 ± 49b

Table 1  The dry matter and root 
parameters of wheat

Values are the mean ± SE (n = 4) 
of four replications. Significant 
differences between treatments 
as determined by LSD’s test at 
the 0.05 level
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evenly distributed in the CW fractions and soluble fractions 
(Fig. 2D).

3.4  Different Treatments Effect on the Nutrient 
Concentration of Wheat

To better understand the nutrient concentrations under B 
to alleviate the Cd toxicity, the concentrations of P, K, Zn, 
Fe, Mn, Ca, Mg and Cu were measured (Fig.  3). On the 
whole, there was a similar concentration in root and shoot 
for P, K, and Zn, higher concentration in root for Fe and Cu, 
and higher concentration in the shoot for Ca, Mg, and Mn, 
respectively. Our data showed that the P concentrations were 
the minimum value under CK treatment and increased with 
Cd application. The P concentrations decreased by 16.49% 
(P < 0.05) and 17.23% (P < 0.05) in root, and by 5.53% and 
9.88% (P < 0.05) in shoot at Cd + B and preB + Cd treat-
ments compared with Cd treatment, respectively. Similarly, 
there were maximum for Ca, Fe, and Cu under Cd treatment, 
and the concentrations of Ca, Fe, and Cu were decreased 
under Cd + B and preB + Cd treatments compared with Cd 
treatment, respectively. However, the concentrations of Mg, 
Zn and Mn showed a decreasing trend under Cd application 
compared with CK treatment.

3.5  The Correlation Coefficients of Different 
Nutrient Elements in root and Shoot

The correlation analysis of different nutrient elements in 
root and shoot was carried as shown in Tables 2 and 3. In 

transport coefficient (calculated the ratio of B concentration 
in shoot and root, data not shown) for B was increased with 
B application and decreased with Cd added compared with 
CK treatment, respectively.

3.3  Different Treatments Effect on Subcellular Cd 
Distribution

Further analysis of the subcellular Cd distribution showed 
that the Cd concentrations including cell wall (CW) frac-
tions, soluble fractions, and organelle fractions of root were 
higher than those of shoot under different treatments. The 
Cd concentrations showed that soluble fractions > CW 
fractions > organelle fractions in root (Fig. 2A), while CW 
fractions > soluble fractions > organelle fractions in shoot 
(Fig. 2B). In addition, it was found that Cd concentrations in 
CW fractions significantly decreased by 28.28% (P < 0.05) 
and 33.65% (P < 0.05) in root and 29.5% (P < 0.05) and 
32.98% (P < 0.05) in shoot at Cd + B and preB + Cd com-
pared with Cd treatment, respectively. Compared with 
Cd treatment, the Cd concentrations in soluble fractions 
decreased by 20.16% (P < 0.05) and 32.28% (P < 0.05) in 
root and 21.74% and 26.79% in shoot at Cd + B treatment 
and preB + Cd treatment, respectively.

Similarly, the percentage of Cd concentrations showed 
that soluble fractions > CW fractions > organelle frac-
tions, and more than half of Cd is distributed in the soluble 
fractions in root (Fig. 2C). The percentage of Cd concen-
trations of shoot showed that CW fractions > soluble frac-
tions > organelle fractions, and more than 80% of Cd is 

Fig. 1  The Cd concentration of 
and root (A) and shoot (B) and 
B concentration of root (C) and 
shoot (D) under CK treatment, 
Cd treatment, Cd + B treatment 
and preB + Cd treatment. Cd and 
B are for cadmium and boron in 
the ordinate, respectively. Data 
are means ± SE. Different lower 
case letters above the columns 
indicate statistical differences 
among treatments (LSD’s mul-
tiple range test at P < 0.05 level)
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for root growth parameters, including root length, root vol-
ume, surface area, and tips. The results suggested that Cd, 
as a non-essential element, inhibits root and shoot growth in 
wheat, while B can inhibit the absorption of Cd and allevi-
ate the toxicity of Cd in wheat. Due to B being cross-linked 
with the RGII of the cell wall (CW) and the CW being the 
main interception site for Cd (Loix et al. 2017; Guo et al. 
2018). We speculated that there is a complex competition 
relationship between B and Cd absorption. In the present 
study, the results suggest that the Cd concentrations in root 
and shoot were significantly increased under Cd treatment, 
while decreased under B application treatments. In addi-
tion, B application significantly increased the concentration 
of B in root and shoot of wheat, while showing a decreasing 
trend under Cd stress. According to the Cd subcellular data, 
soluble fraction and cell wall fraction are the main storage 
site of Cd, respectively. Similarly, many plants have been 
reported that most of the Cd were stored in the soluble frac-
tion in root, such as hot pepper, rapeseed, and barley (Wu et 
al. 2005, 2020a; Xin and Huang 2014). Our previous study 
has also found that the soluble fraction and cell wall fraction 
were the main storage sites of Cd in wheat (Qin et al. 2021). 
Boron application could increase Cd in the cell wall frac-
tion, but decrease Cd in the soluble fraction of hot pepper 
root (Wu et al. 2020a; Huang et al. 2022). However, the sub-
cellular distribution of Cd were not significantly influenced 
by B treatments in our experiment.

In addition, our data showed that Cd promotes the accu-
mulation of P, Ca, Fe and Cu in wheat, while B applica-
tion inhibited the absorption of these elements under Cd 
stress. The concentration of Mn and Mg were significantly 

the root, cadmium was negatively correlated with K, Ca 
(P < 0.05), Mg (P < 0.01), Mn (P < 0.01) and Zn (P < 0.01), 
while Cd was positively correlated with B, P, Fe (P < 0.01) 
and Cu (P < 0.01), respectively (Table 2). The negative cor-
relation was observed between B with all the other elements 
(including P, K, Ca, Mg, Fe, Mn Cu, Zn, and Cd) in the 
shoot. And the negative correlation was observed among Cd 
with B, K, Mg (P < 0.01), Mn (P < 0.01), and Zn (P < 0.05) 
in the shoot, while a positive correlation was observed 
among Cd with P (P < 0.01), Ca, Fe and Cu, respectively 
(Table 3).

4  Discussion

In recent years, soil Cd pollution situation is not optimis-
tic due to some human factors in China, especially soil 
around mines or non-ferrous smelteries (Zhao et al. 2015; 
Jiang et al. 2021; Shi et al. 2022). As we all know that B 
is an essential micronutrient, while Cd is indeed a harm-
ful toxic heavy metal for plant growth and development, 
where Cd competitive nutrient absorption and inhibits plant 
growth (Qin et al. 2020a). Meanwhile, the previous research 
showed that B application could improve oxidative stress 
and suppress Cd uptake to alleviate Cd accumulation and 
toxicity in rice (Chen et al. 2019). Boron could inhibit Cd 
uptake by inhibition of the Cd transporters expression in 
wheat (Qin et al. 2020b). Here, the root and shoot DW were 
significantly decreased under Cd added treatment, while 
increased under B treatment compared with Cd treatment, 
especially under preB treatment. Similar results were found 

Fig. 2  The Cd concentration 
of cell wall (CW) fractions, 
organelle fractions, and soluble 
fractions in the root (A) and 
shoot (B) and percentage of Cd 
concentration in the root (C) and 
shoot (D) under different treat-
ments. Cd is for cadmium in the 
ordinate. Data are means ± SE. 
Different lower case letters above 
the columns indicate statistical 
differences among treatments for 
the same fraction (LSD’s multiple 
range test at P < 0.05 level)
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while B was positively correlated with P, Ca, Fe, Cu, and 
Cd in the root, respectively. These results suggest that there 
is a significant negative correlation among boron and other 
elements (including Cd) absorption. Similar results have 
been reported in the previous study, such as B and Cd, B 
and Ca, K, P, S, Mo, and Zn (Pommerrenig et al. 2019; Qin 
et al. 2022). In addition, the preferential distribution of B 
can balance shoot tissues grow and crop nutrition in wheat 
(Huang et al. 2001; Takano et al. 2008). Therefore, proper 
B nutrition plays an important role in the balance of mineral 

decreased under Cd treatments regardless of B application. 
Some elements, like K and Zn, were significantly decreased 
under Cd + B and preB + Cd treatments. Previous studies 
also showed that the content of mineral elements, like Mn, 
Mg, K and Zn, decreased with the increase of Cd concen-
tration (Qin et al., 2023). Further, the correlation analysis 
of different elements showed that the correlation between 
elements was different in root and shoot under different 
treatments. For B, it was found that B was negatively cor-
related with K, Mg, Mn, and Zn both in root and shoot, 

Fig. 3  The concentrations of 
phosphorus (P), potassium (K), 
calcium (Ca), magnesium (Mg), 
iron (Fe), manganese (Mn), 
copper (Cu), and zinc (Zn) under 
different treatments. Data are 
means ± SE. Different lower 
case letters above the columns 
indicate statistical differences 
among treatments for the same 
tissue (LSD’s multiple range test 
at P < 0.05 level)
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especially the functional verification of Cd transporter with 
high affinity in wheat.

5  Conclusion

This study explored the growth, root parameters, B and Cd 
uptake, and other nutrition uptake under Cd stress with B 
application. The results showed that the growth parameters 
were inhibited by Cd added, while relieved by B applica-
tion. The Cd concentrations were significantly increased 
under Cd treatment, while decreased with B application, 
especially in the root. Further, it was found that Cd was 
mainly stored in root soluble fractions and shoot cell wall 
fractions by subcellular components analysis. The element 
concentration and correlation analysis indicated B has a 
negative correlation with most elements including Cd in 
wheat. However, balancing nutrient elements and alleviat-
ing Cd toxicity need further study.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s42729-
024-01813-x.

elements in plants. For Cd, a negative correlation was found 
among Cd with K, Mn, and Zn both in root and shoot, while 
positive correlation with P, Fe, and Cu, respectively. The 
previous report has also found that there was a dramatic 
reduction in accumulation and transportation to shoot for 
P, Ca, K and Mn with Cd treatments in wheat (Zhang et al. 
2002; Çatav et al. 2020). Studies have shown that some ion 
elements can effectively alleviate Cd uptake and toxicity, 
like macro-elements N, K, P, and medium-trace-elements 
Ca, Mg, S, and Fe, Cu, Mn, Mo, cobalt (Co), and Zn (Qin 
et al. 2023; Singh et al. 2016; Hua et al. 2020). The divalent 
cations, like Mn, Fe, and Zn, could compete with Cd uptake 
with the same transporters, like family protein for IRT, 
NRAMP, ZIP (Zhao et al. 2022; Thomine et al. 2003; Sasaki 
et al. 2014). Other elements, like N, P, K, Ca, and S, could 
change the rhizosphere environment to affect Cd uptake 
(Wang et al. 2020; Hussain et al. 2021). As described, these 
results provide support for the relationship between nutri-
ent absorption and Cd toxicity alleviated by B application. 
However, further investigation is need on B alleviates Cd 
toxicity by regulating oxidative mitigation or transporters, 

Table 2  The correlation coefficients of different nutrient elements in root
B P K Ca Mg Fe Mn Cu Zn Cd

B 1 0.119 -0.122 0.145 -0.037 0.198 -0.045 0.188 -0.067 0.087
P 0.119 1 0.806** 0.606** 0.440 0.557* 0.017 0.390 0.097 0.202
K -0.122 0.806** 1 0.661** 0.666** 0.146 0.344 -0.047 0.396 -0.138
Ca 0.145 0.606** 0.661** 1 0.905** 0.114 0.653** -0.282 0.546* -0.524*

Mg -0.037 0.440 0.666** 0.905** 1 -0.135 0.853** -0.538* 0.701** -0.736**

Fe 0.198 0.557* 0.146 0.114 -0.135 1 -0.482* 0.841** -0.246 0.669**

Mn -0.045 0.017 0.344 0.653** 0.853** -0.482* 1 -0.772** 0.666** -0.927**

Cu 0.188 0.390 -0.047 -0.282 -0.538* 0.841** -0.772** 1 -0.554* 0.887**

Zn -0.067 0.097 0.396 0.546* 0.701** -0.246 0.666** -0.554* 1 -0.630**

Cd 0.087 0.202 -0.138 -0.524* -0.736** 0.669** -0.927** 0.887** -0.630** 1
* and ** indicate significant differences between two elements according to LSD’s multiple comparison test (*: P < 0.05, **: P < 0.01). All 
abbreviations used were B for boron, P for phosphorus, K for potassium, Ca for calcium, Mg for magnesium, Fe for iron, Mn for manganese, 
Cu for copper, Zn for zinc and Cd for cadmium

Table 3  The correlation coefficients of different nutrient elements in shoot
B P K Ca Mg Fe Mn Cu Zn Cd

B 1 -0.174 -0.238 -0.306 -0.316 -0.307 -0.083 -0.443 -0.153 -0.141
P -0.174 1 0.030 0.487* -0.470* 0.412 -0.776** 0.375 -0.030 0.784**

K -0.238 0.030 1 -0.091 0.368 0.296 0.366 0.405 0.445* -0.398
Ca -0.306 0.487* -0.091 1 0.089 0.402 -0.400 0.524* 0.376 0.377
Mg -0.316 -0.470* 0.368 0.089 1 0.173 0.622** 0.216 0.590** -0.664**

Fe -0.307 0.412 0.296 0.402 0.173 1 -0.414 0.574** 0.231 0.169
Mn -0.083 -0.776** 0.366 -0.400 0.622** -0.414 1 -0.084 0.404 -0.863**

Cu -0.443 0.375 0.405 0.524* 0.216 0.574** -0.084 1 0.469* 0.108
Zn -0.153 -0.030 0.445* 0.376 0.590** 0.231 0.404 0.469* 1 -0.450*

Cd -0.141 0.784** -0.398 0.377 -0.664** 0.169 -0.863** 0.108 -0.450* 1
* and ** indicate significant differences between two elements according to LSD’s multiple comparison test (*: P < 0.05, **: P < 0.01). All 
abbreviations used were B for boron, P for phosphorus, K for potassium, Ca for calcium, Mg for magnesium, Fe for iron, Mn for manganese, 
Cu for copper, Zn for zinc and Cd for cadmium
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