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inputs of P fertilizer in fields (Vaccari et al. 2019; Zhang et 
al. 2022). After the application of P fertilizers, most P ele-
ment could not be directly used by plants due to adsorption, 
precipitation, and microbial fixation (Weihrauch and Opp 
2018; Zhu et al. 2018), leading to the accumulation and low 
use effectiveness of P element in soils (Liao et al. 2020). 
Previous study had pointed out that organic fertilizers were 
considered as a better agroecological strategy compared to 
inorganic fertilizers (Ma et al. 2022). Organic fertilizers 
improved the concentration of Olsen-P and total P (TP) in 
soils (Pizzeghello et al. 2011). Although the impact of fertil-
izer application on soil P changes is substantial, there is a 
limited amount of research regarding the response of soil 
P fractions extracted using the method of Tiessen and Moir 
(1993) to various combinations of organic and chemical 
fertilizers.

1 Introduction

Phosphorus (P) is an essential nutrient for plant growth and 
plays an indispensable role in natural ecosystems and agri-
cultural production (Ahmed et al. 2019; Bai et al. 2013). 
The dynamics and availability of P element in soils com-
monly depend on the P fractions, which is usually affected 
by fertilization (Ahmed et al. 2019; de-Bashan et al. 2022). 
Over the past few decades, fertilization as a supplement to P 
stocks in fields has become the most important agricultural 
management practice, leading to considerable increases in 
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Cultivation practices affect the mineralization and decom-
position of organic matter by altering the physicochemical 
properties of soils, which in affects P concentrations and 
fractions (Redel et al. 2011; Wang et al. 2011). Specifi-
cally, cultivation loosens the soil and reduces the diffusion 
and transport of phosphate ions (Deubel et al. 2011; Sheng 
et al. 2013). Moreover, contour cultivation, as compared 
to conventional downslope cultivation, has been found to 
reduce the runoff rate by increasing soil surface roughness 
and prolonging nutrient leaching (Stevens et al. 2009; Li et 
al. 2022). This practice helps retain sediment from slopes 
and deposit it along beams, thereby reducing soil erosion 
and nutrient losses from sloping cropland (Guo et al. 2019). 
While research on contour cultivation mainly focuses on 
its effect on runoff nutrient loss (Yang et al. 2018), there is 
limited information available on the effects of different cul-
tivation practices on P fractions in soils. Indeed, there is an 
urgent need to explore the pattern of change of P fractions in 
soils under different cultivation practices.

In general, fertilization and cultivation can directly affect 
soil P concentrations through the input of orthophosphate 
and organic compounds and indirectly affect soil P concen-
trations through changes in the microenvironment, which 
can significantly change soil properties, resulting in changes 
in P fractions (Khan et al. 2023; Liu et al. 2023; Yan et al. 
2016). In other words, the application of fertilization and 
cultivation practices changes the relationships between soil 
properties and P fractions, causing differences in the avail-
ability and conversion of P fractions in soils (Audette et al. 
2016; Ahmed et al. 2019). For example, Soil organic car-
bon (SOC) was influenced by fertilization and could affect 
the mineralization and adsorption of soil P fractions (Bras-
chi et al. 2003). SOC improved P availability by emitting 
organic acids, boosting P mineralization, and diminishing 
soil P adsorption (Cao et al. 2012). Dissolved organic car-
bon (DOC), the most dynamic component of SOC, exerted a 
predominant influence on the leaching of organic P from the 
soil (Gao et al. 2014; Vaz et al. 1993). Moreover, interactions 
between soil organic compounds and metal oxides affected 
phosphate binding pathways and the effectiveness of differ-
ent P fractions (Sattell and Morris 1992). The nitrification of 
soil total N (TN) could modify the formation of soil organic 
P fractions while the presence of soil N could modulate 
metal ions, enhancing soil adsorption of P (Vitousek et al. 
2010; Carreira et al. 2000). These findings highlighted the 
importance of exploring the effects of different soil proper-
ties on the contents of soil P fractions and their chemical 
features. Nevertheless, the relative importance of soil prop-
erties in influencing P fractions under different fertilization 
and cultivation practices is still not well understood.

In this study, we explored the changes in soil P fractions 
and their responses to soil properties (i.e., SOC, TN) under 

different fertilization and cultivation practices. Therefore, 
the objectives of this study were to (1) quantify the changes 
in P fractions and select soil properties affected by long-
term fertilization and cultivation practices and (2) assess the 
relative importance of the selected soil properties affecting 
the changes in soil P fractions.

2 Materials and Methods

2.1 Study Area

The study area was located at the Soil and Water Conser-
vation Experimental Base of Southwest University, Beibei 
District, Chongqing (106° 24′ 20″ E, 29° 48′ 42″ N). This 
area has a subtropical monsoon climate with an average 
annual temperature of 18.7 °C, an average annual sunshine 
duration of 1047 h, and a frost-free period of 365 days. 
The soil type in this study area was classified as purple 
soil according to Chinese soil taxonomy (Liu et al. 2009). 
Evergreen broadleaf forests dominate the vegetation in this 
area. The main crops included wheat (Triticum aestivum L.), 
maize (Zea mays L.) and sweet potato (Ipomoea batatas 
(L.) Lam.) in this study area. The initial soil properties were 
determined at the top soil layer (0–20 cm): pH 8.16, SOC 
8.75 g kg− 1, TN 0.76 g kg− 1, TP 0.68 g kg− 1, total potas-
sium 8.29 mg kg− 1, Olsen-P 18.29 mg kg− 1, ammonium 
nitrogen 24.19 mg kg− 1, nitrate nitrogen 19.51 mg kg− 1, 
available potassium 71.39 mg kg− 1.

2.2 Experimental Treatments

To investigate the relationships between P fractions and 
soil properties on purple soil slopes, 15 plots (8 m long × 
4 m wide for each plot) were constructed on purple soil 
slopes with a slope of 15° in 2008. These plots were sep-
arated by a 25 cm wide concrete ridge, which was 20 cm 
above the ground. Based on the conventional local fertil-
ization practices, five treatments were set up in the experi-
ment (three replications for each), namely, CK (no fertilizer 
and downslope cultivation), T1 (chemical fertilizers and 
downslope cultivation), T2 (1.5-fold chemical fertilizers 
and downslope cultivation), T3 (manure plus chemical fer-
tilizers and downslope cultivation) and T4 (chemical fertil-
izers and contour cultivation).

For each plot, a winter wheat and summer maize rotation 
was planted as the cropping system. The wheat cultivation 
season ranged from November to May, during which the 
base fertilizer was applied before planting and the follow-
up fertilizer was applied in late January. The maize season 
was from March to July, with seeds sown on flat farmlands 
adjacent to the study area in March and transplanted to plots 
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in early April. Base fertilizer was applied before transplant-
ing, and follow-up fertilizer was applied in late May. Urea, 
calcium superphosphate, and potassium chloride were used 
as nitrogen, phosphorus, and potassium fertilizers, respec-
tively. The organic fertilizer used was farm manure (pig 
feces and urine), which contained 4.31% carbon, 0.24% 
nitrogen, 0.17% phosphorus pentoxide, and 0.21% potas-
sium oxide, as shown in Table 1. Since the plots were con-
structed in 2008, the fertilization and cultivation practices 
were kept the same annually.

2.3 Soil Sampling

Following the summer maize harvest in August 2022, five 
soil cores from each treatment plot were randomly selected 
from the two soil profiles (0–10 and 10–20 cm) and mixed 
into a single composite sample for each replicate using a 
2.5-cm diameter auger. A total of 30 samples were col-
lected (5 treatments × 3 replicates × 2 soil depth). Gravel, 
roots, and other debris were discarded, air-dried, ground and 
sieved to 0.25 mm, 1 mm and 2 mm.

2.4 Measurements of Soil Properties

The soil pH was determined in a 1:2.5 soil: deionized water 
(w/v) suspension with a pH meter (PHSJ-5, REX Company, 
Shanghai, China). SOC was determined by the potassium 

dichromate method (Nelson and Sommers 1996). DOC 
concentration in the soil was measured by a total organic 
carbon analyzer (TOC-V Shimadzu, Japan). Easily oxi-
dized organic carbon (EOC) was measured at 565 nm using 
the 333 mmol L− 1 K2MnO4 oxidation method (Lefroy et 
al. 1993). TN was determined by the semiautomatic Kjel-
dahl digestion method (ISSCAS 1978). Available nitrogen 
(AN) was determined by the alkalysis diffusion method (Lu 
1999). TP was determined by the molybdenum blue colo-
rimetric method (Olsen and Sommers 1982). The Olsen-P 
content was determined by extraction with 0.5 M NaHCO3 
(pH 8.5) according to the Olsen method (Olsen et al. 1954). 
CaCl2-P was extracted with 0.01 mol L–1 CaCl2 solution at 
a 1:5 soil/reagent ratio (25 °C and shaken for 15 min), after 
which the concentration was determined via molybdenum 
blue colorimetry (Bai et al. 2013). The exchangeable cal-
cium (Ca) and exchangeable magnesium (Mg) concentra-
tions were determined at 422.7 nm and 285.2 nm by atomic 
absorption spectrometry (AAS) using ammonium acetate as 
an exchanger (Lu 1999). 0.25 mm soils were used for the 
determination of SOC, TN, TP, DOC, Ca, Mg, and EOC, 
and 1 mm soils for the determination of Olsen-P and AN, 
whereas 2 mm soils were used only for the determination 
of CaCl2-P.

Table 1 Annual nutrient inputs under different long-term fertilization cultivation treatments
Crops Fertilizers and applied durations Treatments Nutrient inputs kg ha− 1

chemical fertilizers Farm manure
N P K N P K

Wheat Basal fertilizer, early November CK 0 0 0 0 0 0
T1 228 75 150 0 0 0
T2 339 112 225 0 0 0
T3 140 45 0 0 0 0
T4 228 75 150 0 0 0

Topdressing fertilizer, late January CK 0 0 0 0 0 0
T1 0 0 0 0 0 0
T2 0 0 0 0 0 0
T3 0 0 0 27 19 24
T4 0 0 0 0 0 0

Maize Basal fertilizer, early April CK 0 0 0 0 0 0
T1 190 90 150 0 0 0
T2 283 135 225 0 0 0
T3 223 54 0 0 0 0
T4 190 90 150 0 0 0

Topdressing fertilizer, late May CK 0 0 0 0 0 0
T1 0 0 0 0 0 0
T2 0 0 0 0 0 0
T3 0 0 0 81 57 71
T4 0 0 0 0 0 0

CK, no fertilizer and downslope cultivation; T1, chemical fertilizers and downslope cultivation; T2, 1.5-fold chemical fertilizers and downslope 
cultivation; T3, manure plus chemical fertilizers and downslope cultivation; T4, chemical fertilizers and contour cultivation; N, nitrogen; P, 
phosphorus; K, potassium
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transformation (base 10) was conducted to ensure robust 
statistical analysis. One-way analysis of variance (ANOVA) 
and least significant difference (LSD) tests were used to 
determine the effects of long-term fertilization and cul-
tivation on the absolute and relative concentrations (the 
proportion of each fraction of the TP content) of the soil P 
fractions. In addition, Pearson correlation analysis was used 
to determine the relationship between individual P frac-
tions and predictor variables. To determine which predictor 
variables had the most significant influence on controlling 
changes in soil P fractions, random forest (RF) analysis was 
used to quantify the relative importance of individual pre-
dictor variables. RF identifies the percentage influence or 
contribution of a predictor variable (Breiman 2001). The RF 
model was run based on the scikit-learn library embedded in 
Python 3.8 (Fig. 1).

3 Results

3.1 Changes in the Concentrations of the Soil P 
Fractions

At the 0–10 cm soil depth, the H2O-Pi and NaHCO3-Pi 
concentrations in the T1 treatment were significantly lower 
than those in the T2 and T3 treatments (p < 0.05), and their 
concentrations were 36.9–85.2% greater than those in the 
T1 treatment (Fig. 2). The NaHCO3-Po concentrations in 
T1 and T2 were 39.4% and 31.5% lower than that in T3, 

2.5 Measurements of Soil P Fractions

The soil P fractions were measured by a modified Hedley 
sequential fractionation method (Hedley et al. 1982; Ties-
sen and Moir 1993). In brief, 1 g of air-dried soil (1 mm) 
from each sample was placed in a 50 mL centrifuge tube. 
Extraction was conducted with the following extractants 
sequentially: for H2O-Pi, extraction was performed with 
30 ml of deionized water; for NaHCO3-P, 30 ml of 0.5 M 
NaHCO3 was used for extraction at pH 8.5; for NaOH-P, 
30 ml of 0.1 M NaOH was used for extraction; and for HCl-
P, 30 ml of 1 M HCl was used for extraction. The tubes were 
shaken (200 rpm) for 16 h, centrifuged at 10,000 × g for 
15 min before each extraction and filtered with 0.45 μm cel-
lulose membrane filter paper. Finally, the remaining extracts 
were repeatedly digested with concentrated H2SO4 and 30% 
H2O2 to obtain residual-P. The extracted inorganic phos-
phate was measured at 880 nm using a spectrophotometer 
(Murphy and Riley 1962). TP was determined in NaHCO3, 
NaOH and concentrated HCl extracts in an autoclave at 
121 °C using concentrated H2SO4 and potassium persulfate 
digestion. The organic phosphate in each extractant was 
calculated as the difference between the TP and inorganic 
phosphate.

2.6 Statistical Analyses

The normality of the data was tested using the Shapiro-
Wilk test. If the data were not normally distributed, a log 

Fig. 1 Location of the experimental site. CK, no fertilizer and 
downslope cultivation; T1, chemical fertilizers and downslope cultiva-
tion; T2, 1.5-fold chemical fertilizers and downslope cultivation; T3, 

manure plus chemical fertilizers and downslope cultivation; T4, chem-
ical fertilizers and contour cultivation (re-edited from Du et al. 2021)
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concentrations of residual-P in T1 were significantly greater 
(57.3%) than those in T4 (p < 0.05) (Fig. 3).

3.2 Changes in Soil Chemical Properties and Crop 
Yield

Table 2 shows the variation in soil chemical properties 
under the different fertilization cultivation patterns at the 
different soil depths. At the 0–10 cm soil depth, the high-
est concentrations of SOC and Olsen-P were found in T3, 
which increased by 39.38% and 52.63%, respectively, com-
pared to those in T2 (p < 0.001). The AN concentration in 
the T1 treatment was significantly lower than that in T2 and 
T3 (p = 0.001), which were lower by 8.54%, and 13.5%, 
respectively (Table 2).

The maize yield was similar between T1 and T2, which 
increased by 359.1% and 357.5% (p < 0.05) compared to 
CK, respectively (Fig. 4). The wheat yield increased by 
205.2% and 197.7% (p < 0.05) in T3 and T4 compared to 
CK, respectively, (Fig. 4). The maize and wheat yields were 

respectively (p < 0.05) (Fig. 2). The NaOH-Pi and Total-Pi 
concentrations were significantly lower in the T1 treatment 
than in the T2 and T3 treatments (45.4–46.1% and 18.9–
26.7%, respectively). The relative concentration of residual-
P was significantly different among the five treatments, and 
the highest concentration was 6.79% in CK (Fig. 3). The 
HCl-Pi and HCl-Po accounted for 21.5–47.2% of all the P 
fractions (Fig. 3). Moreover, no P fractions were signifi-
cantly different between T1 and T4 (p > 0.05) (Fig. 2).

At 10–20 cm soil depth, the H2O-Pi and NaHCO3-Pi in 
T1 were significantly lower than T2 and T3 (p < 0.05), and 
T2 and T3 were 48.7–85.2% higher than that of T1 (Fig. 2). 
The NaOH-Pi and HCl-Pi in T2 were significantly higher 
than T1 and T3 (p < 0.05), in which NaOH-Pi was 101.9-
112.8% higher than T1, and HCl-Pi was 4.0-32.8% higher 
than T1 (Fig. 2). The relative concentration of NaHCO3-Pi 
was significantly different among the five treatments, and the 
highest concentration was 10.5% in T3 (Fig. 3). The H2O-
Pi concentration in T4 was significantly greater (253.9%) 
than that in T1 (p < 0.05) (Fig. 2). However, the relative 

Fig. 2 Content of phosphorus fractions in different soil depth under 
long-term fertilization cultivation conditions. CK, no fertilizer and 
downslope cultivation; T1, chemical fertilizers and downslope cultiva-
tion; T2, 1.5-fold chemical fertilizers and downslope cultivation; T3, 

manure plus chemical fertilizers and downslope cultivation; T4, chem-
ical fertilizers and contour cultivation. Different letters above each box 
indicate significant differences between fertilization and cultivation 
treatments (p < 0.05)
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and DOC were the main variables affecting NaHCO3-Po, 
explaining of 21.29% and 16.72% of the data, respectively. 
EOC and Mg were the main variables affecting NaOH-Po, 
explaining 16.78% and 15.65% of the data, respectively. 
N: P and TN were the main variables affecting HCl-Po, 
explaining 13.97% and 13.52% of the data, respectively. 
TN and AN were the most critical factors affecting residual-
P, explaining 24.93% and 14.12% of the data, respectively. 
Furthermore, SOC and N: P were the two essential factors 
affecting Total-P, explaining 23.34% and 20.22% of the 
data, respectively.

4 Discussion

The present study showed that manure plus chemical fertil-
izer under long-term fertilization and cultivation conditions 
could significantly increase the concentrations of H2O-
Pi, NaHCO3-Pi, and NaOH-Pi. This result was consistent 
with previous finding by Wang et al. (2022), who reported 
that long-term application of organic and chemical fertil-
izers mainly increased the inorganic P fractions (Resin-P, 
NaHCO3-Pi, NaOH-Pi, and HCl-Pi) in soils, and attributed 
this to the high water solubility and colloidal nature of these 
inorganic P fractions. Indeed, this study also found that the 
addition of manure fertilizers significantly increased SOC 
(Table 2), and the increase in SOC might activate the soil 
inorganic P fractions and elevated the solubility and miner-
alization of P, which in turn increased the accumulation of 

not significantly different between T1 and T4 (p > 0.05) 
(Fig. 4).

3.3 Relationships Between P Fractions and Soil 
Variables and Crop Yields

H2O-Pi, NaHCO3-Po, NaOH-Pi, HCl-Pi, and residual-P 
exhibited significant positive correlations with Olsen-P and 
CaCl2-P (Fig. 5). HCl-P (HCl-Pi, HCl-Po) exhibited sig-
nificant positive correlations with Ca and TP. HCl-Po had 
significant negative correlations with pH, Mg, the N: P ratio 
and crop yield (Fig. 5).

3.4 The Relative Importance of Predictor Variables 
in Regulating Soil P Dynamics

The RF model further identified the main drivers of varia-
tion in different P fractions based on ranking the importance 
of the influencing factors. Among the four inorganic P frac-
tions, SOC and TN were the most important variables affect-
ing H2O-Pi, explaining 22.20% and 21.74% of the data, 
respectively (Fig. 6). TN and SOC were the most impor-
tant variables affecting NaOH-Pi, which explained 18.29% 
and 15.17% of the data, respectively. DOC and SOC were 
the two most important variables affecting NaHCO3-Pi, 
explaining 18.56% and 17.85% of the data, respectively. 
SOC and DOC were the most important variables affecting 
the HCl-Pi concentration, explaining 24.65% and 17.22% 
of the data, respectively. For the organic P fractions, SOC 

Fig. 3 Changes in the proportions (%) of measured 0–10 cm (a) and 
10–20 cm (b) soil inorganic and organic phosphorus fractions in the 
soil total P content after conversion of different fertilization treat-
ments. CK, no fertilizer and downslope cultivation; T1, chemical fer-

tilizers and downslope cultivation; T2, 1.5-fold chemical fertilizers 
and downslope cultivation; T3, manure plus chemical fertilizers and 
downslope cultivation; T4, chemical fertilizers and contour cultivation
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(McDowell et al. 2001; McDowell 2012). Previous studies 
have shown that the stable P fraction of the soil was not 
significantly affected by tillage practices (Shi et al. 2013; 
Wright 2009; Vu et al. 2009). However, our study found that 
contour cultivation significantly reduced the residual-P frac-
tions at the 10–20 cm soil depth compared to downslope 
cultivation. This was due to the fact that residual-P in the 
soil was converted to a more soluble form under long-term 
continuous cultivation (Tiessen et al. 1992). This suggested 
that contour cultivation was more favorable as the residual-
P pool in the soil was converted to a more soluble form with 
continuous P depletion. Stable P fractions were the predom-
inant form of P in soils and consisted of HCl-P and residual-
P fractions (Fig. 3), which included stable Ca-associated P 
and Fe-associated P (Khan et al.2021; Xavier et al. 2011). 
In our study, residual-P level exhibited a significant positive 
correlation with Ca (Fig. 5). In moderately alkaline soils 
with abundant calcium ions, phosphates swiftly form cal-
cium phosphate compounds, which were difficult for plant 
utilization (Strauss et al. 1997). Yin et al. (2018) found that 
agricultural practices and rainfall may lead to leaching of 
soil calcium phosphates through runoff. Moreover, contour 
cultivation considerably enhanced soil Ca levels but signifi-
cantly reduced the proportion of residual-P. The reason for 
this phenomenon was that contour cultivation increased the 
contact time between soil and runoff, which in turn elevated 
the risk of soil leaching, resulting in residual-P leaching 
through runoff (USDA-NSCS, 2017; Ricci et al. 2022).

Our findings indicated that SOC and DOC contributed 
more to labile P. This was consistent with the findings of 
Khan et al. (2023), who found that SOC had an influence on 
the dissolution of soil inorganic P and the mineralization of 
organic P, thus increasing the effectiveness of labile P frac-
tions in soils. DOC, the most dynamic component of SOC, 
comprises humic acid and a variety of carbon compounds 
(Gao et al. 2014). Soil phosphatase activity exhibited an 
increase as the raised SOC and DOC contents (Nannipieri 
et al. 2011). It was worthy noted that higher soil phospha-
tase activity facilitated the conversion of stable P to labile 
P in soils (Yang et al. 2021). However, Guppy et al. (2005) 
shown that DOC was influenced by the composition and 
concentration of organic acids in fertilizers and competed 
with soil P for adsorption sites. TN and AN had a signifi-
cantly greater impact on the residual-P compared to other 
factors. Many studies indicated that nitrogen addition appre-
ciably raised the concentrations of TN and AN in the soil, 
which subsequentially diminished microbial activity (Tian 
et al. 2016; Wang et al. 2015). This reduction in microbial 
activity led to a decrease in phosphatase activity, causing 
augmented levels of plant-unavailable P (Kafle et al. 2019). 
These findings were consistent with previous studies con-
ducted under different fertilization patterns, where changes 

the inorganic P fractions (Du et al. 2018). On the other hand, 
long-term application of organic fertilizers increased humus 
and organic anions in soils, and thus delaying the crystal-
lization and transformation of stable P fractions (Audette 
et al. 2016; Sato et al. 2005). Moreover, RF results veri-
fied that SOC was an important factor influencing H2O-Pi, 
NaHCO3-Pi and NaOH-Pi. Labile P (H2O-Pi and NaHCO3-
P) was mostly readily absorbed by plants and was the mostly 
mineralized and mobile component of the soil P pool (Li et 
al. 2023). Our study showed that manure plus chemical fer-
tilizer applications could increase the proportion of labile 
P. Manure fertilizers promoted the dissolving action of 
phosphatase, catalyzing the hydrolysis of phytate that could 
increase the accumulation of labile P in soils (Audette et al. 
2016). In particular, manure fertilizers increased the accu-
mulation of P in the form of brushite and deoxyribonucleic 
acid in soils (Lehmann et al. 2005; Liu et al. 2019). In this 
study, we found that long-term fertilization and cultivation 
significantly increased the CaCl2-P content in soils, which 
the CaCl2-P was significantly and positively correlated 
with the inorganic P fractions (Fig. 5). Herlihy and Carthy 
(2006) demonstrated that soil CaCl2-P was able to modify 
the adsorption capacity of P fractions, thereby altering the 
concentration of H2O-Pi. This was because that the buffer 
capacity of soil P decreased as the increased soil CaCl2-P 
concentration (Recena et al. 2016).

In addition, contour cultivation significantly increased 
H2O-Pi at the 10–20 cm soil depth. This was consistent with 
the findings of Stevens et al. (2009), who found that contour 
cultivation reduced the P loss of soil particles, thereby pre-
serving P accumulation in the soil, as observed in their field 
experiments in England. This was because contour cultiva-
tion enhanced the interaction between soil and water, and 
the adsorption in deeper phosphorus-deficient soils, lead-
ing to a reduction in H2O-Pi loss by infiltrating water flows 

Fig. 4 Crop yields under long-term fertilization cultivation conditions
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proportion of H2O-Pi in 10–20 cm soil depth. In addition, 
SOC and DOC contributed more to labile P, while AN and 
TN contributed more to residual-P, validating the hypoth-
esis that different P fractions were more closely related to 
soil C and N elements. Our study found that manure plus 
chemical fertilizer and contour cultivation were effective in 
increasing the labile P fractions in soils, which provided a 
scientific basis for improving purple soil sloping croplands 
and efficiently using fertilizers. Further research should be 
conducted to determine how to fully utilize soil residual-P 
and reduce the waste of P resources.

in soil P fractions were closely linked to changes in soil 
properties (Wang et al. 2022, 2023). Therefore, in future 
agricultural management, it is important to consider the 
limitation and impact of C and N elements on soil P frac-
tions when applying P fertilizer.

5 Conclusion

Long-term application of manure and chemical fertilizers 
significantly increased the concentrations of H2O-Pi and 
NaHCO3-Pi in the 0–20 cm depth of the soil. The proportion 
of residual-P in the 0–10 cm soil depth decreased signifi-
cantly with the long-term input of manure plus chemical fer-
tilizers. Contour cultivation increased the concentration and 

Fig. 5 Correlations between soil properties and soil P fractions. The 
numerical label and color indicate the strength and sign of the correla-
tion at p < 0.05. Soil variables included soil total N (TN), soil total P 
(TP), soil CaCl2-P (CaCl2-P), soil Olsen-P (Olsen-P), soil organic car-
bon (SOC), soil dissolved organic carbon (DOC), soil easily oxidized 

organic carbon (EOC), soil pH (pH), available N (AN), C: P ratio (C: 
P), N: P ratio (N: P), exchangeable calcium (Ca) and exchangeable 
magnesium (Mg), Ca: Mg ratio (Ca: Mg), sum of maize and wheat 
yield (Yield)
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Fig. 6 Relative influences of individual factors to nine measured soil 
P fractions quantified by the Random Forest model. r2 values repre-
sent the proportion of the variation in each P fraction explained by the 
model. Soil variables included soil total N (TN), soil total P (TP), soil 
CaCl2-P (CaCl2-P), soil Olsen-P (Olsen-P), soil organic carbon (SOC), 

soil dissolved organic carbon (DOC), soil easily oxidized organic car-
bon (EOC), soil pH (pH), available N (AN), C: P ratio (C: P), N: P 
ratio (N: P), exchangeable calcium (Ca) and exchangeable magnesium 
(Mg), Ca: Mg ratio (Ca: Mg)
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