
ORIGINAL PAPER

Journal of Soil Science and Plant Nutrition (2024) 24:3791–3802
https://doi.org/10.1007/s42729-024-01800-2

to be 20 mg·m− 2, which is much higher than that in forest 
topsoil (1 mg·m− 2). Meanwhile, the anaerobic and organic-
matter-rich soil conditions of wetlands favor MeHg pro-
duction by microbes (Driscoll et al. 2007), which are about 
26 ∼ 79 times higher than those in upland areas. According 
to projections from the Intergovernmental Panel on Climate 
Change’s (IPCC) Fifth Assessment Report, there has been 
an approximate 0.85 °C increase in global temperatures over 
the past century. The Great Khingan Mountains (GKM) area 
in Northeast China, characterized by its swampy and per-
mafrost wetlands, has experienced a significant reduction in 
permafrost coverage by about 35% due to recent warming 
trends (Jin et al. 2006). This gradual thawing of permafrost 
could lead to substantial releases of mercury into the eco-
system, posing serious risks to environmental health.

Beyond the immediate emissions of mercury from per-
mafrost zones, both the influx and outflow of mercury, along 
with its methylation process, are intricately linked to types 
of vegetation. Recent investigations have underscored the 
critical role of mercury’s dry deposition within terrestrial 

1 Introduction

Mercury (Hg) is considered to be a global pollutant due to 
its long-range transport via the atmosphere, transformation 
between various species, and biomagnification along food 
webs (Selin et al., 2009). Hg biological cycles have been a 
subject of significant scientific interest over the past decades 
(Sun et al. 2017). Wetland plays a crucial role in control-
ling the distinctive biogeochemical cycling of Hg (Adediran 
et al., 2019; Beckers et al. 2019), which usually serves as 
Hg sink and methylmercury (MeHg) source to the ambient. 
The retention rate of mercury in peatlands has been reported 
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Abstract
Dissolved organic matter (DOM) plays an important role in promoting or suppressing methylmercury (MeHg) production 
in wetlands. However, in the context of climate warming, the regulatory mechanism of DOM composition and molecu-
lar structure changes in permafrost wetland soil on mercury methylation remains unclear. In this study, we analyzed the 
distribution characteristics of mercury and methylmercury in permafrost wetland soils in the Greater Khingan Mountains 
(GKM), and elucidated the driving mechanism of mercury methylation by basic physical and chemical properties and 
DOM spectral characteristics of soils. The results showed that the mean value of total mercury in the permafrost wetlands 
of the GKM was 111 ng·g-1, the mean value of methylmercury was 5.69 ng·g-1, and the mean percentage of methylmer-
cury was 6.16%. Hg and MeHg concentrations showed different vertical distribution patterns in the four wetlands, with 
Hg and MeHg concentrations in both scrub and moss wetlands showing a decreasing trend with soil deepening, but herb 
and forest wetlands did not satisfy this pattern. Soil warming, associated with the decomposition and mineralization of 
Soil Organic Matter (SOM), induces an elevation in Dissolved Organic Matter (DOM) content, subsequently contributing 
to increased levels of mercury methylation and an upswing in methylmercury output. Throughout this process, the spectral 
properties of DOM play a pivotal role in regulating Hg methylation, with the input of plant sources following closely 
behind. The content of MeHg in the soil is minimally influenced by the mercury content in the soil.
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ecosystems. In particular, the absorption of atmospheric 
Hg0 by plant life plays a pivotal role in the significant accu-
mulation of mercury in soil (Jiskra et al. 2015; Wang et al. 
2016; Schuster et al., 2018). The research findings of Feng 
et al. Hg concentration in surface soil is highly correlated 
to vegetation related factors (He et al., 2015). This suggests 
that the Hg input driven by vegetation activities being the 
main factor causing the observed Hg pool size. Meanwhile, 
climate is the main driver for vegetation distribution glob-
ally (Ding et al. 2017; Piao et al. 2018). Xue et al. showed 
that permafrost degradation caused by climate warming 
is a key factor affecting plant community distribution in 
GKM wetland (Xue et al., 2021). In the context of global 
warming, a significant shift is expected, where herbaceous 
and shrubby wetlands will encroach upon moss-dominated 
wetlands on a large scale. This phenomenon is particularly 
pronounced in high-latitude regions, where the invasion by 
shrub wetlands stands out the most. This trend underscores 
the importance of investigating how mercury levels fluctu-
ate across wetlands with varying types of vegetation cover.

There is covariation between carbon and mercury in soil, 
especially dissolved organic matter (DOM) change, which is 
one of the main controlling factors of mercury methylation 
in permafrosr soil. MeHg production in wetlands is proven 
greatly affected by DOM (Chen et al. 2020; Gerbig et al. 
2012), which usually affects Hg cycle greatly, not only by 
stimulating MeHg synthesis or introducing demethylation 
(Ullrich et al. 2001; Frohne et al. 2012), but also by forming 
stable Hg complexes with reduced sulfur groups such as thi-
ols (Eagles et al., 2014). DOM is usually easily assimilated 
by microbes and then enhances Hg methylation (Abdelhafiz 
et al. 2023; Gerbig et al. 2012; Vrivens et al., 2014; Wang 
et al. 2021). Multiple studies reported that higher levels of 
DOM increased Hg bioavailability, methylation, and bioac-
cumulation (Lin et al. 2014; Wang et al. 2021), where labile 
fractions are relatively high and readily biodegradable; it 
may enhance methylation by stimulating microbial growth 
(Patriarca et al. 2021).

Therefore, based on the above understanding, we pro-
pose two hypotheses: (1) With global warming, the invasion 
of herbaceous and scrub wetlands into permafrost wetlands 
will significantly change the distribution pattern of Hg and 
MeHg in wetland soils; (2) In this process, DOM content 
and its structural characteristics will contribute to the pro-
cess of Hg methylation.

2 Methods and Materials

2.1 Study Area

The Great Khingan Mountains (GKM), boasting the high-
est concentration of wetlands in China, are situated on the 
northeastern periphery of the country (40°59′–53°33′ N, 
115°50′–130°51′E; Fig. 1). The region experiences a cold 
and prolonged winter, coupled with a cool and brief summer, 
resulting in a substantial diurnal temperature variation. The 
annual average temperature stands at -2.8 ℃, with extreme 
temperatures plummeting to -50 ℃. This climate is char-
acterized as a cold temperate continental monsoon climate 
(Gao et al. 2016). Predominant natural features encompass 
forests and swamps. The swamps primarily manifest at the 
valley bottoms across the GKM and on platforms in the 
North, underlain by permafrost. The permafrost region of 
the GKM can be delineated into continuous permafrost and 
segregated permafrost areas, encompassing a total area of 
approximately 1.12 × 105 km2 (Xin et al. 2023).

2.2 Sample Collection and Treatment

Soil profiles were collected at 14 sites surrounding the 
GKM (122°00’E ∼ 125°00’E, 50°10’N ∼ 53°33’N) perma-
frost Wetlands in September 2021. Sample sites were cat-
egorized into four types according to the predominant plant 
covers, which were herb (Hc, n = 5), shrub (Sc, n = 5), forest 
(Fc, n = 2), and moss (Mc, n = 2), according to the predomi-
nant vegetation. After removing the surface litter, samples 
of the vertical profile of the soil were taken from top to bot-
tom (each sample had a thickness of 5 cm). The collection 
depth was 40 cm. The soil samples were smashed with a 
wooden hammer, allowed to air dry at room temperature 
(20 ∼ 25℃), and sieved through a 2 mm sieve. The filtrates 
were stored at -4 ℃ before analysis or further treatments.

2.3 Analytical Methods

Total Hg (THg) and methylmercury (MeHg) in soil samples 
were analyzed as described in Zhang et al. (Zhang et al. 
2020). For the quantification of THg in the soil, 0.2 g of 
the soil sample was meticulously weighed and subjected to 
digestion with 10mL of HNO3 and 2.5mL of H2SO4. Fol-
lowing the cooling process, two drops of KMnO4 indicator 
were introduced to facilitate complete reaction over a one-
hour period. The reacted solution was then transferred to 
a colorimetric tube, and the volume was adjusted to 50 ml 
with HCl (concentration ratio of 5%) for subsequent mea-
surement. To determine MeHg in the soil, 1.0 g of the soil 
sample was immersed in 10 mL of HCl (6 N) and allowed 
to stand overnight. Subsequently, MeHg was extracted 
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twice consecutively with 5 mL of CH2Cl2, with the sepa-
rated CH2Cl2 transferred to a heart-shaped bottle. Follow-
ing the addition of 5.0 mL of deionized water, the removal 
of CH2Cl2 was accomplished by rotary evaporation, leav-
ing MeHg in the deionized water. The oxidation process 
involved the addition of a brominating agent (comprising 
an equal volume of KBr and KBrO3), followed by reduction 
with NH4HCO3 to convert Hg2+ to Hg0. The final determi-
nation was carried out using CVAFS instrument (Haiguang, 
Beijing).

Soil total carbon (TC) and total nitrogen (TN) were deter-
mined by an elemental analyzer (Elementar Vario Macro 
cube); soil soluble organic carbon (DOC) was determined 
by a total organic carbon analyzer (TOC-2000, Gangdong, 
Tianjin, China), and the data deviations (RSD) of the mea-
surements of all parallel samples were less than 5%.

For quality control, standard materials were used to test 
the precision and accuracy of THg (Reference material num-
ber: GBW07978) and MeHg (Reference material number: 
SCQC-122) determination. The recoveries were 95∼103% 
and 92–105%, respectively.

2.4 The UV–Vis and Fluorescence Spectrum of DOM

The UV–Vis spectrum (UV–2550, Shimadzu, Japan) and 
fluorescence spectrum (F–4700, Hitachi, Japan) were con-
ducted to characterize the molecular features of DOM. For 

UV–Vis analysis, using deionized water as a blank, the 
absorption spectrum from 200 nm to 800 nm was mea-
sured, and the scanning speed was set to 1 nm. DOM indi-
ces, defined as adsorption at specific wave or absorbance 
ratios at different bands including SUVA254, SUVA260, 
A250/A365, A465/A665, A253/A203 and A240/A420 were 
applied to characterize the source, structure, and composi-
tion of DOM. Detailed information can be found in Table 
S1.

For fluorescence analysis, first, all samples are diluted 
with 0.1 mol·L− 1 phosphate buffers (PH = 7) according to 
the DOC concentration of the sample. The final DOC con-
tent was set to approximately 8 mg·L− 1. Fluorescence EEM 
spectroscopy was performed for each sample at room tem-
perature with excitation and emission wavelength ranges of 
250–450 and 300–600, respectively, at 2 nm intervals, and 
scanning speed of 1200 nm/min. All spectral corrections 
were performed using parallel factor analysis (PARAFAC) 
in the Matlab software environment (Schaefer et al., 2014). 
Three fluorescence indexes (FI, HIX, BIX) were used to 
characterize the source and humification degree of DOM. 
Detailed information can be found in Table S1.

2.5 Statistical Analysis

The ANOVA analysis was performed to make compari-
sons of THg, MeHg, and %MeHg among samples from 

Fig. 1 The study area is in the Greater Khingan Mountains, northeast 
China. TH Town, Tahe Town; WLG River, Walagan River; LJ Bay, 
Longjiang Bay; PG River, Pangu River; DL River, Dalin River; LZ 

River, Laozao River; EME, Eermu; CL Gap, Chulong Gap; XA Town, 
Xingan Town; ESWZ, Ershiwuzhan Site; DG River, Dagen River; 
ELC, Elunchun autonomous banner; JGDQ, Jiagedaqi
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3 Results

3.1 THg and MeHg Contents in Wetland Soils of the 
GKM

The average values of THg and MeHg were 111.1 ng·g− 1 
and 5.69 ng·g− 1, respectively, with a range of 32.3 ng·g− 1 
to 278.3ng·g− 1, 0.11 ng·g− 1 to 17.6 ng·g− 1, respectively 
(Fig. 2). The average %MeHg was 6.16%, with an average 
of 0.15–22.18%. THg and MeHg were 115.8 ng·g− 1 and 
5.42 ng·g− 1 in Hc, 87.29 ng·g− 1 and 9.69 ng·g− 1 in Mc, 
106.6 ng·g− 1 and 2.54 ng·g− 1 in Sc, and 93.19 ng·g− 1 and 
5.58 ng·g− 1 in Fc, respectively, depending on the type of 
wetland. Between groups, there are significant difference 
in THg, MeHg, and %MeHg (p < 0.05). Overall, THg con-
tents ranked as Hc > Sc > Fc > Mc, MeHg contents changed 

different wetlands. The correlation analysis was used to 
decipher relations between THg, MeHg, and %MeHg and 
multiple factors. The principal component analysis was 
used to group dimensionality reduction for multiple control 
factors. The random forest analysis was used to rank the 
factors controlling mercury methylation. We established a 
structural equation model to reveal the direct and indirect 
effects of DOM spectral signature on Hg methylation. The 
path coefficients were used to reflect the strengths of direct 
and indirect effects. All statistical analysis was carried out 
using the R (Version 4.2.1) software.

Fig. 2 Comparison of total mercury (THg), methyl mercury (MeHg), and rate of methylmercury formation (%MeHg) among different wetlands. 
(Hc stands for herb wetland, Sc stands for shrub wetland, Fc stands for forest wetland, Mc stands for moss wetland)
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material composition in this area, primarily comprising fatty 
chains.

Four components were extracted from the EEMs dataset 
by PARAFAC analysis. C1 (Ex/Em = 240, 260, 310/410; 
Fig. 3(1) and C2 (Ex/Em = 200/370; Fig. 3(2) belonged 
to the UV-like fullerene fluorescence (Peak A), which is 
mainly derived from degradation by wetland plants and is 
commonly used as an indicator of exogenous inputs. The 
C3 (Ex/Em = 230, 280/402; Fig. 3(4) belongs to fulvic acid 
like in visible light fluorescence (peak C) (He et al., 2015). 
The C4 (Ex/Em = 270, 310/470; Fig. 3(4) belongs to humic 
acid, which contains various functional groups capable of 
effectively adsorbing heavy metals (Liu 2022).

The FI values, which ranged from 1.4 to 1.9 across all 
wetlands (Fig. 3), suggest that there may be contributions 
from both external sources and microbial decomposition to 
DOM. All BIX values were below 0.8 in all samples, indi-
cating a low biological index of decomposition. All HIX 
values were less than 4, suggesting a relatively low degree 
of humification of DOM in the GKM region.

3.4 Correlation Analysis and Principal Component 
Analysis

THg exhibits a positive correlation with TC, TN, DOC, 
and A240/A420 at a significant level. Conversely, it shows 
a negative correlation with BIX and A253/A203 at a sig-
nificance level of p < 0.01. In contrast, MeHg concentra-
tion demonstrates positive correlations with DOC, TN, TC, 
A240/A420, A250/A365, and A465/A665 at a significant 

in the order of Mc > Hc > Fc > Sc, and %MeHg ranked as 
Mc > Hc > Fc > Sc.

3.2 Profile Distribution of THg and MeHg in 
Wetland Soils

In various wetland ecosystems, concentrations of THg, 
MeHg, and DOC exhibit variability across soil profiles 
(Fig S1-S4). Generally, within Hc, Sc, and Mc environ-
ments, THg levels show a decreasing trend with increased 
soil depth, with peak concentrations typically found in the 
topmost soil strata at the majority of test sites. Conversely, 
in Fc ecosystems, the greatest THg concentrations are iden-
tified in the lowermost soil layers. Across these wetland 
types, MeHg levels remain relatively stable, showing no 
marked variation with soil depth progression. In Hc, Mc, 
and Fc settings, DOC concentrations diminish as soil depth 
increases, with the highest levels present at the soil surface.

3.3 Spectral Characteristics of DOM

For DOM spectral characteristics, Fc exhibited the highest 
SUVA254 and SUVA260 values, while Mc demonstrated 
the highest A240/A420, A250/A365, and A465/A665 ratios. 
Hc, on the other hand, displayed the highest A253/A203 
ratio. Notably, all A250/A365 ratios in Mc exceeded 3.5, 
suggesting a predominance of fulvic acid with compara-
tively low molecular weight in the DOM. Additionally, the 
low A253/A203 values observed in GKM implied a simple 

Fig. 3 Excitation-emission matri-
ces (EEMs) of soil dissolved 
organic matter (DOM) from the 
GKM. (Ex and Em represent the 
excitation matrix and emission 
matrix)
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The PCA analysis revealed that the first two principal 
components collectively accounted for 46.2% of the total 
variance (Fig. 5). The PC1, which explained 30.7% of the 
total variance, was indicative of the potential influence of 
vegetation on both THg and MeHg, as evidenced by the pos-
itive loadings of TC and TN on PC1 (Wang et al., 2019a). 

level, while exhibiting negative correlations with FI, BIX, 
and A253/A203 at a significance level of p < 0.01. Further-
more, the percentage of MeHg is negatively correlated with 
FI at a significance level of p < 0.001, while displaying posi-
tive correlations with A240/A420, A250/A365, and A465/
A665 at a significance level of P < 0.001 (Fig. 4).

Fig. 5 PCA analysis for deciphering relations between total mercury 
(THg), methylmercury (MeHg) and multiple environmental factors. 
DOC, dissolved organic carbon; SOC, total carbon; TN, total nitro-
gen; SUVA254, degree of humification of DOM; SUVA260, hydropho-
bic components of DOM; A240/A420, intermolecular condensation of 

DOM; A250/A365, aromaticity index and Relative molecular mass; 
A465/A665, extent of polymerization of Benzene ring; A253/A203, 
complexity of material structure; FI, source of humus; HIX, humifica-
tion process of DOM; BIX, endogenous origin is contribution of DOM

 

Fig. 4 Relationships between total mercury (THg), methylmercury 
(MeHg), rate of methylmercury formation (%MeHg), Hg/C and envi-
ronmental factors. Square colors represented negative or positive rela-
tionships while square size meant the absolute values, the blank meant 
no significant correlations were observed. ***p < 0.001;**p < 0.01; 
*p < 0.05. DOC, dissolved organic carbon; SOC, total carbon; TN, total 
nitrogen; SUVA254, degree of humification of DOM; SUVA260, hydro-

phobic components of DOM; A240/A420, intermolecular condensa-
tion of DOM; A250/A365, aromaticity index and Relative molecular 
mass; A465/A665, extent of polymerization of Benzene ring; A253/
A203, complexity of material structure; FI, source of humus; HIX, 
humification process of DOM; BIX, endogenous origin is contribution 
of DOM
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TC and TN were also the main drivers affecting MeHg, indi-
cating that the plant-derived SOC played important roles in 
MeHg production (Xin et al. 2023). THg are less important 
for MeHg, indicating that MeHg in permafrost wetlands in 
the GKM mainly comes from exogenous input, and the his-
torical load and mineralization capacity of the soil itself has 
less influence on MeHg production (Liu et al. 2014).

4 Discussion

The THg content in the permafrost wetland soils of the 
GKM is approximately 2.7 times higher than the Chinese 
soil background value of 40 ng·g− 1, suggesting that the 
GKM wetlands function as a regional mercury sink. More-
over, THg and MeHg levels in the study area notably sur-
pass those observed in remote regions across Europe and the 
Arctic regions (Table 1). For instance, the average THg con-
tent in Northwestern Ontario stands at 162 ng·g− 1, with the 

The PC2, explaining 15.5% of the total variance, suggested 
the impact of DOM molecular characteristics on MeHg pro-
duction. This inference is supported by all spectral param-
eters displaying positive loadings on PC2, with SUVA254, 
representing the degree of DOM humification, exhibiting 
the largest positive loading. The humification level of DOM 
is known to facilitate Hg methylation (Ouellet et al. 2009). 
The PCA analysis corroborated the associations between 
THg, MeHg, %MeHg, DOM spectral attributes, and envi-
ronmental factors as indicated in the correlation analysis.

3.5 Random Forest Analysis

Random forest analysis showed that the structural charac-
teristics of DOM had the greatest effect on methylmercury 
content, followed by the effect of DOC, and thirdly the 
effect of the degree of DOM humification, and all of them 
reached a significant level (Fig. 6). The result was consistent 
with the study of Abdelhafiz et al. (Abdelhafiz et al. 2023). 

Table 1 Comparison of total mercury (THg), methylmercury (MeHg) and rate of methylmercury formation (%MeHg) between the Great Khingan 
Mountains (GKM) region and other sites
Locations THg(ng·g− 1) MeHg(ng·g− 1) %MeHg References
Arctic Fennoscandian 13 ∼ 210 0.17 ∼ 0.78 0.48 ∼ 6.1 Hudelson et al. 2020
Tibetan Plateau 14.8 —— —— Sun et al. 2017
Northwestern Ontario 162 0.6 ± 0.6 —— Mailman et al., 2005
Penobscot River marshes 100 2 ∼ 50 2 ∼ 8 Gilmour et al. 2018
Canadian boreal 117 0.31 0.23 Huang et al., 2023
Moor in Cornwallis Island 5.05 ∼ 51.75 0.02 ∼ 0.54 0.1 ∼ 0.6 Hudelson et al. 2020
Arctic surface sediments 24.30 0.11 0.03 ∼ 0.9 Lin et al. 2014
Arctic Ny-Ålesund 21 ∼ 48 0.65 ∼ 1.08 2 Jiang et al. 2011
GKM 111.1 5.69 6.16 The present work

Fig. 6 The random forest 
approach was used to calculate 
potential drivers of variation 
affecting mercury methylation. 
***p < 0.001; **p < 0.01; *p < 0.05. 
where structural is the value of 
the first principal component 
after principal component analy-
sis of A240/A420, A250/A365, 
and A465/A665, humification 
is the value of the first princi-
pal component after principal 
component analysis of SUVA254, 
BIX, and A253/A203. DOC, 
dissolved organic carbon; SOC, 
total carbon; TN, total nitrogen; 
THg, total mercury; MeHg, 
methylmercury
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DOM. PCA analysis partitioned the spectral features into 
two components. A250/A365, A240/A420, and A465/A665, 
indicative of the structural characteristics of DOM, reside 
on the positive load of PC1. Conversely, BIX and SUVA254, 
reflecting the degree of DOM humification, are positioned 
on the positive load of PC2. The minimal angle observed 
between Hg, FI, and BIX implies that mercury can form 
bonds with aromatic and humic-like components. The nega-
tive correlation observed between MeHg and FI as well as 
BIX suggests that exogenous DOM fractions are involved 
in complexation with Hg. This implies that Hg forms com-
plexes with aromatic and humic fractions, which contrib-
utes to the immobilization of mercury and subsequently 
decreases its bioavailability. The complexation of Hg with 
these specific DOM components can have significant impli-
cations for the environmental fate and toxicity of mercury. 
The minimal angle observed between MeHg and spectral 
features A240/A420 and A250/A365 suggests that at higher 
molecular weights, DOM facilitates the methylation of 
Hg2+ (Mitchell and Gilmour 2008). This phenomenon can 
be attributed to two main factors. Firstly, the hydrophobic 
acid fraction of DOM, including humic and fulvic acid frac-
tions, is significantly higher than the low molecular weight 
hydrophilic acid fraction (Ravichandran 2004). This higher 
content of reduced sulfur (comprising polysulfide, sulfide, 
and mercaptan groups) in the hydrophobic acid fraction, 
especially in the presence of strongly complexed thiols, 
promotes the methylation of mercury (Schaefer et al. 2011). 
In comparison to oxygen ligands, thiols, and disulfides are 
favored sites for the complexation of Hg with DOM (Mitch-
ell and Gilmour 2008). Additionally, the aromatic groups 
within DOM play a crucial role in promoting the release 
of insoluble mercury, thereby facilitating and enhancing the 
methylation of mercury. This underscores the significance 
of specific functional groups in DOM that contribute to the 
complexation and subsequent transformation of mercury 
species in the environment.

Level of mercury methylation dependent on THg/C 
ratios owing to the dominant roles of strong binding sites 
(e.g., thiol) at low THg/C and weak binding sites (e.g., oxy-
gen-containing functional groups including carboxyl and 
hydroxyl) at high THg/C. Therefore, various THg/C con-
centration ratios were used to reflect the different binding 
strengths of DOM to Hg2+ in this study (Wang et al. 2022). 
Figure 7 shows a positive correlation between THg/C, FI 
and BIX, this suggests that the higher the degree of humi-
fication of DOM and the higher the organic matter content, 
the stronger the methylation of mercury, possibly through 
stimulation of microbial activities via the availability of 
abundant electron donors (Barkay and Gu 2022). We can 
reasonably speculate that higher total carbon can Increase 
mercury levels in the soil by increasing Hg adsorption onto 

average MeHg content at a mere 0.6 ± 0.6 ng·g− 1. The THg 
concentrations in the GKM are six times higher than those 
found on the Tibetan Plateau, a disparity likely attributed to 
increased anthropogenic activities such as coal consumption 
and industrial emissions in regions like Heilongjiang and 
Inner Mongolia. In particular, the extensive coal combus-
tion in the GKM regions, occurring for more than 180 days 
per year, leads to significantly elevated atmospheric mer-
cury concentrations in the area. A prior study conducted at 
various urban sites in Changchun, northeastern China, span-
ning from July 1999 to July 2000, revealed annual mean 
atmospheric mercury concentrations ranging from 11.7 to 
18.4 ng·m− 3, one order of magnitude higher than the back-
ground concentrations in the Northern Hemisphere (Fichot 
et al., 2012), which finally deposited and cause high Hg 
pollution (Tomiyasu et al. 2020). THg content of the Arc-
tic Fennoscandian permafrost varied between 13 ng·g− 1 to 
210 ng·g− 1, which is similar to the GKM permafrost region. 
However, the proportion of MeHg to THg was lower in the 
Arctic Fennoscandian permafrost compared to the GKM 
permafrost region. This could be attributed to the cold cli-
mate and limited availability of bioavailable carbons in the 
Arctic, creating an unfavorable soil environment for the 
survival of certain methylating microorganisms like sulfate-
reducing bacteria (Shao et al. 2012).

From the correlation analysis, it can be seen that there 
is a significant positive correlation between methylmercury 
and DOC, which suggests that the higher the level of DOC, 
the higher the degree of mercury methylation in wetland 
ecosystems. It has been shown that DOC degradation and 
mercury methylation are coupled in anaerobic environments 
(Liu et al. 2016; Yang et al. 2016). The ability to degrade 
DOC can influence the activity and distribution of soil 
microorganisms, which in turn can affect net concentrations 
of MeHg (Christensen et al. 2018). For example, microbial 
communities regulated by DOC may influence MeHg pro-
duction. DOC levels have been reported to correlate signifi-
cantly with the relative abundance of microbial taxa such as 
Geobacteriaceae, a key taxon involved in MeHg formation 
(Wei et al. 2020). Although DOC plays an important role in 
MeHg production, it seems to be masked in some cases. In 
the tundra wetlands of the GKM, there was no significant 
correlation between %MeHg and DOC, probably because 
%MeHg was related not only to MeHg concentrations but 
also to total Hg concentrations (Drott et al. 2008).

The generation and degradation processes of DOM 
result in the formation of numerous functional groups. 
These groups play a pivotal role in regulating the mobility, 
bioavailability, and toxicity of mercury by influencing its 
adsorption and complexation with DOM (Bai et al. 2018). 
Consequently, it is imperative to investigate the impact 
of mercury methylation on the spectral characteristics of 

1 3

3798



Journal of Soil Science and Plant Nutrition (2024) 24:3791–3802

2018). Climate warming can impact soil conditions, leading 
to lower water content, higher bulk density, and increased 
pH, all of which contribute to enhanced soil organic mat-
ter decomposition and mercury emissions. In cold regions, 
where soil organic carbon is more susceptible to climate 
change due to microbial thermal adaptation, increased tem-
peratures may result in substantial carbon decomposition, 
leading to higher mercury release (Karhu et al. 2014; Mu et 
al. 2016). Additionally, the northward expansion of moss or 
forest into peatlands, driven by climate warming, can intro-
duce more biomass into soils. Considering these factors, it 
becomes crucial to focus on the generation of mercury and 
the transformation of methylmercury in the GKM as climate 
warming progresses. Monitoring these processes is essential 
for understanding the potential impacts on environmental 
mercury levels and associated risks.

The structural equation model (SEM) was established to 
reveal the direct and indirect effects of TN, SOC, DOC, and 
structural, humification, and THg on MeHg (Fig. 8). It is 
clear that TN and SOC are the main factors influencing the 
Hg content, suggests that Hg in the GKM is mainly derived 
from inputs from plant sources. MeHg in soil is mainly influ-
enced by a combination of structural characteristics and the 
degree of humification in DOM. They not only control the 
binding sites between Hg2+ and different functional groups 
but also influence microbial activities and species, thereby 
controlling the methylation of mercury in soil. Figure 8 
shows that THg has less effect on MeHg, this might imply 
methylmercury in the Greater Khingan Mountains is mainly 
imported from external sources, this is consistent with the 
previous conclusion. Based on the SEM model results, it is 
inferred that the MeHg content in GKM is mainly affected 

sediment organic matter, particularly the reduced sulfur 
groups in organic matter, which in turn promotes soil Hg 
methylation (Skyllberg et al. 2003). Both FI and BIX values 
indicate that soil DOM in GKM is dominated by exogenous 
inputs, most of which come from the transformation of 
organic matter. Theoretically, exogenously imported DOM 
has more hydrophobic components and higher molecular 
weights than endogenously imported DOM, which may pro-
vide more binding sites, especially sulfate groups such as 
thiols (Jiang et al. 2018). Humic-type DOM exhibits higher 
binding capacity. Previous studies have reported that the 
hydrophobic components of DOM, especially humic mol-
ecules, have higher content of reduced sulfur (e.g., sulfides 
and thiols), resulting in a preferential affinity for mercury, 
which is consistent with the findings of this paper.

Interestingly, MeHg levels and the percentage of MeHg 
were found to be highest in the wetlands of the Mack area 
and lowest in the Sc wetlands. One plausible explanation 
for this variation is that the absence of a root and cuticle 
layer system in the mosses makes their cell walls easily 
accessible to mercury ions, leading to extensive absorption 
across the entire surface (Adediran et al., 2019). Mosses 
have the capacity to accumulate heavy metals through 
both intracellular and extracellular processes. These dis-
tinctive characteristics render them ideal biomonitors for 
atmospheric pollutants, including mercury (Li et al., 2020). 
Certainly, the moist environment and the evergreen nature 
of moss contribute to the accumulation of organic matter, 
creating favorable conditions for the methylation of mer-
cury (Wang et al. 2019b). Studies have reported a strong 
positive relationship between soil mercury emission and 
methylmercury production with temperature (Ci et al. 

Fig. 7 Correlation analysis between THg/C and FI and BIX. (THg/C were used to reflect the different binding strengths of DOM to Hg2+; FI, 
source of humus; BIX, endogenous origin is contribution of DOM)
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