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Abstract
Climate change poses considerable challenges to global crop production, manifesting in harsh abiotic stresses like drought, 
high temperatures, and extreme weather events. These adversities exacerbate food insecurity, hunger, and poverty, particu-
larly impacting vulnerable communities in underdeveloped countries. Amid this pressing scenario, a pivotal shift towards 
resilient crops capable of withstanding such environmental strains is imperative. Sorghum emerges as a promising climate-
smart crop, uniquely equipped to endure adverse climatic conditions, and address nutritional needs. This review critically 
assesses the landscape of sorghum resilience amidst climate change and outlines its multifaceted role in bolstering food 
security and alleviating hunger. It goes beyond prior studies by emphasizing specific gaps in understanding sorghum’s 
adaptability to diverse abiotic stresses and its underexplored potential in mitigating food crises. Notably, it delves into novel 
perspectives, such as the efficacy of biostimulants in enhancing sorghum resilience and the cultivation of sweet sorghum for 
biofuel production in marginal lands. By elucidating the unmet potentials and highlighting avenues for harnessing sorghum’s 
resilience, this study aims to catalyze informed strategies for combating the deleterious impacts of climate change on global 
food security and hunger.

Keywords Biostimulants · Drought · Food security · High temperature · Salinity

1 Introduction

Throughout history, sorghum crops have been utilized glob-
ally for sustenance and as animal feed. Due to the growing 
interest in sorghum as a nutritional option for humans, recent 
literature analyses emphasize its valuable nutrients, active 
components, potential health benefits, and its gluten-free 
characteristic (Mohamed et al. 2022; Aguiar et al. 2023). 
To meet the increasing food requirements of the continu-
ously expanding population, projected to exceed nine bil-
lion by 2050, a critical imperative exists to enhance cereal 
production by approximately 70% (Neupane et al. 2022). 
The disparity in agricultural productivity remains a subject 
of concern (Mundia et al. 2019). This difference may be 
attributed to various factors, including but not limited to 
adverse weather conditions, suboptimal farming practices, 
input choices, crop diversification, and the prevalence of 
crop diseases and insect pests. Food demand is expected to 
surge by 30 to 50% in the next 30 years (Hadidi et al. 2023).

Sorghum, a staple food in many impoverished coun-
tries of South Asia and Africa (Chadalavada et al. 2021), 
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is primarily cultivated in Africa, followed by America 
(FAOSTAT 2023) (Fig. 1). Sorghum bicolor L. Moench, a 
cultivated type, is known for its self-pollination and pos-
session of a C4 photosynthetic pathway, contributing to its 
high photosynthetic efficiency (Goyal et al. 2020). It exhibits 
efficient utilization of nitrogen resources and produces sub-
stantial biomass (Tu et al. 2023). Sorghum and millets offer 
diverse variations, making them more nutritionally superior 
and resilient to challenging ecological conditions compared 
to maize (Hassan et al. 2021). Given climate change, pop-
ulation growth and urbanization in Asia and Africa, it is 
crucial for sorghum and millets to play a pivotal role in the 
global food system. Sorghum exhibits resistance to various 
abiotic stresses such as drought and salinity (Sharma and 
Joshi 2022) but has not received substantial research funding 
(George et al. 2022). As reported by Proietti et al. (2015), 
sorghum cultivation is primarily concentrated in regions 
where other food crops encounter performance challenges. 
This crop demonstrates the ability to thrive in areas where 
maize and other major cereal crops fail or are less suitable 
due to constraints imposed by climate and soil conditions 
(Rao et al. 2016). It can be grown with minimal resources 
and flourishes in arid and hot environments (Prabhakar et al. 
2022). Moreover, it offers higher nutritional value, making 
it a preferable choice for utilization and exploitation (Khod-
dami et al. 2021). Aside from its role in human nutrition, it 
is also being utilized as a feedstock for producing bioethanol 
(Mubarak Alqahtani 2023).

Meeting the nutritional needs of the rapidly expanding 
global population amidst the profound impacts of climate 
change on the global food system represents a significant 
and intricate challenge. Climate change has far reached 
consequences, intensifying and increasing the frequency 

of phenomena such as precipitation, droughts, soil deg-
radation, and sea level rise (Chadalavada et al. 2021). 
Undoubtedly, these events significantly affect the global 
agricultural system, resulting in various dimensions of 
food insecurity, including availability, stability, access, 
and utilization (Peng and Berry 2019). The Intergovern-
mental Panel on Climate Change (IPCC 2018) projected 
that about 122 million individuals could be pushed into 
extreme poverty due to global warming by 2030. The 
anticipated population surge will strain the primary pro-
duction sector, particularly agriculture, as it endeavors to 
meet the rising food demands of the growing population. 
The global impact of climate change, alongside the ongo-
ing decline in arable and fertile land, creates a challenging 
scenario where fulfilling the world’s food demand using 
current agricultural practices becomes increasingly dif-
ficult, if not nearly impossible (Kumar et al. 2022).

According to the report of FAO, IFAD, UNICEF, WFP, 
and WHO (2021), global hunger notably increased in 
2020 due to the COVID-19 pandemic. This surge signifi-
cantly affected around 21%, 9%, and 9.1% of the popula-
tion in Africa, Asia, and Latin America and the Carib-
bean, respectively. The report underscores the urgency 
of implementing robust strategies to accelerate progress, 
particularly in addressing food accessibility disparities. 
Failing to do so is likely to hinder the achievement of the 
goal to eliminate hunger by 2030. Additionally, the report 
highlights how the COVID-19 pandemic has worsened 
the already slow progress towards ending hunger, with 
its future impacts expected to unfold in the coming years. 
The report suggests that countering the effects of the pan-
demic on human health requires the implementation of 
exceptional measures.

Fig. 1  Production share of sorghum a by region and b top ten sorghum-producing countries in the world (FAOSTAT 2023)
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The integration of the alternative crops into the global 
food system is pivotal for adequately addressing the nutri-
tional needs of individuals affected by malnutrition, while 
also considering their capacity to thrive amidst climate 
change challenges (Feyisa 2022). Presently, sorghum 
emerges as a prime contender due to its resilience to adverse 
climatic conditions and its ability to flourish in marginal 
lands (Chadalavada et al. 2021). These advantageous traits 
enable its cultivation without encroaching upon the space 
allocated for other primary cereal crops. Moreover, sorghum 
exhibits significant promise in fulfilling global nutritional 
needs. The primary objective of this review is to assess the 
current global status of food security and hunger, empha-
sizing the exploration of sorghum’s potential in alleviating 
the issues associated with food insecurity and hunger in the 
context of climate change.

1.1  Justification of the Review

Several studies have indicated that small grains outperform 
maize concerning drought-resistance and yield in semi-arid 
regions (Svodziwa 2020). The existing unfavorable mac-
roeconomic conditions, along with consecutive years of 
drought, have led to severe food security concerns that are 
increasingly worrisome (Wudil et al. 2022). Moreover, the 
COVID-19 pandemic further exacerbates this situation. The 
current circumstances offer an ideal opportunity to intro-
duce new technologies and underutilized crops to tackle the 
urgent problem of food insecurity and hunger, considering 
the significant influence of climate change. Sorghum, in this 
context, emerges as a wise choice and holds the potential to 
substantially contribute to sustaining food and nutrition in 
regions grappling with persistent challenges posed by cli-
mate change.

2  Abiotic Stresses and Agriculture

The alterations of climatic patterns stand as a significant 
and persistent global concern affecting both the present and 
future state of the world. Climate change, a multifaceted 
issue primarily characterized by atmospheric  CO2 concen-
trations exceeding 400 ppm, has the potential to induce 
various effects. These effects include heightened air tem-
peratures, abrupt fluctuations in annual, seasonal, and daily 
temperatures, shifts in precipitation patterns, increased frost 
occurrences, and prolonged drought periods (Patterson et al. 
2013). The phenomenon of climate change is expected to 
significantly impact different aspects of agriculture, such 
as crop production, soil characteristics, water utilization, 
and livestock. (Datta et al. 2022). Global food demand is 
being driven to its maximum due to a continually growing 
population. Improving crop productivity per unit of land area 

represents the most viable approach to achieving sustainable 
food security. However, the full potential productivity of 
numerous crops on a global scale remains unachievable due 
to various adverse conditions and inadequate management 
practices (Saharan et al. 2022).

The primary factors significantly affecting crop yield 
include weather-related challenges, such as elevated temper-
atures, elevated carbon dioxide levels, and excessive precipi-
tation. Climate change can substantially impact crop produc-
tion, altering the timing of planting and harvesting, as well 
as environmental conditions for plant growth (Nkwi et al. 
2023). The effects of climate change on crop production 
involve changes in temperature and precipitation patterns, 
increased frequency, and intensity of extreme weather events 
like droughts, floods, and storms, proliferation of pests and 
diseases, alteration in soil moisture and temperature, and 
shifts in water availability (Fig. 2). These changes have the 
potential to cause food security and financial setbacks for 
agricultural producers. Additionally, climate change influ-
ences the interaction between plants and pathogens, affecting 
various aspects such as plant life, the development of host 
resistance, disease severity, the emergence of new pathogen 
types, and the pathogenicity of the pathogens (Raza and 
Bebber 2022).

Climate change is projected to significantly impact 
global cereal crop production by 2100. Specifically, sub-
stantial reductions in yields are anticipated for crucial cereal 
crops like maize, wheat, and rice. The projected decrease 
in production for wheat is almost 72%, and 45% for maize 
and rice (Adhikari et al. 2015). To counteract the adverse 
effects of climate change on crop production, implement-
ing adaptation strategies and mitigation measures is crucial 
(Wijerathna-Yapa and Pathirana 2022). Healthy soils act as 
a natural reservoir of essential plant nutrients and play a 
pivotal role in achieving improved agricultural productivity 
(Gerke 2022). Fluctuations in environmental conditions due 
to climate change, such as increased erosion, compaction, 
reduced soil health, and lowered productivity, have signifi-
cant implications for soil (Lal et al. 2011). Consequently, 
this can affect food security, biodiversity, and the overall 
ecological health of the planet. Increased  CO2 levels have 
been linked to soil acidification, altering soil pH levels and 
subsequently diminishing fertility, negatively impacting 
plant growth (Lal et al. 2011).

Increasing temperatures have the potential to accel-
erate decomposition and the cycling rates of nutrients, 
potentially causing changes in both the levels and struc-
ture of soil nutrients. Elevated temperatures may signifi-
cantly impact diversity and spatial arrangement of soil 
microorganisms, which play a crucial role in maintain-
ing soil health (Barreiro et al. 2020). Changes in pre-
cipitation patterns, such as increases instances of intense 
rainfall or prolonged arid periods, can contribute to soil 
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erosion, heightened runoff, and reduced water infiltra-
tion into the soil. This has the potential to degrade soil 
quality and subsequently deteriorate its ability to retain 
water and essential nutrients. Alterations in precipitation 
patterns may also lead to changes in the distribution and 
diversity of soil microorganisms, thereby significantly 
affecting the overall health and productivity of the soil 
(Pareek 2017).

Heat and drought are recognized as significant abiotic 
stresses impacting crop yield and productivity (dos San-
tos et al. 2022) and have been observed to decrease farm 
income and agricultural benefits. In the African region, 
the cowpea crop, holding significant agricultural value, 
faces adverse effects from drought stress, leading to a 
marked decline in yields ranging from 34 to 68% (Farooq 
et al. 2017). Drought stress induces various physiological 
changes such as reduced photosynthetic activity, fluctua-
tions in cell wall elasticity, and stomatal closure. The nutri-
tional status of crops is influenced by drought, affecting 
ion concentration in plant tissues. Reduced moisture levels 
decrease soil nutrients diffusion to root surfaces (Younis 
et  al. 2018), impacting nutrient composition, manage-
ment, and biosynthetic capacity, ultimately impeding or 
halting plant growth. Certain abiotic stresses trigger an 
overproduction of reactive oxygen species (ROS), which 
possess toxic properties and damage biomolecules like car-
bohydrates, lipids, nucleic acids, and proteins, negatively 

affecting plant growth (Zlatev and Lidon 2012). Inadequate 
water supply and elevated temperatures can also detrimen-
tally affect the transpiration and stomatal conductance of 
plant leaves (Król 2013). Currently, 91% of the global agri-
cultural sector faces various stresses, with these stresses 
accounting for about 50% of the overall decline in agricul-
tural production (Younis et al. 2020).

Heat stress is strongly associated with temperature fluc-
tuations. Increases in air and soil temperatures surpassing 
tolerance thresholds can adversely affect crop growth and 
development (Zhao et al. 2017). The rise in global tempera-
tures is a significant climatic concern, potentially impacting 
plant production and crop growth worldwide (Bibi and Rah-
man 2023). Heat stress has been found to result in reductions 
in seed germination, photosynthetic activity, and crop yields 
(Lamichaney et al. 2021; Ullah et al. 2021; Zahra et al. 
2023). Elevated temperatures have the potential to hinder 
pollen grain swelling, leading to reduced pollen vitality and 
anthers’ potential indehiscence (Ullah et al. 2021). Elevated 
levels of stress have the potential to become unmanageable, 
leading to plant mortality (Fig. 3). Achieving freedom from 
stress is an unattainable goal. Thus, it is observed that plants 
demonstrate metabolic reactions and produce distinct mol-
ecules as a means of adapting to challenging environmental 
conditions (Rupnarayan 2017) Currently, only 10% of crop 
production originates from agricultural lands in non-stressed 
regions. The remaining 90% is currently facing one or more 

Fig. 2  Major abiotic stresses and their effects on crops. ROS, reactive oxygen species; ABA, abscisic acid



78 Journal of Soil Science and Plant Nutrition (2024) 24:74–101

1 3

environmental stressors (Younis et al. 2020). Plants con-
tinuously adapt to abiotic stress through biochemical, physi-
ological, molecular, and phenotypic mechanisms. However, 
there is an ongoing need for further efforts aimed at enhanc-
ing stress tolerance through genetic enhancement of plant 
defenses, advancement of resource conservation technolo-
gies, and implementation of alternative strategies.

3  Role of Sorghum in Changing Climate

Climate change poses a significant threat to global food 
security due to its profound impact on agricultural produc-
tivity. Recent global average values for the mole fraction of 
 CO2 were recorded at 413.2 ± 0.2 ppm (Bennedsen et al. 
2019). Similarly, Jiang et al. (2019) reported that the mean 
surface mole fraction values for  N2O and  CH4 were 333.2± 
0.1 and 1889± 2 ppb, respectively. These findings indicate 
that as of 2020, these concentrations reached their highest 
levels (Jiang et al. 2019). Moreover, the values exhibit an 
increase of 149%, 123%, and 262% in comparison to the 

pre-industrial values, which specifically refer to the period 
prior to 1750 (WMO 2021). Long-lived greenhouse gases 
surged by 47% from 1990 to 2020, with notably,  CO2 
accounting for nearly 80% of this increase (Butler 2020), 
contributing to the escalating global temperatures (Fig. 4). 
Climate change has significantly impacted crops in arid and 
semi-arid regions, leading to widespread food insecurity 
and malnutrition for millions in these areas (Chadalavada 
et al. 2021). Sorghum and certain millet varieties have been 
identified as potential catalysts for a sustainable agricultural 
transformation, referred to as the “harbingers of ever green 
revolution,” owing to their versatility, adaptability, and 
drought resistance (Chaturvedi et al. 2022).These climate-
smart crops have shown the ability to yield substantial bio-
mass, emphasizing the need to integrate small grains such 
as millets, sorghum, and rapoko into the conventional food 
chain to bolster food security in the face of climate change 
(Phiri et al. 2019).

Underutilized crops like sorghum and amaranth could serve 
as viable alternatives for food production due to their untapped 
potential in mitigating climate change effects (Ichsan et al. 

Fig. 3  Different abiotic stresses and their physiological and biochemical effects on plants (Tripathi et al. 2015). UV, ultraviolet; ROS, reactive 
oxygen species
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2021). Sorghum, in particular, demonstrates a higher carbon 
dioxide absorption rate 50–55 tons per hectare annually, sur-
passing other cereal crops (3–10 tons per hectare) as well as 
forests (16 tons per hectare) (Popescu et al. 2018). Addition-
ally, its greater capacity for oxygen release positions sorghum 
as an environmentally sustainable crop (Popescu et al. 2018). 
With global food security becoming increasingly precarious 

due to rising population and climate change impacts (Lesk 
et al. 2016), urgency mounts to accelerate plant breeding meth-
ods and discover new traits to enhance yield and adaptability 
to abiotic stresses. This imperative is driven by the projected 
decline in crop productivity resulting from both climate change 
and rapid population growth, essential to ensuring future food 
availability and security (Abdelrahman et al. 2017).

Fig. 4  a Increase in various greenhouse gases from 1984 to 2021 (WMO 2022). b Annual global surface temperature (1880–2020). Obtained 
from: https:// earth obser vatory. nasa. gov/ world- of- change/ global- tempe ratur es, accessed on 15 July 2023

https://earthobservatory.nasa.gov/world-of-change/global-temperatures
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4  Sorghum Performance Under Abiotic 
Stresses

4.1  Drought

Drought is widely acknowledged as one of the most dev-
astating natural disasters, significantly impacting global 
crop productivity (Prasad et al. 2021; Abd El Mageed et al. 
2023). Projections further indicate an expected escalation 
in both the frequency and severity of drought events in 
the upcoming years (IPCC 2013). Wilhite (2000) asserts 
that drought accounts for roughly 20% of the overall dam-
age caused by natural hazards worldwide. In addition to 
its detrimental effects on agricultural production, drought 
yields enduring economic and social consequences. These 
encompass migration (Gray and Mueller 2012), poverty, 
civil unrest and conflicts (Von Uexkull 2014), famine, 
gender disparities (Fisher and Carr 2015), adverse health 
effects (Ebi and Bowen 2016), and reduced hydro-energy 
generation (Shadman et al. 2016). It is widely acknowl-
edged as a significant contributor to food insecurity. Pro-
longed periods of low precipitation and aridity in regions 
with limited rainfall pose a considerable challenge to 
agricultural practitioners, intensifying the state of food 
insecurity (Ayanlade et al. 2018). This challenge is exac-
erbated by ongoing alterations in global climate patterns 
(Sakadzo and Kugedera 2020). Projections suggest that 
nearly two billion individuals will face the consequences 
of water scarcity by 2025 (Nellemann et al. 2009). When 
compounded by the effects of global warming, this issue 
is anticipated to present significant challenges in urban 
regions (IPCC 2014a).

Sorghum is esteemed as a more fitting option in semi-
arid regions due to its adaptability and eco-compatibility, 
demonstrated by its potential for drought resistance (Dube 
et al. 2018). Considering the dwindling water resources 
and the increasing global population, it becomes evident 
that small grains like sorghum will increasingly become 
a preferred choice for human consumption in the future 
(Chazovachii 2012). Sorghum displays a higher capac-
ity to endure water scarcity compared to many other 
cereal crops, and it can thrive in various soil conditions 
(Mohamed et al. 2022). This crop has been utilized due to 
its heightened ability to withstand water stress as a sec-
ond harvest in areas characterized by arid climates, where 
cultivating another annual crop presents challenges (de 
Almeida et al. 2019). The plant is renowned for its excep-
tional agronomic traits, including its capability to flourish 
in diverse environmental conditions such as arid climates, 
high altitudes, extreme temperatures, infertile soils, as 
well as alkaline and saline soil compositions (Xiong et al. 
2019). These attributes of sorghum can be ascribed to its 

extensive root system characterized by a high ratio of roots 
to leaves and its leaves possessing waxy surface that ena-
bles them to curl in response to external stimuli (Rooney 
and Waniska 2000). In situations of severe drought, where 
maize crops might fail, it has been observed that small 
grain crops like sorghum and millet can still yield a certain 
amount for subsistence purposes.

Drought tolerance characteristics can be classified as con-
stitutive, representing inherent qualities or adaptive, denot-
ing traits expressed in response to stress (Kamal and Ahmad 
2022). Sorghum’s ability to endure drought conditions can 
be credited to various morpho-physiological factors (Fig. 5). 
These factors encompass stay green traits, a deep rooting 
system, enhanced water utilization efficiency, C4 photosyn-
thesis, the capacity for homeostasis, and a high epicuticu-
lar wax coating (Yigit et al. 2016; Tiwari et al. 2021). The 
term “stay-green” describes a plant’s capability to endure 
water scarcity after flowering, thus preventing premature leaf 
senescence during the grain filling stage, especially under 
severe moisture stress (Hossain et al. 2022). This trait sig-
nificantly enhances crop productivity and ensures consistent 
crop yields in limited moisture conditions.

It is believed that epicuticular wax (EW) possesses advan-
tageous characteristics contributing to stress tolerance includ-
ing resistance to salinity, drought, and disease (Ahmad et al. 
2020). Wax secretion and deposition are influenced by a 

Fig. 5  Plants signal defenses against a variety of biotic and abiotic 
stressors. ROS, reactive oxygen species; ABA, abscisic acid; SA, 
salysilic acid; JA, jasmonic acid; ET, ethylene; MAP, mitogen-acti-
vated protein kinases; MYC, master regulator of cell cycle; MYB, 
Myb proto-oncogene protein; HSF, heat shock transcription factor
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multitude of factors, including species, organ type, devel-
opmental stage, and prevailing environmental conditions. 
Despite significant variations in its content and structure, the 
hydrophobic nature of EW remains predominant (Dalal et al. 
2012). Sorghum stands out among cereal crops due to its 
remarkable capacity for producing a substantial quantity of 
EW on both its abaxial leaf blade and sheath, particularly in 
the initial stages of reproduction. Sorghum wax demonstrates 
the most significant accumulation of free fatty acids, ranging 
from a carbon chain length of 16 to 33 (Jenks et al. 2000).

Burow et  al. (2009) identified an acylCoA oxidase 
gene, that functions in lipid and wax synthesis along 
with seven other potential transcripts within the BLOOM-
CUTICLE (BLMC) region of sorghum. The substantial 
EW layer aids in reducing non-stomatal water loss in 
plants and enhances sorghum’s water use efficiency by 
regulating nocturnal water loss (Burow et al. 2008). The 
ability of plants to endure and tolerate drought conditions 
is closely linked to two primary traits, namely osmotic 
adjustment (OA) and antioxidant capacity (Fig. 6). OA 
involves the accumulation of osmolytes like amino acids 
(e.g., proline), sugars (e.g., sucrose and fructans), polyols 
(e.g., mannitol and pinitol), quaternary amines (e.g., gly-
cine betaine), ions (e.g., potassium), and organic acids as 
response to water deficits and is a heritable characteristic 
(Ahmad and Kamal 2021). In sorghum, the regulation 
of OA is governed by two main genes, namely OA1 and 
OA2, alongside other genes that exerts relatively minor 
effects (Basnayake et al. 1995).

Glycine-betaine (GB) is a well acknowledged osmo-
protectant that contributes to enhancing abiotic stress 
tolerance (Kamal and Ahmad 2022). Wood et al. (1996) 
demonstrated the upregulation of two genes, namely 
BADH1 and BADH15, responsible for encoding betaine 
aldehyde dehydrogenase in sorghum plants experienc-
ing limited water availability. This upregulation posi-
tively associated with the deposition of GB. Proline, an 
osmolyte accumulating in response to abiotic stresses. 
P5CS (EC 2.7.2.11), is an enzyme commonly known as 
D1-pyrroline-5-carboxylate synthetase. It plays a piv-
otal role in regulating proline biosynthesis. Two closely 
related P5CS genes, SbP5CS1 and SbP5CS2, were iso-
lated from sweet sorghum. These genes are located on 
chromosomes 3 and 9, respectively. Under conditions of 
limited water availability, the expression of these genes 
increased (Su et al. 2011). In a recent study, 80 genes 
responded differentially to drought stress in genotypes 
that exhibit resistance to drought. Among these, about 
70% exhibited upregulation while 70 genes were novel 
with presently unknown functions. Among these genes 
are several uncharacterized proteins associated with 
drought tolerance during the seedling stage (Abdel-
Ghany et al. 2020). It is crucial to implement robust poli-
cies and governmental assistance to promote sorghum 
cultivation due to its superior performance in challenging 
environmental conditions compared to maize (Nciizah 
et al. 2021). Various drought tolerant sorghum genotypes 
are given in Table 1.

Fig. 6  Process of plant drought-tolerance ATP, adenosine triphosphate ROS, reactive oxygen species; SOD, superoxide dismutase; POD, peroxi-
dase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; ABA, abscisic acid
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4.2  High temperature

High temperatures and drought are recognized as the 
two primary abiotic stresses that adversely affect crop 
growth, development, and yield (Abdelrahman et  al. 
2020; Mohamed et al. 2019). Crop production faces sig-
nificant constraints due to high temperatures, specifi-
cally when they surpass the optimal range (Fig. 7). Such 
elevated temperatures detrimentally impact the regular 
physiological growth and development of crops (Prasad 

et al. 2021). Projections indicate a global air temperature 
increase of approximately 3.7–4.8 °C by the end of this 
current century (IPCC 2014b). This increase is primar-
ily linked to the escalation of greenhouse gases, with 
particular concern surrounding  CO2 (Frank et al. 2015). 
Furthermore, the upward trend in average atmospheric 
temperature, coupled with frequent occurrences of high 
temperatures, poses a significant threat to the global food 
system, thereby adversely affecting both global and local 
food security (IPCC 2014a). In contrast to other cereals, 

Table 1  A list of some drought-tolerant sorghum genotypes

Genotype Year of release Country References

Seredo 1970 Kenya Timu et al. (2014); Maluk (2018)
Serena 1975 Kenya Timu et al. (2014); Maluk (2018)
Gadam 1982 Kenya/South Sudan Mwadalu and Mwangi (2013); 

Timu et al. (2014)
Tengemeo 1986 Tanzania Wambugu and Kamanga (2014)
Macia/phofu 1999 Tanzania/Kenya/Namibia Saadan et al. (2000)
Yarwasha 2003 ARC Sudan Osman (2007); Smale et al. (2018)
Gadam El Hamam 2004 South Sudan/Sudan/Kenya CIAT et al. (2011)
PAHAT, SAMURAI 1 and SAMURAI 2 2006 Indonesia Sihono (2010); Human et al. (2011)
ArfaGadamak8 2009 ARC Sudan Osman (2007); Smale et al. (2018)
RSC02-3seL(bulk) to RSC149-3sel(bulk) 2012 USDA-ARS Klein et al. (2013)
IESV 92043 DL 2017 KALRO, Kenya/Somalia/Zimbabwe Maluk (2018)
SAMSORG 47 2018 Nigeria GLDC (2018); ICRISAT (2019)
SAMSORG 48 2018 Nigeria GLDC (2018); ICRISAT (2019)
SAMSORG 49 2018 Nigeria GLDC (2018); ICRISAT (2019)

Fig. 7  Some adverse effects of high temperatures on morphological, physiological, and yield attributes of sorghum
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sorghum shows a greater capacity to withstand elevated 
temperatures and demonstrates resilience in environments 
surpassing 38 °C (Ichsan et al. 2021). Sorghum is com-
monly cultivated in semi-arid regions characterized by 
excessively hot or dry conditions, which presents limita-
tions for successful maize cultivation (Ichsan et al. 2021). 
Growing sorghum in regions with elevated temperatures 
may be a prudent choice due to its heat tolerance, poten-
tially enabling a harvestable yield in situations where 
other crops could face complete yield loss (Akinseye 
et al. 2020).

Sorghum genotypes demonstrating accelerated seed fill-
ing rates and prolonged duration within the physiological 
maturity period, while experiencing heat stress, hold the 
potential to produce higher yield. Additional character-
istics linked to heat stress tolerance in sorghum, such as 
early morning flowering and canopy temperature depres-
sion, have also been reported (Prasad et al. 2019). The 
presence of early morning flowering allows plants to avoid 
or escape high temperatures that typically arise later in 
the morning (Prasad et al. 2021). The ability of plants to 
alleviate high temperatures within their canopies is a trait 
that shows promise in preventing elevated temperatures in 
plant tissues (Prasad et al. 2021). In their study, Mutava 
et  al. (2011) successfully identified various sorghum 
genotypes exhibiting cooler canopies (escaping heat) and 
higher canopy temperatures (tolerating heat), resulting in 
increased grain yield. Multiple crop characteristics con-
tribute to this observed tolerance including pollen traits 
and the pollination process. Tack et al. (2017) asserts that 
the pollination process in sorghum plays a pivotal role in 
enhancing sorghum’s heat stress tolerance.

Self-pollination in sorghum reduces the distance pollen 
grains travel, thereby limiting their exposure to elevated 
temperatures. Sorghum’s abundant pollen production 
from panicles enhances the likelihood of pollen survival 
compared to other crops. According to Khalifa and Elta-
hir (2023), the early-morning dispersion of pollens aids 
sorghum in minimizing exposure to daytime heat. Vari-
ous traits associated with this crop’s capacity to endure 
high temperatures include variations in transpiration rate 
throughout the day, adjustment in seed filling rates and 
duration, and mechanisms that lower canopy temperature. 
Despite sorghum’s commendable attributes for heat stress 
tolerance, it is important to acknowledge that excessively 
high temperatures can negatively impact crop development 
(Tack et al. 2017). The incidence of heat stress holds the 
potential to significantly reduce sorghum yield (Prasad 
et al. 2015). Consequently, the anticipated climate change 
induced heat stress might adversely affect sorghum pro-
ductivity in regions where temperatures already exceed or 
approach the optimal range particularly in arid and sub-
arid regions. On the contrary, there is evidence suggesting 

that climate change could push regions with sub-optimal 
temperatures towards the optimal temperature range, aid-
ing in the growth and development of crops (Choi and 
Eltahir 2023).

4.3  Waterlogging

Waterlogging stands as a prominent abiotic stress factor, 
posing a significant threat to agricultural endeavors. Over 
recent decades, there has been a global upsurge in waterlog-
ging incidents within agricultural areas (Kaur et al. 2020). 
This surge is chiefly attributed to the heightened frequency 
and unpredictability of rainfall events, themselves outcome 
of climate change (Hirabayashi et al. 2013). It has been 
observed that in the USA, crop production losses due to 
flooding have ranked second in frequency, following only 
drought, in recent years (Li et al. 2019). The anticipated 
escalation of these incidents is forecasted as a direct result 
of the global climate change phenomenon, imposing con-
straints on crop production across different regions world-
wide (Ploschuk et al. 2020).

Sorghum, known for its robust tolerance towards adverse 
environmental conditions, is commonly cultivated in regions 
with low elevation and inadequate drainage (Huang 2018), 
making it susceptible to waterlogging-induced stress. Sor-
ghum can withstand temporary waterlogging (Matsuura 
et al. 2016) better than other crops like maize (Von Haden 
et al. 2021). Nevertheless, there are notable differences in 
waterlogging susceptibility among different sorghum cul-
tivars (Müller et al. 2020). For instance, sorghum cultivars 
with extensive root growth may not be well-suited for cul-
tivation in regions prone to flooding (Promkhambut et al. 
2011). Waterlogging affects sorghum roots extension (Mat-
suura et al. 2005), root functionality (Zhang et al. 2019), and 
impeding nutrients and water uptake due to decrease oxy-
gen availability (Ahmed et al. 2013). The alteration in leaf 
water content can reduce photosynthesis capacity (Zhang 
et al. 2019), ultimately affecting overall crop productivity.

The impact of waterlogging on plants is influenced by 
various factors such as genotype, environmental circum-
stances, developmental stage, and the duration of the water-
logging. The waterlogging tolerance mechanism in sorghum 
encompasses several key aspects, notably an increased rate 
of seedling emergence (Von Haden et al. 2021). Addition-
ally, sorghum exhibits a higher tolerance of seed germination 
to anoxia, the absence of oxygen, which contributes to its 
ability to withstand waterlogging (Alam et al. 2017). Fur-
thermore, sorghum shows a greater tendency for tillering, 
producing additional shoots from the base of the plant as a 
response to waterlogging stress (Alam et al. 2017). Another 
adaptation of sorghum to waterlogging involves the develop-
ment of adventitious and nodal roots (Matsuura et al. 2005). 
It has been observed that sorghum copes with waterlogging 
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stress by adjusting leaf chlorophyll levels and modifying 
fluorescence parameters (Zhang et al. 2019). It has been 
proposed that the impact of waterlogging on sorghum yield 
depends primarily on the development stage during exces-
sive moisture stress rather than solely on its duration. Never-
theless, the longer the waterlogging persists, the more severe 
the detrimental effects on sorghum become.

4.4  Salinity

The excessive salt content in sorghum farming is becom-
ing a global concern across various regions (Dawood et al. 
2022). According to Wang et al. (2014), the expression of 
the SbHKT1, 4 gene family, which encodes high-affinity 
potassium transporters, is significantly increased in salt-tol-
erant sorghum varieties when they are exposed to sodium 
ions  (Na+). This leads to an enhanced  Na+/K+ ratio and pro-
motes optimal plant growth. Dalal et al. (2012) assert that 
salinity restricts plant growth due to nutritional constraints, 
ion toxicity, and osmotic stress. Although sorghum is com-
monly considered to have moderate tolerance, it is more 
vulnerable to certain factors compared to maize. Notably, 
sweet sorghum exhibits a significant level of salt tolerance 
(Sui et al. 2015).

The process of seed germination plays a crucial role in 
determining the progression of plant populations in saline 
environments. Certain sweet sorghum genotypes, capable of 
enduring high salt levels, exhibit a notable ability to sustain 
a high germination rate even under salt stress (Molotoks 
et al. 2020). Additionally, Yang et al. (2020) have observed 
that plants employ various strategies to withstand and adapt 
to salt stress to ensure their survival. In summary, sweet sor-
ghum efficiently expels sodium ions  (Na+) from its system, 
leading to a relatively low concentration of  Na+ in its above-
ground components. Furthermore, the cultivation of salt-tol-
erant sweet sorghum has been found effective in maintaining 
a high sugar content in its aboveground components through 
mechanisms like defense against photosynthate aggregation, 
enhancing sucrose biosynthesis, and inhibiting degradation 
processes. It has been observed that the strategy employed 
by plants to tolerate salt during the germination and seedling 
stages varies, indicating the need for further exploration in 
this field (Hossain et al. 2022).

Salt is a significant environmental stressor, negatively 
impacting both crop productivity and quality. Soil salin-
ity poses a significant concern in regions characterized 
by both irrigated and arid conditions. The introduction 
of irrigation worsens salt content in soil due to factors 
like poor water quality, inadequate drainage, and the influx 
of seawater in coastal areas. Arid and semi-arid regions 
face significant evaporation rates, leading to increased 
salt accumulation. This process, known as ion leaching, 
contributes to water scarcity around plant root zones 

(Shabani et al. 2015). While sorghum shows some level 
of salt tolerance, there are variations among different cul-
tivars. Plants exhibit resistance to salinity through three 
distinct mechanisms, as outlined by Kamal and Ahmad 
(2022). These mechanisms include the exclusion of  Na+ 
from the cytoplasm, which can occur either due to limited 
absorption or through active ion pumping. Additionally, 
plants are capable of sequestering  Na+ within vacuole and 
may prefer accumulating  Na+ in leaf tissues. Nevertheless, 
only a limited range of genotypes can effectively store  Na+ 
within leaf cell vacuoles, influencing the nutritional value 
of plants (Kamal and Ahmad 2022).

According to Patanè et al. (2013), sorghum plants that 
were subjected to elevated salt concentrations exhibited 
reduced rates of germination and prolonged germination 
durations. Sui et al. (2015) observed a decline in the net 
photosynthetic rate, PSII photochemical efficiency, sto-
matal conductance, and intercellular  CO2 concentration 
in salt-sensitive sweet sorghum species. The presence 
of detrimental ions, namely sodium  (Na+) and chloride 
 (Cl-) hinders ion absorption, leading to a deceleration in 
this physiological mechanism. According to Hasegawa 
et al. (2000), salt-tolerant varieties effectively distinguish 
between  K+ and  Na+, displaying lower  Na+ to  K+ ratios in 
their tissues, rendering them more resilient to salt stress. 
In comparison to salt sensitive genotypes, the salt-tolerant 
sorghum genotypes showed reduced accumulation of  Na+ 
ions in both root and shoot tissues, resulting in a lower 
 Na+ to  K+ ratio (Bavei et al. 2011a). Additionally, the 
salt-tolerant genotype exhibited higher accumulation of 
 Ca2+ in both leaf and root tissues compared to the sensitive 
genotypes, namely Kimia and Payam. This increased  Ca2+ 
buildup facilitates enhanced growth and reduced absorp-
tion of sodium (Bavei et al. 2011b).

The genetic complexity of sorghum poses a significant 
challenge in improving its salt tolerance, despite its com-
parative advantage over wheat and maize in this regard 
(Kamal and Ahmad 2022). Salt stress affects the concen-
tration of chlorophyll in plants and their photosynthetic 
efficiency through both direct and indirect mechanisms. 
Directly, it impacts enzyme activity and expression per-
taining to chlorophyll synthesis and photosynthesis, caus-
ing immediate impacts. Indirectly, it operates through 
distinct regulatory pathways such as the activation of 
antioxidant enzyme systems. Salinity notably affects vari-
ous photosynthesis-related parameters in sorghum. Spe-
cifically, under saline conditions, the maximum quantum 
yield of photosystem II (PSII; Fv/Fm), the photochemi-
cal quenching coefficient (qP), and the electron transport 
rate (ETR) significantly decreased while the non-photo-
chemical quenching (qN) increased (Netondo et al. 2004). 
Kumar Swami et al. (2011) observed that the abundance 
of the ATP synthase, a-subunit protein in sorghum leaves, 
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increased following a 96-h exposure to a concentration of 
200 mM NaCl. This finding suggests that salt stress influ-
ences the photosynthetic machinery in sorghum leaves.

4.5  Heavy Metals

The accumulation of heavy metals (HMs) in agricultural 
soils stems from various factors including sewage sludge 
application, phosphatic fertilizers use, industrial wastes 
disposal, and inappropriate agricultural irrigation prac-
tices (El-Mahdy et al. 2021). The accumulation of HMs 
in plants has been observed to increase the production of 
ROS. These ROS molecules hinder various biochemical 
and physiological processes, leading to nucleic acids dena-
turation and enzymes inactivation. Ultimately, this oxidative 
stress induced by HMs accumulation can cause cell death 
(Abu-Shahba et al. 2022). Like other plant species, sor-
ghum has the capacity to accumulate significant quantities 
of HMs, exhibiting characteristics of a hyperaccumulator 
(Kamal and Ahmad 2022). Due to its metal-tolerant nature 
and substantial biomass production, this crop holds potential 
for use in phytoremediation (Mishra et al. 2021). Never-
theless, elevated HMs concentration has been reported to 
decrease various plant traits, including plant height, density 
of root hairs, biomass of shoots, number of leaves, levels 
of chlorophyll, carotenoids, and carbohydrate content. The 
morpho-physiological parameters of sorghum were nega-
tively affected by the simultaneous exposure to arsenic, 
nickel, cadmium, lead, and copper. This led to reduced total 
plant biomass, leaf water potential, alteration of chloroplast 
structure, and peroxidation in chloroplast membranes, which 
can be attributed to the generation of ROS (Gill et al. 2012; 
Pandian et al. 2020).

Sorghum exhibits a tightly regulated coordination of 
antioxidant enzymes in response to exposure to HMs toxic-
ity. Moreover, it has been suggested that increased levels 
of superoxide dismutase (SOD) and catalase (CAT) could 
potentially be associated with the generation of additional 
ROS or the overexpression of genes encoding SOD, along-
side an augmented presence of hydrogen peroxide (H2O2) 
(Kamal and Ahmad 2022). The stability of reduced glu-
tathione (GSH) levels is maintained through the augmen-
tation of GSH and glutathione reductase (GR) activity. In 
plants treated with HMs, enhanced GR activity leads to 
increased availability of NADP+. NADP+ acts as an elec-
tron acceptor from the electron transport chain, facilitating 
proper functioning of biochemical reactions at the cellular 
level (Jawad Hassan et al. 2020). It is worth noting that 
Soudek et al. (2014) observed tissue-specific alterations in 
antioxidant levels. Specifically, they found increased activity 
of peroxidase (POX) and glutathione S-transferase (GST) in 
the shoots of sorghum plants under zinc and cadmium stress, 
while no such increase was observed in the roots.

The accumulation of suitable soluble solutes such as pro-
line and proteins, alongside an increased in the malondial-
dehyde (MDA) content, can facilitate osmoregulation as a 
part of the adaptive response, enabling plants to withstand 
stress (Ahmad et al. 2020; Parida and Das 2005). Emam-
verdian et al. (2015) revealed that even under heightened 
stress, sorghum showed an increase in the protein content, 
indicating its ability to tolerate a specific threshold of heavy 
metal stress. Changes observed in protein composition under 
abiotic stress conditions could potentially serve as valuable 
biomarkers to understand the fundamental mechanisms 
underlying plant stress responses. A total of 33 differentially 
expressed protein spots were analyzed using MALDITOF/
TOF MS in cadmium exposed sorghum plant to understand 
the underlying mechanism of integrated molecular and prot-
eomic studies coupled with two-dimensional gel electropho-
resis (Roy et al. 2016).

The application of proteomic analysis unveiled alterations 
in metabolic pathways and proteins associated with transla-
tional and transcriptional regulation in response to Cd expo-
sure (Kamal and Ahmad 2022). The findings indicate that 
Cd stress generally hampers the process of carbon fixation, 
reduces ATP production, and modulates protein synthesis 
(Roy et al. 2016). Moreover, it is of great interest to explore 
the involvement of GST enzymes in the cellular response of 
C4 plants to cadmium toxicity (Roy et al. 2016). Previous 
research on sorghum has predominantly concentrated on its 
chemical composition, nutritional and medicinal properties, 
as well as its response to salinity and drought stress (Istrati 
et al. 2019; Nxele et al. 2017). Additionally, studies have 
delved in to the impact of metal distribution and accumula-
tion on the photosynthetic efficiency of sorghum (Pandian 
et al. 2020; Xue et al. 2018). There is still little knowledge 
about the sorghum’s mechanism for tolerating heavy metals 
(Kamal and Ahmad 2022). However, the sorghum’s com-
plete genome sequence being accessible renders it a feasible 
model plant for C4 photosynthesis. It can be utilized along-
side C3 plant models like Arabidopsis and rice to explore 
gene products involved in adapting to HMs stress (Kamal 
and Ahmad 2022).

4.6  Higher Carbon Dioxide

Several studies have reported a significant decrease in the 
transpiration rate of the sorghum crop when exposed to ele-
vated levels of carbon dioxide (Tovignan et al. 2023; Wall 
et al. 2001). This reduction in transpiration rate is particu-
larly observed under irrigated conditions similar to those 
experienced by C3 cereals (Fan et al. 2023). According to 
Chaudhuri et al. (1986), an increase in stomatal resistance 
leads to reduced water consumption and improved absorp-
tion of nutrients and water from deeper soil layers. This is 
attributed to the increased root mass observed during each 
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growth phase, facilitating optimal growth and development 
in sorghum, notably advantageous during drought. Increased 
 CO2 levels had a diminishing effect on water consumption 
under drought conditions, extending soil water availability 
during dehydration periods. Ottman et al. (2001) noted that 
elevated levels of  CO2 positively impacted growth during 
the grain-filling phase in the presence of drought condi-
tions. However, it was observed that elevated  CO2 nega-
tively affected vegetative growth. Sorghum yields increased 
in drought conditions due to elevated  CO2 levels, resulting 
in continuous carbon gain (Ottman et al. 2001).

In a study conducted by Torbert et  al. (2004), they 
observed an approximate 30% increase in sorghum biomass 
production due to elevated levels of  CO2. This enrichment 
of  CO2 resulted in a significant increase in the carbon-to-
nitrogen ratio. A limited number of studies have assessed 
grain quality in sorghum under elevated  CO2 conditions 
(Chadalavada et al. 2021). Souza et al. (2015) documented 
an approximate 60% rise in grain protein content of sor-
ghum when cultivated under elevated  CO2 and water deficit 
conditions. Fatty acid levels in the grain showed a slight 
elevation while no corresponding increase in starch content 
was reported. Therefore, the increased levels of  CO2 were 
observed to have a positive impact on sorghum by aiding in 
alleviating drought conditions and improving the quality of 
the produced grain.

5  Role of Biostimulants in Alleviating 
Abiotic Stresses in Sorghum

Biostimulants encompass a range of substances, including 
both organic and inorganic compounds, as well as microor-
ganisms. When supplied to plants, these substances elicit 
various physiological responses that result in enhanced 
growth, productivity, and stress tolerance (Ali et al. 2021; 
Franzoni et al. 2021). They are offered in various forms such 
as soluble powder, granules, or liquid, and can be deliv-
ered through foliar sprays or soil application in proximity 
to the root zone (Ma et al. 2022). Biostimulants exhibit 
minimal or negligible toxicity and do not accumulate long-
term (Sangiorgio et al. 2020). There are various categories 
of biostimulants which can be categorized into six primary 
groups based on the origin of their raw materials. These 
groups include seaweed, protein hydrolysates, plant extracts, 
inorganic compounds, humic substances, and microorgan-
isms (Franzoni et al. 2021). Over the past decade, there has 
been a notable increase in the prominence of biostimulants, 
which have emerged as a significant strategy for augmenting 
crop productivity and improving resilience to abiotic stresses 
(Nephali et al. 2020).

While research has suggested that biostimulants have 
priming effects (Shukla et al. 2019), there remains a lack of 

understanding regarding the specific mechanisms by which 
microbial and non-microbial biostimulants exert their effects 
on plants (Ma et al. 2022). Biostimulants are capable of ini-
tiating and controlling various defense mechanisms through 
diverse modes of action (Rai et al. 2021). Upon reaching the 
leaves and/or roots, biostimulants undergo translocation and 
subsequent distribution to various plant tissues (Rai et al. 
2021). The mechanisms of action within the plant vary 
depending on the specific type of biostimulants, consider-
ing their nature and characteristics. The use of biostimu-
lants, specifically those involving microbial activity, presents 
a promising strategy for mitigating the negative effects of 
drought stress in arid and semiarid regions worldwide, ulti-
mately leading to enhanced crop productivity (Singh et al. 
2021). The mitigation of drought stress has been demon-
strated by several researchers through the examination of the 
role of bacteria (Saikia et al. 2018; Yadav and Yadav 2018).

The comparative effectiveness of biostimulant microbes, 
as opposed to growth-controlling substances like salicylic 
acid and gibberellic acid in plant leaves, indicates their 
potential for agricultural use in sustaining crop productiv-
ity under abiotic environmental stress conditions (Sivaku-
mar et al. 2017). Singh et al. (2021) suggested that while 
biostimulants have several potential, their impact may vary 
based on the specific host and the microbes employed. Addi-
tionally, factors such as adaptability, multiplication, and 
prevailing environmental conditions in natural field settings 
can influence their effectiveness due to the diverse chemi-
cal composition involved. Consequently, further research 
is needed to explore the implications of biostimulants use 
in agroecosystems. Singh et al. (2021) recommended uti-
lizing biostimulants in agriculture due to their significant 
potential in mitigating heat stress, alongside conventional 
breeding, biotechnology, and the application of chemicals. 
The utilization of biostimulants can effectively mitigate the 
adverse effects of elevated temperature stress and promote 
environmental sustainability by reducing the use of harmful 
agrochemicals.

In addition to other biostimulants, the presence of salt-
tolerant microbes can substantially contribute to mitigat-
ing salinity-induced stress in plants, leading to enhanced 
agricultural productivity. Microorganisms generally exhibit 
adaptability to cope with environmental stressors by under-
going alterations in crucial physiological and biochemical 
mechanisms. The interaction of various microorganisms 
with plants to enhance stress tolerance is widely recog-
nized as a catalyst for activating host defense mechanisms 
(Gourion et al. 2008). In their study, Desoky et al. (2018) 
examined the impact of humus substances (HM) and Mor-
inga oleifera leaf extract (MLE) as biostimulants on plant 
growth in normal and salt stress environments. They found 
that applying HM improved saline soil properties. Under 
saline conditions, both HM and MLE enhanced growth 
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characteristics, RNA and DNA contents, photochemical 
activity, osmoprotectant concentrations, phytohormone 
levels, non-enzymatic antioxidants, and antioxidant enzyme 
activities in sorghum plants compared to untreated control 
plants. Application of moringa leaf extract to sorghum 
seedlings cultivated in salty soil promoted growth features, 
increased levels of plant hormones, chlorophyll, essential 
nutrients, protective compounds, and substances countering 
oxidative stress (Desoky et al. 2018). Rakgotho et al. (2022) 
examined the efficacy of zinc oxide nanoparticles (ZnO NPs) 
derived from Agathosma betulina in alleviating salt-induced 
stress in Sorghum bicolor. Using ZnO NPs as a priming 
agent enhanced sorghum plant growth, increasing shoot 
lengths, fresh weights, and improving anatomical structure. 
Additionally, the application of ZnO NPs decreased the  Na+/
K+ ratio, indicating better element distribution within plants. 
These findings offer compelling evidence supporting the 
utilization of green-synthesized ZnO nanoparticles from A. 
betulina as promising biostimulants to enhance plant growth 
in the presence of abiotic stressors.

Sorghum is recognized for its ability to accumulate sig-
nificant levels of Cd. However, it is important to note that 
although sorghum species can tolerate and accumulate high 
levels of Cd, their overall development and growth can still 
be significantly impaired (Sharmila et al. 2017). To improve 
sorghum’s resistance to Cd and mitigate its toxic effects, 
several strategies have been explored. One such approach 
involves the application of biostimulants, which has shown 
promise as a sustainable method to enhance crop productiv-
ity (Roussi et al. 2022a). Studies have demonstrated that 
plant-based bio-stimulants have the potential to enhance 
crop tolerance against various biotic and abiotic stresses, 
producing valuable outcomes (Yakhin et al. 2017). Accord-
ing to Roussi et al. (2022b), sorghum plants subjected to a 
concentration of 200 μM of Cd showed reduced growth, 
biomass, and chlorophyll levels compared to non-stressed 
plants. Nonetheless, supplementing the plants with Cistus 
monspeliensis extract (CME) at concentrations of 5 mg/l, 20 
mg/l, and 60 mg/l effectively countered the adverse impact 
of Cd stress, leading to increased biomass and pigment con-
tent. The application of CME decreased the accumulation 
of superoxide ions  (O2

−) and increased the activities of anti-
oxidant enzymes: glutathione peroxidase (GPx), superoxide 
dismutase (SOD), glutathione-S-transferase (GST), and glu-
tathione reductase (GR). These findings suggest that CME 
might enhance the ability of plants to tolerate Cd-induced 
stress by increasing the expression of antioxidant defense 
enzymes, reducing the production of ROS, and enhancing 
carbon metabolism and nitrogen assimilation, ultimately, 
promoting improved growth rate. The stress alleviation 
effect of CME was notably more pronounced at concentra-
tions of 5 mg/L and 20 mg/L.

Roussi et al. (2022a) demonstrated that the addition of 
Cistus salviifolius leaves extract (CSE) effectively mitigated 
the adverse impact of Cd, resulting in enhanced biomass 
and pigment levels. The application of CSE resulted in 
elevated levels of antioxidant enzymes, including isocitrate 
dehydrogenase (ICDH), superoxide dismutase (SOD), glu-
tathione reductase (GR), glutathione peroxidase (GPx), and 
glutathione-S-transferase (GST). In addition, CSE led to a 
reduction in lipid peroxidation and a subsequent increase in 
soluble sugar and amino acid levels. Overall, the findings 
substantiate that the application of CSE exhibits potential 
as a viable approach to mitigate the detrimental impacts of 
Cd-induced stress in sorghum plants. According to Enn-
oury et al. (2023), the water extract of Atriplex halimus 
improved sorghum’s tolerance to Cd by positively influenc-
ing germination index parameters, including seedling vigor 
index, germination percentage, and mean germination time 
under Cd stress. Morphological parameters such as height 
and weight, alongside physiological parameters like chlo-
rophyll and carotenoid levels, showed enhanced responses 
in matured sorghum plants subjected to Cd-induced stress. 
Furthermore, Atriplex halimus extract (AHE) activated vari-
ous antioxidant enzymes, such as superoxide dismutase, 
glutathione peroxidase, catalase, glutathione-s-transferase, 
and glutathione reductase. These findings suggest that using 
AHE as a biostimulant could be a more effective approach to 
enhance sorghum plants tolerance against Cd-induced stress.

6  Sweet Sorghum Cultivation on Marginal 
Lands for Biofuel Production to Mitigate 
Climate Change

Marginal lands are typically perceived as unproductive and 
unsuitable for agriculture due to factors like poor soil qual-
ity, substandard groundwater quality, unfavorable topogra-
phy, drought, and adverse climatic conditions. Consequently, 
conventional food crops often show limited or no profits 
potential (Mehmood et al. 2017). However, the degree of 
marginality remains challenging to assess as it heavily 
depends on context and purpose. Marginal lands include 
contaminated areas, brownfields, barren agriculture land due 
to inappropriate conditions for crop production (Smith et al. 
2013), degraded farmlands (Tilman et al. 2006), and waste 
disposal sites. To address the competition between food and 
fuels, there is growing interest in utilizing marginal lands 
for bioenergy feedstocks production (Mehmood et al. 2017). 
Given the current global scenario, it is imperative to tackle 
several significant challenges, including balancing between 
food and energy production, conserving biodiversity, safe-
guarding the environment, and maintaining ecosystem func-
tions (Mehmood et al. 2017).



88 Journal of Soil Science and Plant Nutrition (2024) 24:74–101

1 3

The cultivation of fuel crops on marginal lands presents 
a potentially viable option for mitigating concerns related 
to food scarcity and environmental degradation (Qin et al. 
2011). However, the success of this approach hinges upon 
the availability of suitable bioenergy crops and their careful 
selection (Lord 2015). Similarly, it has been established that 
the utilization of marginal lands for the cultivation of energy 
crops can also contribute to the enhancement of biodiversity 
(Werling et al. 2014). According to Li et al. (2010), a variety 
of plants species have exhibited the potential to be utilized 
for bioenergy, contingent upon their suitability to the spe-
cific climatic and geographical conditions. Sweet sorghum is 
a sugar crop widely cultivated and has the potential to gen-
erate bioenergy. Plants accumulate a substantial quantity of 
fermented sugars within their stems, thereby enhancing the 
quality of biomass production. This plant exhibits a lower 
fertilizer requirement, making it suitable for cultivation on 
marginal lands. The production of sweet sorghum has the 
potential to yield cost savings compared to maize, while also 
offering superior energy benefits. According to Regassa and 
Wortmann (2014), sweet sorghum has the potential to pro-
duce a greater amount of ethanol per unit of land area when 
compared to maize and other commonly used energy crops. 
The increasing attention towards the utilization of biomass 
for energy production coupled with its potential to thrive 
in challenging environmental conditions such as drought, 
salinity, alkalinity, and water logging, positions this crop as a 
favorable contender in the quest for effective bioenergy crops 
(Rao et al. 2009). Additionally, it is worth noting that this 
crop exhibits a reduced growth period and necessitates lower 
water consumption compared to other crops such as maize, 
sugarcane, sugarbeet, and wheat (Ahmad Dar et al. 2018).

Sweet sorghum helps mitigate the food versus fuel 
dilemma by meeting diverse demands for food, fodder, and 
fuel. The plant’s highly efficient photosynthetic system, 
known as the C4 pathway, contributes to its potential as a 
viable bioenergy crop. Sweet sorghum also efficiently uti-
lizes nutrients, further enhancing its prospects in bioenergy 
production. This crop is commonly referred to as one that 
encompasses four essential components: food, fuel, fod-
der, and fiber (Umakanth et al. 2019). Furthermore, it has 
earned the nickname “the camel among crops” owing to its 
exceptional ability to withstand drought conditions. Its resil-
ience against abiotic stresses such as waterlogging, salinity 
(Zegada-Lizarazu and Monti 2012), drought (Tesso et al. 
2005), as well as its enhanced adaptation, and improved 
nitrogen, water, and radiation use efficiency make it a pref-
erable biofuel feedstock compared to sugar beetroot, maize, 
and sugarcane (Umakanth et al. 2019). Given the anticipated 
limitation of water availability as a potential constraint 
on agricultural productivity in the future, sweet sorghum 
emerges as a promising alternative due to its minimal water 
requirements.

The utilization of sweet sorghum bioethanol has the 
potential to contribute to preserving depleting fossil fuel 
reserves and mitigating greenhouse gas emissions. Accord-
ing to Umakanth et al. (2019), the cultivation of sorghum 
for the purpose of ethanol and green electricity production 
could conserve approximately 3500 L of crude oil equiva-
lents per hectare of land. Sweet sorghum juice, comprising 
fructose, glucose, and sucrose is suitable for direct ethanol 
fermentation (Sipos et al. 2009). Ou et al. (2015) suggested 
that this juice can also be utilized to produce other biobased 
compounds. In addition, the foliage, grains, and bagasse of 
the crop can be employed to produce biofuels and serve as 
a source of animal feed. Bagasse holds potential as a power 
source and can additionally be employed in the creation of 
valuable byproducts such as pulp and particle board (Som-
ani and Taylor 2003). Besides ethanol, other fermentation 
byproducts that can be obtained include butanol, acetone, 
butyric acid, lactic acid, hydrogen, and methane (Umakanth 
et al. 2019). Research efforts dedicated to the genetic and 
molecular characterization of sorghum traits have been com-
paratively less extensive than those directed towards maize 
and sugarcane (Yadav et al. 2019). Two major challenges 
that hinder the utilization of sweet sorghum as a bioenergy 
source are the harvesting season and the need to transport 
and store substantial amounts of the crop. Similarly, the 
combination of low seed yield and the tendency for plants 
to grow tall contributes to the high cost of seed production.

7  Food Security and Hidden Hunger

The current climate change poses a significant threat to food 
security. According to the report of FAO, IFAD, UNICEF, 
WFP, and WHO (2021), it is projected that the global 
community will be unable to eradicate malnutrition and 
world hunger by 2030. Furthermore, the report highlights 
the concerning fact that current efforts are insufficient to 
effectively address the issue of global hunger. Similarly, the 
global economic downturns resulting from the COVID-19 
pandemic has significantly contributed to the escalation of 
world hunger, exerting a severe impact on impoverished 
countries (FAO, IFAD, UNICEF, WFP, and WHO 2021). 
The COVID-19 pandemic has had a significant impact on 
the advancements made in the global fight against poverty 
and has also resulted in the regression of decades of progress 
towards the goal of eradicating hunger (Tanyanyiwa 2021). 
There has been a gradual increase in global food insecurity 
since 2014. However, the projected increase in food insecu-
rity in 2020 was nearly equivalent to the cumulative increase 
observed over the preceding 5 years (FAO, IFAD, UNICEF, 
WFP, and WHO 2021). Approximately 2.37 billion indi-
viduals, accounting for one-third of the global population, 
experienced inadequate access to nourishing food in the year 
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2020 (FAO, IFAD, UNICEF, WFP, and WHO 2021). This 
figure represents an increase of approximately 320 million 
people compared to the previous year.

The anticipated milestone of achieving zero hunger by 
the year 2030 has been overshadowed by a concerning 
reversal in the trajectory. Recent projections indicate that 
the global population suffering from hunger could surge to 
approximately 840 million individuals by 2030 (Tanyany-
iwa 2021). According to FAO, IFAD, UNICEF, WFP, and 
WHO (2019), the global population of individuals expe-
riencing undernourishment in 2018 exceeded 820 million. 
Furthermore, the number of individuals facing severe food 
insecurity surpassed 700 million, while approximately 1.3 
billion people were exposed to a moderate level of food 
insecurity. The global population suffering from hunger 
exceeds one billion individuals (Burchi et al. 2011). These 
individuals suffering from hunger are unable to fulfill their 
basic energy requirements (Ul-Allah 2018), necessary for 
maintaining a healthy body and overall well-being. The 
global prevalence of hunger in 2022 is estimated to have 
impacted a population ranging from 691 million to 783 

million individuals. Based on the anticipated midrange 
estimate of approximately 735 million individuals in 2022, 
it is observed that an additional 122 million individuals 
experienced food insecurity compared to the pre-pandemic 
year of 2019 (Table 2) (FAO, IFAD, UNICEF, WFP, and 
WHO 2023).

Hidden hunger arises from an inadequate intake of 
essential minerals and vitamins through dietary means. 
Insufficient consumption of vital vitamins and minerals 
significantly impacts the ability to resist diseases, cognitive 
development, physical growth, work productivity, and sur-
vival rates. Preschool-aged children and women of repro-
ductive age are particularly susceptible to deficiencies due 
to their increased dietary requirements for micronutrients 
(UNICEF 2019). The agricultural systems in developing 
countries currently cannot provide an adequate supply of 
minerals and vitamins at affordable rates, thereby compro-
mising the potential for optimal nutrition and overall health 
(Van Der Straeten et al. 2020). There is often a lack of acces-
sibility to supplements among populations that require them 
(Mostafa et al. 2019). Furthermore, according to the findings 

Table 2  Prevalence of severe 
food insecurity and number 
of people experiencing severe 
food insecurity (FAO, IFAD, 
UNICEF, WFP, and WHO 
2023)

n.a, not applicable

Regions Prevalence of severe food insecurity 
(%)

Number of severely food-insecure 
people (millions)

Years Years

2019 2020 2021 2022 2019 2020 2021 2022

Africa
 Northern Africa 8.7 9.5 11.2 12.0 21.5 23.8 28.7 31.1
 Sub-Saharan Africa 22.8 25.4 26.6 26.6 246.6 281.2 302.4 310.6
 Eastern Africa 25.0 28.1 28.7 27.7 109.3 126.2 132.1 130.9
 Middle Africa n.a 36.0 37.8 39.1 n.a. 66.5 71.9 76.7
 Southern Africa 9.3 11.0 11.0 12.5 6.2 7.4 7.5 8.6
 Western Africa 16.6 19.9 21.7 22.0 66.1 81.1 90.8 94.4
Asia
 Eastern Asia 1.3 2.0 1.0 1.0 21.4 33.4 17.0 16.0
 Southern Asia 16.3 18.8 21.0 19.4 316.9 371.3 417.9 389.2
 Central Asia 2.3 4.8 5.0 4.6 1.7 3.6 3.8 3.5
 South-eastern Asia 1.8 2.1 2.6 2.6 12.2 13.9 17.7 17.8
 Western Asia 8.9 9.6 10.2 10.3 25.1 27.4 29.7 30.3
Latin America and the Caribbean
 Caribbean n.a 32.4 25.7 28.2 n.a 14.2 11.4 12.5
 Latin America 8.2 11.1 13.0 11.5 49.3 67.5 79.7 70.8
 Central America 7.3 7.3 8.0 8.6 12.8 12.9 14.3 15.4
 South America 8.5 12.7 15.1 12.7 36.5 54.7 65.5 55.4
Europe
 Eastern Europe 0.8 1.4 1.7 2.0 2.4 4.0 4.9 5.7
 Western Europe 0.7 0.8 1.7 1.8 1.4 1.6 3.2 3.6
 Northern Europe 1.0 1.2 1.8 2.0 1.0 1.3 1.9 2.1
 Southern Europe 1.6 2.4 2.8 1.6 2.4 3.6 4.3 2.4
 Northern America 0.8 0.7 0.7 0.7 3.0 2.7 2.7 2.8
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of the Global Burden of Disease Study 2015, it has been esti-
mated that approximately 1.5 billion individuals are affected 
by Fe-deficiency anemia, a condition that adversely affects 
the cognitive abilities of preschool-aged children (Vos et al. 
2016). Approximately 1.2 billion individuals are suscepti-
ble to zinc deficiency, a condition that is linked to compro-
mised immune systems and increased mortality rates (Black 
et al. 2013). Stunting, a condition highly likely caused by a 
deficiency in Zn has a prevalence rate of 25% among chil-
dren below the age of five. There is a significant correla-
tion between stunting and suboptimal brain development as 
well as impaired cognitive function (Alderman and Fernald 
2017). The issue of micronutrient malnutrition presents a 
significant challenge to both the global well-being of indi-
viduals and the overall progress of economic development. 
Therefore, the eradication or at the very least limitation of 
its prevalence holds significant importance, aligning with the 
United Nations Sustainable Development Goal 2 (UNSDG2) 
of attaining zero hunger.

The prevalence of individuals experiencing malnutrition 
has increased since the year 2015 (Das et al. 2023). One of 
the 17 Sustainable Development Goals established by the 
United Nations is to eradicate hunger by the year 2030. The 
term “hidden hunger” pertains to the condition where indi-
viduals experience deficiencies in specific micronutrients 
while lacking a varied diet that provides sufficient energy 
and nutrients. The current imperative is to develop a sus-
tainable and economically viable approach to address the 
issue of hidden hunger, ensuring its reach extends to the 
most remote and marginalized areas. The implementation 
of a comprehensive system approach that encompasses all 
components of the food value chain is imperative to facili-
tate the attainment of food security that is both safe and 
sustainable while also being resilient to external market 
shocks. Although hidden hunger is most prevalent in devel-
oping countries, it is important to recognize that dietary 
deficiencies can impact individuals of any age and ethnic 
background worldwide (Lowe 2021).

8  Sorghum in the Context of Food Insecurity 
and Hunger

Asia is home to over half of the global population suffering 
from undernourishment, totaling 418 million individuals 
affected. In Africa, more than one-third of the undernour-
ished population amounting to 282 million people can be 
found (FAO, IFAD, UNICEF, WFP, and WHO 2021). A 
significant proportion of children under the age of five 
globally do not receive adequate nutrition to support 
optimal growth. Additionally, about half of all children 
experience hidden hunger, characterized by deficiencies in 
essential micronutrients (UNICEF 2019). There has been 

a significant increase in the number of individuals expe-
riencing food insecurity across various regions. Specifi-
cally, Asia has witnessed an additional 57 million people 
affected by hunger compared to the previous year, while 
Africa has seen an increase of 46 million individuals fac-
ing the same predicament. Additionally, the Caribbean and 
Latin America have observed a rise of 14 million more 
people experiencing hunger in comparison to 2019 (FAO, 
IFAD, UNICEF, WFP, and WHO 2021). The ongoing 
efforts to improve global food security persist, necessitat-
ing the prompt discovery of novel technologies and food 
resources to effectively address food insecurity within the 
context of changing climate.

Orphan crops possess the potential to address food inse-
curity due to their high nutritional content and resilience 
to adverse climatic conditions (Faucher and Revoredo-Giha 
2019). Among these orphan crops, sorghum, stands out as 
particularly noteworthy. Orphan crops are designated as such 
because of their historical neglect and lack of substantial 
attention from the scientific community in terms of research 
and development (Goron and Raizada 2015). Acknowledged 
for their remarkable nutritional, environmental, and eco-
nomic characteristics, orphan crops are considered a crucial 
element in tackling food insecurity (Faucher and Revoredo-
Giha 2019). While it is accurate to state that not all orphan 
crops can be classified as perfect crops or superfoods, they 
have gained recognition for their ability to thrive in challeng-
ing environments and adapt to the impacts of climate change 
(Faucher and Revoredo-Giha 2019). Therefore, their capac-
ity to withstand adverse conditions significantly contributes 
to addressing food insecurity in regions facing environmen-
tal difficulties (Assefa 2014; Revoredo-Giha et al. 2022).

Sorghum possesses nutritional characteristics that make 
it significant in addressing global food security concerns 
(Saleh et al. 2013). According to Dube (2008), the utiliza-
tion of small grains in meals provide adequate nutritional 
content, promoting prolonged satiety and increased energy 
levels in the human body. Sorghum has the potential to sub-
stantially contribute to enhancing food security in numer-
ous impoverished and vulnerable countries concerning sus-
tenance and nutritional needs globally. Its ability to thrive 
in arid conditions makes sorghum a potential enhancer of 
household food security in semi-arid regions (Taylor 2003). 
Enhancing small grain productivity is imperative in address-
ing the challenges posed by climate change, playing a crucial 
role in ensuring both nutritional well-being and food secu-
rity (Ndlovu et al. 2019).

The use of small grains such as sorghum, as a strategy to 
bolster food security in arid regions, has gained consider-
able attention recently. However, it is worth noting that a 
significant proportion of farmers have expressed opposition 
towards the adoption of small grains to address food security 
concerns (Sakadzo and Kugedera 2020). Tackling the issue 
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of food insecurity in the world’s most impoverished regions 
can be accomplished through the cultivation of sorghum 
and millet (Masara 2015). These crops have been found to 
significantly reduce the likelihood of complete crop failure, 
resulting in a minimal probability of zero yield. As a result, 
cultivating small grains like sorghum and millet contributes 
to enhancing food security (Alumira and Rusike 2005). Sor-
ghum’s utilization as a primary cereal crop in arid and semi-
arid regions holds promise for addressing food insecurity in 
these areas (Sakadzo and Kugedera 2020).

Rural populations and impoverished communities are the 
primary demographic affected by global-scale food insecu-
rity and malnutrition (Awobusuyi et al. 2020). Food security 
is a multifaceted issue that encompasses the global economy. 
Contemporary agricultural practices prioritize crops that 
require substantial inputs, leading to a reduction in agri-
cultural crop diversity worldwide (Chivenge et al. 2015). 
On a global scale, there has been a notable decrease in the 
cultivation of conventional crops, and this trend is expected 
to persist. Nevertheless, it is important to note that these 
crops display a broad range of genetic diversity and have 
the potential to enhance both nutritional quality and food 
security (Chivenge et al. 2015). Therefore, prioritizing these 
crops is imperative in addressing global food and nutritional 
insecurity, considering the limited availability of resources.

9  Health Benefits and Nutritional Profile 
of Sorghum

In addition to its several agronomic benefits, sorghum serves 
as a valuable source of nutrients (Table 3). Its grain is glu-
ten-free and contains high levels of resistant starch. Sorghum 
is recognized for its diverse array of phenolic compounds 
and flavonoids, with simple phenolic acids and tannins being 
the most prevalent (Dykes and Rooney 2007). The presence 
of these nutrients in sorghum has been found to positively 
impact human health, proving beneficial for individuals with 
conditions such as obesity, celiac disease, and diabetes (Pon-
tieri et al. 2013). According to Lemlioglu-Austin (2014), 
individuals with celiac disease can benefit from consuming 
sorghum-based food products like biscuits, pasta, bread, por-
ridge, and pastry. Yang et al. (2015) reported that sorghum 
contains various bioactive compounds, including phenolic 
compounds, which possess notable properties contributing 
to the prevention of cardiovascular diseases, cancer, as well 
as the reduction of oxidative stress and chronic inflamma-
tion. Compared to other similar products, sorghum typically 
undergoes a longer duration of protein and starch digestion. 
This delayed digestion process results in a lower glycemic 
index (GI), which is beneficial for individuals with diabetes 
(Zhang and Hamaker 2009).

Sorghum extracts have revealed a greater presence of 
anticancer properties compared to other cereals making it 
a cost-effective and efficient dietary supplement for cancer 
management (Xie et al. 2019). It exhibits a high concentra-
tion of phosphorus and potassium along with a notable quan-
tity of calcium. Additionally, it contains a minor proportion 
of sodium and iron (Table 3). Hungwe et al. (2020) reported 
that sorghum exhibits a substantial content of carbohydrates, 
dietary fibers, and proteins. Moreover, it was observed that 
the digestibility of these components in sorghum is com-
paratively lower when compared to other cereal grains. This 
characteristic of sorghum presents potential benefits for indi-
viduals with diabetes. Sorghum grain possesses elevated lev-
els of fiber, protein, minerals, and calcium, rendering it a 
more advantageous choice compared to rice and wheat (Day-
akar Rao 2019). Table 4 presents a nutritional comparison 
between maize and sorghum. Food products derived from 

Table 3  Nutritional value of sorghum (National Institute of Nutrition 
2007)

Nutrients Amount 
per (100 g)

Carbohydrates (g) 72.6
Protein (g) 10.4
Fat (g) 1.9
Energy (kcal) 349
Crude fiber (g) 1.6
Mineral matter (g) 1.6
Ca (mg) 25
P (mg) 222
Fe (mg) 4.1
Vitamins profile of sorghum (mg/100 g)
 Thiamin (mg) 0.38
 Niacin (mg) 4.3
 Riboflavin 0.15
 Carotene (vitamin A) (mg/100 g) 47
 Vitamin B6 (mg/100 g) 0.21
 Folic acid (mg/100 g) 20
 Pantothenic acid (vitamin B5) (mg/100 g) 1.25
 Vitamin E (mg/100 g) 12
Micronutrients profile of sorghum (mg/100 g)
 Mg 171
 Na 7.3
 K 131
 Cu 0.46
 Mn 0.78
 Mb 0.039
 Zn 1.6
 Cr 0.008
 Si 54
 Cl 44
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sorghum exhibit a low GI and possess superior nutritional 
qualities compared to products derived from wheat and rice 
(Prasad et al. 2015). It is high in both zinc (>50 ppm) and 
iron (>4070 ppm) and thus helps in reducing stunting (Hun-
gwe et al. 2020). As a substitute for wheat, sorghum is used 
to produce gluten-free products like biscuits, pastas, breads, 
and porridges (Chávez et al. 2018).

The absence of gluten in sorghum makes it a viable sub-
stitute grain for human consumption, reducing the risk of 
developing celiac disease (Xu et al. 2021). Sorghum grains 
are known to contain phenolic compounds, such as flavo-
noids, phenolic acids, and anthocyanins (Kumari et  al. 
2021). These bioactive constituents have been associated 
with potential health benefits, such as mitigating chronic 
ailments like cancer, diabetes, obesity, and cardiovascular 
diseases (Chen et al. 2021). According to Taylor and Awika 
(2017), this ancient grain crop possesses the unique capabil-
ity to mitigate hyperglycemia, a condition characterized by 
high blood sugar levels. It exhibits notable concentrations of 
phytochemicals that have positive effects on human health 
including phytosterols, phenolic compounds, and policosa-
nols (Girard and Awika 2018). The presence of bioactive 
compounds in sorghum has been found to contribute to its 
potential role in preventing chronic diseases when regularly 
consumed in the diet (Teferra and Awika 2019). The func-
tional ingredients found in sorghum, namely polyphenols, 
are of considerable importance and can be utilized as natural 
food additives effectively (Girard and Awika 2018). Regret-
tably, global consumption of sorghum remains relatively low 
in comparison to staple crops like wheat, maize, and rice, 
relegating sorghum to the status of a crop primarily culti-
vated in marginal regions.

The prolamins present in sorghum are commonly referred 
to as kafirins, and they have been found to be non-toxic for 
individuals with celiac disease (Chávez et al. 2017). Incor-
porating sorghum into the diets of countries grappling with 

diabetes and obesity presents an economically viable alter-
native (Mkandawire et al. 2015). The primary phenolic 
compounds found in sorghum include ferulic acid, vanil-
lic acid, p-coumaric acid (Chávez et al. 2017), 4-coumaric 
acid, proanthocyanidins, 3-deoxyanthocyanins, caffeic acid, 
and coumaroylglycerol (Nguyen et al. 2015). According to 
Vázquez-Araújo et al. (2012), sorghum exhibits favorable 
levels of vitamins, particularly those belonging to the B 
complex and vitamin E, as well as minerals. Additionally, 
sorghum demonstrates antimutagenic and anticarcinogenic 
characteristics (Anunciação et al. 2017). The nutritional 
properties of sorghum have garnered significant attention, 
leading to increased emphasis on its production and con-
sumption as a staple food for humans in various forms (Zhu 
2014).

10  Sorghum Adaptability by the Community

The widespread adoption of traditional foods in society is 
not common and is often stigmatized (Simbarashe et al. 
2010). Additionally, small grains are frequently associated 
with poverty and are primarily consumed by impoverished 
communities. Sorghum boasts higher levels of carbohydrates 
and protein compared to maize, suggesting its potential as a 
staple crop akin to maize. However, the main hindrance to 
adopting sorghum as a staple crop lies in individual tastes 
and preferences (Hungwe et al. 2020). It is plausible that 
the slow acceptance of sorghum among farmers may be due 
to the challenges associated with preparing and processing 
food products derived from this crop (Hungwe et al. 2020). 
Therefore, by effectively addressing these factors, it becomes 
evident that sorghum has the potential to significantly con-
tribute to addressing food insecurity and hidden hunger. The 
current period necessitates the active engagement of stake-
holders to fulfill their responsibilities, as the level of accept-
ance and integration of sorghum within the community lies 
on awareness campaigns conducted by these stakeholders.

11  Future Outlooks

The remarkable agronomic characteristics and health ben-
efits of sorghum have captivated the attention of research-
ers, as well as drug and food industries, over recent 
decades (Xiong et al. 2019). The escalating demand for 
healthy, nutritious, and naturally derived food underscores 
sorghum’s immense potential for use in preparing healthy 
foods and food products (Xiong et al. 2019). However, a 
notable obstacle in popularizing sorghum-based products 
lies in their commercialization among non-traditional con-
sumers in the west. The adverse effects of climate change, 
notably drought and high temperature compounded 

Table 4  Comparison of sorghum and maize typical nutrients compo-
sition (Rosa et al. 2017; Faqih et al. 2020)

Nutrients Sorghum Maize

Crude protein (%) 7.48 7.71
Crude fiber (%) 1.80 1.40
Calcium (%) 0.14 0.01
Available phosphorus (%) 0.23 0.26
Mineral matter (%) 1.45 1.21
Protein (g/100 g) 11 8.7
Carbohydrates (g/100 g) 73 72.4
Fat (g/100 g) 3.3 4.5
Calcium (mg/100 g) 28 9
Vitamin B1 (mg/100 g) 0.38 0.27
Gross energy (kcal/kg) 3895 3855
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by wrong man-made policies, necessitate a diversified 
approach to food productions, integrating traditional crops 
to address food insecurity and hunger. The key stakehold-
ers (such as researchers, marketers, food manufacturers, 
and government agencies) must play a significant role in 
heightening public awareness regarding the benefits of sor-
ghum (Stefoska-Needham and Tapsell 2020). Small grains, 
due to their resilience in challenging environments, are 
vital additions to the basket of food security to fulfill the 
food-need of a huge number of food-insecure people (Tan-
yanyiwa 2021). By prioritizing traditional crops, several 
poor countries can potentially achieve food security, and 
it can be assured that food being a basic human right is in 
access to all. The ongoing research efforts in the field of 
sorghum indicates that in the future, this crop will attain 
equal importance like other major cereals from academia 
and other stakeholders. According to the Washington Post 
“Sorghum, a whole grain that has been a staple food in 
Africa and India for centuries is finally getting its moment 
on the American table. It is well suited for our modern 
world because it is highly nutritious with a mildly nutty 
flavor, it’s gluten-free and it’s easy to grow even in drought 
conditions.” (https:// nulif emark et. com/ susta inabi lity/).

12  Conclusion

The escalating impacts of global climate change, includ-
ing water scarcity, recurring droughts, and rising tempera-
tures, due to heightened greenhouse gas emissions, under-
score the necessity for crops resilient to these challenges. 
Sorghum stands as a potential and cost-effective crop 
amidst these adversities. With the burgeoning global popu-
lation and diminishing resources, agricultural sectors face 
increasing pressure to bolster food production. Sorghum, 
renowned for its hardiness and nutritional richness, holds 
promise in confronting both climate change and the press-
ing issues of food insecurity and hidden hunger. While 
efforts have been made in researching and integrating sor-
ghum into food products, further concerted research efforts 
and governmental support are pivotal for its widespread 
adoption. The impending challenge of meeting the escalat-
ing global food demand amid the detrimental effects of cli-
mate change necessitates a re-evaluation of underutilized 
crops like sorghum. Positioning sorghum as a star crop and 
a strategic choice in the global food chain’s sustainability 
is imperative. Recognizing sorghum’s tremendous poten-
tial is paramount in addressing the prevailing conditions of 
food insecurity, urging a paradigm shift towards leveraging 
its unique attributes.
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