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Abstract
This study may enhance our understanding of AvFLS function in plants under salt stress and may provide a new tool for 
the improvement of plant salt tolerance in the field. We isolated and identified AvFLS from Apocynum venetum. To further 
characterize the potential role of AvFLS in salt tolerance and to explore the relationship between FLS and salt resistance, we 
generated transgenic Arabidopsis lines overexpressing AvFLS. Tissue-specific expression analysis and salt-stress experiments 
identified AvFLS as a salt-inducible gene that is highly expressed in leaves of A. venetum. Subcellular localization analysis 
showed that AvFLS was located in the cytoplasm, consistent with other plant FLS proteins.The overexpression of AvFLS in 
Arabidopsis thaliana significantly improved the salt-stress tolerance of the transgenic plants: under salt stress, transgenic 
Arabidopsis exhibited improved flavonoid accumulation, seed germination rate, plant growth, chlorophyll content, and fresh 
weight compared to wild-type plants. Comparison of malonaldehyde (MDA), soluble sugar, and proline contents between the 
transgenic and wild-type plants indicated that the improved salt tolerance associated with AvFLS overexpression was due to 
decreased membrane damage. AvFLS overexpression also led to the upregulation of endogenous Arabidopsis genes involved 
in flavonoid biosynthesis. The results of this study demonstrate the potential utility of the AvFLS gene for molecular crop 
breeding, both to increase the contents of valuable flavonoids and to improve crop productivity in saline fields.
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1 Introduction

Soil salinity is one of major abiotic stressors of plants, 
affecting both growth and yield. Plants adapt to changes in 
habitat by continuously adjusting energy flow and secondary 
metabolic pathways to maintain growth and development 

while resisting biotic and abiotic stresses (Goyal et al. 2012; 
Bita et al., 2019; Thakur et al. 2019; Yadav et al. 2021). 
Flavonoids, a class of important secondary metabolites, are 
extensively distributed across the plant kingdom and can be 
divided into six categories: flavones, isoflavones, flavanones, 
flavonols, flavanols, and anthocyanins (Agati et al. 2012). 
Flavonoids play important roles in plant development, 
growth, and stress resistance (Hartmann 2007; Vickers et al. 
2009). Flavonols are important component of flavonoids and 
are critical for the regulation of plant growth and develop-
ment, as well as the response to biotic and abiotic stresses 
(Reginato et al. 2014; Flowers and Muscolo 2015; Shah and 
Smith 2020). For example, flavonols promote the growth of 
plant roots under drought stress and alleviate the inhibitory 
effects of abscisic acid on lateral root growth (Nguyen et al. 
2013). Similarly, 5-aminoallylic acid induces the accumula-
tion of flavonols in the guard cells of Arabidopsis thaliana, 
and flavonols inhibit ABA-induced stomatal closure by scav-
enging hydrogen peroxide; this process regulates external 
gas flow under stress conditions (An et al. 2016). Finally, 
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comparisons of the effects of flavonoids among various 
drought-tolerant tomato varieties demonstrated that, under 
drought stress, the increase in flavonoid content in drought-
tolerant varieties was significantly greater than that in 
drought-sensitive varieties (Sánchez-Rodríguez et al. 2011).

Flavonoids are synthesized using common key enzymes 
such as chalcone synthase (CHS), chalcone isomerase 
(CHI), flavanone 3-hydroxylase (F3H), flavonol synthase 
(FLS), and dihydroflavonol reductase (DFR). Flavonols and 
anthocyanins are synthesized via the same pathway before 
diverging at the point of dihydroflavonol production. At 
this point, dihydroflavonols are converted to anthocyanins 
or flavonols by DFR or FLS, respectively (Vu et al. 2015; 
Park et al. 2019). Flavonol synthase (FLS), a member of 
the 2-oxoglutarate-dependent dioxygenase (2-ODD) family, 
is an important rate-limiting enzyme in the plant flavonol 
metabolic pathway (Muir et al. 2001; Tanaka et al. 2008). 
FLS not only participates in plant growth and development, 
but also plays an important role in the plant defense response 
to biotic and abiotic stresses, such as ultraviolet radiation 
and pathogen invasion (Xu et al. 2012; Fang et al. 2019; Li 
et al. 2020; Yu et al. 2020; Dong and Lin 2021). Indeed, FLS 
activity was first reported in suspension cultures of parsley 
cells irradiated with ultraviolet (Britsch et al. 1981). Ultravi-
olet radiation led to a significant increase in plant flavonoid 
contents, and flavonols, the production of whose is cata-
lyzed by FLS, can protect plants such as corn from ultravio-
let damage (Falcone Ferreyra et al. 2010). For example, the 
Ginkgo biloba FLS (GbFLS) gene is induced in response to 
ultraviolet light, sodium chloride (NaCl), exogenous abscisic 
acid, and salicylic acid (Xu et al. 2012), thereby promot-
ing flavonoid accumulation and improving salt tolerance. 
Two other 2-ODD genes in the flavonoid anabolic pathway, 
anthocyanin synthase (ANS) and flavanone 3-hydroxylase 
(F3H), might be somewhat interchangeable or complemen-
tary with FLS (Kawai et al. 2014; Guo et al. 2020; Wang 
et al. 2021a, 2021b, 2021c, 2021d). For example, Arabidop-
sis FLS1 partially catalyzes F3H, while Arabidopsis ANS 
shares some of the functions of FLS (Owens et al. 2008; 
Stracke, et al. 2009; Martens et al. 2010).

The flavonol content of various plants is strictly regu-
lated by the FLS genes (Verhoeyen et al 2002; Ma et al. 
2014; Wang et al. 2016; Xu et al. 2020a, b). FLS genes have 
been well-studied in many plants (Koes et al. 1994; Fal-
cone Ferreyra et al. 2012; Fujino et al. 2018; Yonekura-
Sakakibara et al. 2019; Liu et al. 2021). The full-length FLS 
gene sequence was first cloned from petunia (Froemel et al. 
1985) and has subsequently been identified and cloned from 
a variety of other plants, including Petunia hybrida (Holton 
et al. 1993), A. thaliana (Owens et al. 2008; Preuß et al. 
2009; Falcone Ferreyra et al. 2010), Litchi chinensis (Liu 
et al. 2018), Fagopyrum tataricum (Li et al. 2012), Scutel-
laria baicalensis (Kim et al. 2014), Ginkgo biloba (Xu et al. 

2012), Camellia sinensis (Jiang et al. 2020), Acacia confusa 
(Toh et al. 2013), Vaccinium uliginosum (Zhang et al. 2016a, 
b), and Oryza sativa (Park et al. 2019). FLS gene functions 
and characteristics may differ both among and within spe-
cies. For example, all five FLS genes from Vitis vinifera are 
expressed in the flowers, but only VvFLS4 and VvFLS5 are 
expressed in fruits (Fujita et al., 2003). Similarly, the func-
tional properties of the six FLS genes found in A. thaliana 
(AtFLS1–6) differ: the AtFLSl protein has very strong cata-
lytic activity, AtFLS3 has very low enzymatic activity, and 
the remaining AtFLS proteins have no enzymatic activity 
(Owens et al. 2008). In addition, the transcriptional abun-
dance of Triticum aestivum FLS (TaFLS1) under salt stress 
was significantly greater in the salt-tolerant variety SR3 as 
compared to the salinity-sensitive cultivar Jinan 177 (JN177) 
(Wang et al. 2014). TaFLS1 improved the salinity tolerance 
of A. thaliana at the seedling stage but not at the germina-
tion stage. (Wang et al. 2016). Finally, the overexpression of 
AtFLS1 in A. thaliana significantly altered seed coat color 
and flavonoid accumulation without affecting growth per-
formance or abiotic stress tolerance as compared to the wild 
type (Nguyen et al. 2016).

Apocynum venetum Linn. (Apocynaceae) is a peren-
nial, halophytic forage plant with high medicinal value and 
strong stress resistance that grows on saline-alkali lands, 
sandy wastelands, and floodplains in northern China. A. 
venetum is rich in flavonoids (Chen et al. 2020; Xu et al. 
2021; Yang et al. 2021; Abubakar et al. 2022), and salinity 
stress was shown to significantly increase flavonol content 
(Xie et al., 2014; Jiang et al. 2020; Xu et al. 2020a, b; Wang 
et al. 2021a, b, c, d). However, the physiological and bio-
chemical mechanisms underlying the antioxidant protection 
conferred by flavonoids in A. venetum plants adapted to salt 
stress remain unclear. Previously, we cloned the key enzyme 
gene in the flavonoid biosynthesis pathway of A. venetum, 
namely AvFLS (Guo et al. 2019). To further characterize the 
potential role of AvFLS in salt tolerance and to explore the 
relationship between FLS and salt resistance, we generated 
transgenic Arabidopsis lines overexpressing AvFLS. This 
study may enhance our understanding of AvFLS function 
in plants under salt stress and may provide a new tool for the 
improvement of plant salt tolerance in the field.

2  Materials and methods

2.1  Cloning and analysis of AvFLS

2.1.1  Plant materials and salt stress treatments

A. venetum seeds were collected from wild plants in Shaya 
County, Xinjiang Uygur Autonomous Region, China 
(40˚92´N, 82˚21´E; 957 m). Seedlings were cultured as 
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previously described (Guo et  al. 2022). To assess the 
response of the FLS gene of A. venetum (AvFLS) to salt 
stress, six-week-old plantlets were subjected to one of two 
treatments: (1) To determine the tissue-specificity of the 
AvFLS gene under control conditions and under salt stress, 
NaCl (0, 50, or 300 mM) was added to the hydroponic 
growth solution. After two weeks of salt stress, seedling 
roots, leaves, and stems were collected, frozen in liquid 
nitrogen, and stored at − 80 °C. (2) To determine the expres-
sion patterns of AvFLS under prolonged salt stress, plants 
were subjeted to 0, 50, 100, 150, 200, or 300 mM NaCl 
stress treatment for 144 h. Leaves were sampled at 6 and 144 
h. At each sampling point, the second pair of unfolded leaves 
(from the top) were collected, immediately frozen in liquid 
nitrogen, and stored at − 80°C for RNA extraction.

2.1.2  Gene cloning and bioinformatics analysis

The full-length cDNA of AvFLS was downloaded from 
the GenBank database (accession no. MK391176.1) (Guo 
et al. 2019). The coding sequence was amplified using the 
pEASY-Uni Seamless Cloning and Assembly Kit (TransGen 
Biotech) with the gene-specific primers AvFLS-F1, AvFLS-
F2, AvFLS-R1, and AvFLS-R2 (Table S1). Sequences from 
other species homologous to the predicted AvFLS protein 
sequence were identified and aligned using DNAMAN (Ver. 
7.0) (Liu et al. 2018; Guo et al. 2019; Li et al. 2021). Phylo-
genetic analysis was carried out using the neighbor joining 
method (bootstrap resampling test with 1000 replicates) in 
MEGA version 10.0 software (https:// megas oftwa re. net/). 
Eustoma russellianum was used as the outgroup (Wang et al. 
2021a, b, c, d; Guo et al. 2022; Wang et al. 2022a, b).

2.1.3  AvFLS expression patterns and subcellular 
localization

To compare AvFLS expression patterns among tissues and 
treatment groups, RNA was first isolated from the col-
lected samples and reverse transcribed to cDNA as previ-
ously described (Jeong et al., 2018;Wang et al. 2021a, b, 
c, d ;Zhang et al., 2021). We performed real-time quantita-
tive PCRs (qRT-PCRs) using the cDNA template and the 
housekeeping gene Actin as an internal control, as described 
previously (Zhang et  al., 2021). PCRs were performed 
on an ABI Prism7500 (Applied Biosystems, USA). The 
gene-specific primers (AvFLS-qRT-F/R) and actin prim-
ers (Actin-qRT-F/R) used for PCR are shown in Table S1. 
Three biological replicates and three technical replicates of 
each sample were performed. The comparative CT method 
 (2−ΔΔCt) (Wang et al. 2021a, b, c, d;Zhang et al., 2021;Wang 
et al. 2022a, b) was used to calculate the relative expression 
of each target gene.

Using the gateway method, the full-length coding 
sequence of AvFLS was fused to the modified pCAM-
BIA1302-GFP vector under the control of the cauli-
flower mosaic virus (CaMV) 35S promoter to generate 
the 35S::AvFLS-GFP fusion construct. The 35S::AvFLS-
GFP and 35S::GFP fusion proteins were introduced into 
different epidermal cells of Nicotiana tabacum using the 
Agrobacterium-mediated transformation method (Zhang 
et al. 2016a, b). The transformed N. tabacum leaves were 
cultivated for 2–6 days and then examined under a confo-
cal laser scanning microscope (Zeiss Lsm 700, Zeiss, Jena, 
Germany).

Effects of salt stress on transgenic Arabidopsis overex-
pressing AvFLS.

2.1.4  Generation of transgenic Arabidopsis overexpressing 
AvFLS

The AvFLS fragment was inserted into the pEarleyGate 
100 vector, and the recombinant protein was transformed 
into wild-type (WT) A. thaliana (Columbia-0) using the 
Agrobacterium-mediated floral dip method as previously 
described (Holton, et al. 1993; Muir,et al. 2001; Li et al. 
2021). The specific primers used are listed in Supplementary 
Table S1. Successfully transformed seeds were selected on 
MS medium containing 50 mM kanamycin as previously 
described (Nguyen, et al. 2016; Wang, et al. 2021a, b, c, 
d). The T3 generation transgenic lines (OE1) with the high-
est levels of AvFLS expression and with 100% resistance 
to kanamycin were considered homozygous and were thus 
selected for further analysis.

2.1.5  Salt‑stress treatment and effects on biomass

To test the response of AvFLS-transgenic Arabidopsis to 
salinity stress, WT and OE1 seeds were seeded in 1/2 MS 
medium containing 0, 25, 50, 75, or 100 mM NaCl. Once 
cotyledons appeared, the number of germinated seeds was 
counted every 24 h for seven days. The seed germination 
percentage was calculated as the total number of seeds 
germinated over the seven day period/total number of seed 
planted × 100% (Ellis et al. 1986).

Four-week-old WT and OE1 seedlings were stressed 
using 100 mM NaCl. Leaves were collected from the treated 
plants at 0 h, 6 h, 24 h, 72 h, 120 h, and 168 h after salt 
treatment for the assessment of biomass, photosynthetic pig-
ments, soluble sugar, proline, malondialdehyde (MDA), and 
total flavonoids. Each parameter was measured in six repli-
cates. Fresh samples were weighed, oven-dried at 60 ± 65°C 
for 16 h (Delgado-Pertı́ñez et al. 2000), and weighed again 
to obtain seedling dry and fresh weights.

https://megasoftware.net/
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2.1.6  Measurement of physiochemical parameters

Chlorophyll a and chlorophyll b were extracted from leaves 
(0.1 g) using a mixture of acetone, ethanol and water in 
a volume ratio of 4.5:4.5:1. A spectrophotometer (Shi-
madzu, UV-1800, Suzhou, China) was used to measure 
absorbance at 663 nm and 645 nm. Chlorophyll concentra-
tions were calculated as follows (Gratani 1992):

where  D663 and  D645 correspond to absorbance at 663 and 
645 nm, respectively; v is the extraction volume (ml); and 
W is the leaf weight (g).

Soluble sugar content was measured using Anthrone 
colorimetry (Yemm and Willis 1954). We constructed a 
standard curve reflecting the linear relationship between 
the mass concentration of glucose (X) and the absorbance 
value (Y) as follows: y = 9.095x − 0.0075  (R2 = 0.998) 
(Supplementary Fig. 1A). This standard curve was reliable 
for glucose concentrations of 0–0.1 mg/ml. Proline was 
extracted and quantified using the method of Bates et al. 
(1973); malondialdehyde content was measured using a 
thiobarbituric acid reaction following Heath and Packer 
(1968); and total flavonoid concentration was determined 
using the aluminum nitrate method (Park et al. 1997) with 
rutin as the standard.

2.1.7  Expression patterns of genes associated with stress 
tolerance

To explore the possible molecular mechanisms underly-
ing the participation of FLS in the salt-stress response, we 
used qRT-PCR to quantify the transcript levels of five genes 
encoding enzymes in the flavonoid biosynthesis pathway 
(AtCHI, AtCHS, AtANS, AtF3H, and AtFLS1) in transgenic 
and WT plants under salt stress. Four-week-old WT and 
OE1 seedlings were exposed to 100 mM NaCl for 0 h, 6 h, 
24 h, 72 h, and 120 h. Samples were then collected for RNA 
extraction and cDNA synthesis. RNA was isolated from the 
collected samples and reverse transcribed to cDNA as pre-
viously described (Wang et al. 2021a, b, c, d; Zhang et al., 
2021). qRT-PCRs were performed as described above using 
gene-specific primers (Supplementary Material Table 1).

2.1.8  Statistical analysis

All data are presented as means ± standard deviation (SD). 
Significant differences among treatments were identi-
fied using one-way ANOVAs in SPSS 20.0, followed by 

Chlorophylla =
(

12.21 × D663 − 2.96 × D645

)

× V ÷ (1000 ×W),

Chlorophyllb =
(

22.88 × D645 − 4.67 × D663

)

× V ÷ (1000 ×W), and

Totalchlorophyll = chlorophylla + chlorophyllb,

Duncan’s multiple range tests. We considered p < 0.05 sta-
tistically significant.

3  Results

3.1  Analysis of AvFLS in A. venetum

3.1.1  Bioinformatic sequence analysis

The full-length cDNA sequence of AvFLS had an open read-
ing frame of 1212 bp and was predicted to encode a polypep-
tide containing 335 amino acids, with a predicted molecular 
weight of 38.33 kDa and a predicted isoelectric point of 
6.11. Multiple sequence alignments showed that the deduced 
amino acid sequence of AvFLS was highly homologous with 
known FLS proteins from other plant species (Fig. 1).

A GenBank conserved domain database search and func-
tional analysis revealed that AvFLS possessed putative con-
served domains belonging to the 20G-FeII Oxy super family, 
as well as a highly conserved N-terminal region found in 
proteins with 2-oxoglutarate/Fe(II)-dependent dioxygenase 
activity. Importantly, the positions of many of the conserved 
sequence motifs identified in AvFLS, including the HXD 
motif for ligating ferrous iron and the RXS motif for bind-
ing 2-oxoglutarate (2OG), were similar between the AvFLS 
sequence and the other FLS sequences (Fig. 1). Phylogenetic 
analysis recovered AvFLS in a sister relationship with the 
FLS protein from Coffea arabica and within a larger clade 
comprised of the FLS proteins from Solanum lycopersicum, 
Nicotiana tabacum, Gentiana triflora, Eustoma grandiflo-
rum, and Sesamum indicum (Fig. 2).

3.1.2  Expression patterns and subcellular localization

To explore the possible role played by AvFLS in the response 
of A. venetum to salt stress, we quantified its expression pat-
terns under control and salt-stress conditions using qRT-
PCR. AvFLS was ubiquitously expressed in all tested tissues 
(Fig. 3). AvFLS was significantly upregulated in the leaves as 
compared to the roots and stems across all treatment groups, 
and AvFLS expression level increased significantly as salin-
ity increased (Fig. 3). These results suggested that AvFLS 
may be involved in the stress response of A. venetum, similar 
to other known FLS genes such as MdFLS1 in Malus domes-
tica (Li et al. 2021) and BnFLS in Brassica napus (Vu et al. 
2015).

As salt stress was prolonged, the expression patterns of 
AvFLS in A. venetum leaves changed substantially. After 6 
h, relative AvFLS gene expression was significantly greater 
in leaves exposed to 200 and 300 mM NaCl as compared 
to leaves exposed to 100 mM NaCl or less (Fig. 4). How-
ever, after 144 h of salt treatment, the AvFLS gene was 
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significantly upregulated in the leaves exposed to 200 and 
300 mM NaCl as compared to all other treatment groups 
(Fig. 4). This suggested that the AvFLS gene was induced 
by salt stress, and that the response fluctuated over time. 
This may indicate that AvFLS plays an important role in the 
resistance of A. venetum to salt stress.

To determine the subcellular location of AvFLS, the 
recombinant AvFLS-green fluorescent protein (GFP) 

was transformed into N. tabacum mesophyll protoplasts. 
The pCAMBIA1302GFP vector was used as a control. 
The control GFP protein was expressed throughout the 
cell, while the GFP signal of AvFLS was localized in 
the cytoplasm (Fig. 5). As the AvFLS does not possess 
a transmembrane-spanning domain (Guo et al. 2019), we 
concluded that AvFLS was a cytoplasmic protein.

Fig. 1  Relationship between AvFLS and other known FLS proteins 
from representative plant species. Multiple sequence alignment. 
Thick black line indicates the highly conserved N-terminal 2-ketoglu-
tarate domain; fine black line indicates the 2OG-Fe (II) oxygenation 

enzyme domain. The regions marked H–X-D, H–X, and R-X-S cor-
respond to the regions conserved across genes in the 2-ODD super-
family
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Fig. 2  Phylogenetic tree analysis of AvFLS and other 2-ODD superfamily genes
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3.2  Effects of AvFLS overexpression on the salinity 
tolerance of Arabidopsis

3.2.1  Growth performance was improved in transgenic 
Arabidopsis under salt stress

Under control conditions (0 mM NaCl), there was no signifi-
cant difference in seed germination rate between the WT and 
transgenic plants (Fig. 6a). Exposure to 25–100 mM NaCl 
for 7 d significantly decreased the germination rate of both 
the WT and overexpression line OE1, but the germination 

rate was significantly higher in the transgenic line as com-
pared to the WT across all treatment groups (Fig. 6a).

After growth at control conditions for five weeks, the 
transgenic Arabidopsis were somewhat larger than the WT 
plants (Fig. 6b). After four-week-old WT and transgenic 
plants were treated with 100 mM NaCl for one week, the 
growth of both lines was severely curtailed. However, the 
growth of the transgenic line was noticeably better than that 
of the WT line (Fig. 6c).

Under control conditions, the biomass of the transgenic 
plants was greater than that of the WT plants (both wet and dry 

Fig. 3  Gene expression patterns 
of AvFLS in various tissues 
of A. venetum in response to 
salt stress. The values shown 
are the means ± SDs of three 
biological replicates. Error bars 
represent the standard deviation 
of three replicates. Different 
letters within a treatment group 
indicate significant differences 
based on one-way ANOVAs 
(P < 0.05)

Fig. 4  Relative expression level of the AvFLS gene in the leaf tis-
sues of A. venetum exposed to various concentrations of NaCl (0–300 
mM). (a) After 6 h of salt treatment. (b) After 144 h of salt treatment. 
The values shown are the means ± SDs of three biological replicates. 

Error bars represent the standard deviation of three replicates. Differ-
ent letters within a treatment group indicate significant differences 
based on one-way ANOVAs (P < 0.05)
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weights; Fig. 7). Although the biomass of both lines decreased 
significantly under increased salinity, the biomass of the trans-
genic line remained significantly higher than that of the WT 
(Fig. 7): after 7 d of exposure to 100 mM NaCl, the fresh and 
dry weights of the transgenic plants were 24.95% and 14.08%, 
respectively, greater than the fresh and dry weights of the WT 
(Fig. 7).

3.2.2  AvFLS overexpression mitigated the negative 
effects of salinity on the physiochemical parameters 
of Arabidopsis

Chlorophyll a, chlorophyll b, and total chlorophyll contents 
generally decreased in both WT and transgenic Arabidop-
sis seedlings as exposure to 100 mM NaCl was prolonged. 

Fig. 5  Subcellular localization 
of AvFLS. The recombinant 
35S::AvFLS-GFP and the 
pCAMBIA1302-GFP con-
trol vector were transiently 
expressed in N. tabacum proto-
plasts. Scale bars: 50 µm

Fig. 6  Growth performance of transgenic Arabidopsis overexpress-
ing AvFLS as compared to WT Arabidopsis under salt stress. a 
AvFLS expression in AvFLS-over-expressing (OE1) and wild-type 
(Col-0) Arabidopsis and in Apocynum venetum. b OE1 and Col-0 
Arabidopsis seed germination in 1/2 MS medium supplemented with 
NaCl (0, 25, 50, 75 and 100 mM). c Five-week-old OE1 and Col-0 
Arabidopsis seedlings grown under control conditions (without 

NaCl). d Four-week-old OE1 and Col-0 Arabidopsis seedlings after 
treatment with 100 mM NaCl for one week. The values shown are 
the means ± SDs of six biological replicates. Error bars represent the 
standard deviation of three replicates. Different letters within a treat-
ment group indicate significant differences based on one-way ANO-
VAs (P < 0.05). Scale bars: 5 cm
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However, chlorophyll a content in the transgenic plants 
was significantly greater than that in the WT plants at all 
times points measured (P < 0.05): after 0 h, 6 h, 24 h, 72 h, 
120 h, and 168 h of exposure to 100 mM NaCl, the chloro-
phyll a content of the transgenic plants was 39.33%, 7.62%, 
28.45%, 59.64%, 32.03%, and 93.08%, respectively, greater 
than that of the WT plants (Fig. 8A). Chlorophyll b content 
in the transgenic plants was also significantly greater than 
that in the WT plants at all times points measured except 
6 h (P < 0.05): after 0 h, 6 h, 24 h, 72 h, 120 h, and 168 h 
of exposure to 100 mM NaCl, the chlorophyll b content of 
the transgenic plants was 19.50%, 6.8%, 27.40%, 77.72%, 

109.72%, and 112.94%, respectively, greater than that of the 
WT plants (Fig. 8B). Similar to the trend in chlorophyll a 
content, total chlorophyll levels in the transgenic plants were 
significantly greater than those in the WT plants at all times 
points measured (P < 0.05; Fig. 8C).

Soluble sugar content fluctuated in both transgenic (OE1) 
and WT A. thaliana as the duration of salt stress (100 mM 
NaCl) was prolonged (Fig. 9a). However, the soluble sugar 
content of the transgenic line (OE1) was significantly greater 
than that of the WT at 0 h, 6 h, 24 h, and 120 h (Fig. 9a). At 
168 h, the soluble sugar content of the WT was significantly 
greater than that of the transgenic line, and at 72 h, there was 
no significant difference in soluble sugar content between 
the lines (Fig. 9a and Supplementary Material Fig. 10a).

In both transgenic and WT Arabidopsis leaves, proline 
content gradually increased with time under salt stress 
(100 mM NaCl): after 24 h, 72 h, 120 h, and 168 h of salt 
stress, proline content in the WT leaves increased 2.29-fold, 
6.60-fold, 6.68-fold, and 13.73-fold compared to control 
conditions (0 h), while proline content in the transgenic 
leaves increased 6.69-fold, 5.09-fold, 11.44-fold, and 24.30-
fold compared to control conditions (Fig. 9b). However, the 
proline content of the transgenic A. thaliana leaves treated 
with 100 mM NaCl for 72 h was lower than that of the WT, 
and this difference was maintained until the end of the 
experiment (Fig. 9b and Supplementary Material Fig. 10b).

Under control conditions (0 h), MDA content in the 
WT Arabidopsis leaves was significantly greater than that 
in the transgenic leaves and, as salt stress was prolonged, 
MDA content increased significantly in both WT and 
transgenic lines (Fig. 9c). However, the MDA content of 
the transgenic leaves was significantly lower than that of 
the WT leaves at all time points except 72 h and 120 h 
(Fig. 9c). The MDA content of the transgenic leaves was 
30.7%, 35.3%, 16.3%, and 16.7% lower than that of the 
WT leaves at 0 h, 6 h, 24 h, and 168 h, respectively. This 
suggested that that the overexpression of AvFLS reduced 

Fig. 7  Dry and fresh weights of transgenic and wild-type Arabidopsis 
under salt stress. The values shown are the means ± SDs of three bio-
logical replicates. Error bars represent the standard deviation of six 
replicates. Different letters within a treatment group indicate signifi-
cant differences based on one-way ANOVAs (P < 0.05)

Fig. 8  Chlorophyll content of transgenic and wild-type Arabidopsis 
under salt stress. a Chlorophyll a content. b Chlorophyll b content. c 
Total chlorophyll content. The values shown are the means ± SDs of 

six biological replicates. Error bars represent the standard deviation 
of three replicates. Different letters within a treatment group indicate 
significant differences based on one-way ANOVAs (P < 0.05)
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the degree of salt-induced membrane lipid peroxidation in 
Arabidopsis, reducing MDA production and the associated 
tissue damage.

The standard curve of rutin was Y = 12.537x + 0.00184 
 (R2 = 0.9979), and this standard curve had good linearity 
for rutin concentrations of 0–0.07 mg/L (Supplementary 
Material Fig. 10b).

At all time points except 6 h, total flavonoid content 
was significantly greater in the transgenic leaves than in 
the WT leaves (Fig. 9d). At 0 h, 24 h, 72 h, 120 h and 
168 h, total flavonoid contents in the transgenic leaves 
were 37.2%, 32.2%, 60.3%, 37.1%, and 54.3%, respec-
tively, greater than total flavonoid contents in the WT 
leaves (Fig. 9d). This suggested that the overexpression 
of AvFLS might significantly increase total flavonoid con-
tent in A. thaliana.

3.2.3  AvFLS overexpression upregulated the expression 
of flavonoid pathway genes in Arabidopsis

The heterologous expression of the FLS gene affects the syn-
thesis of total flavonoids and anthocyanins in plants, and 
may also lead to the downregulation or non-expression of 
endogenous genes (Ohno et al. 2011; Nguyen, et al. 2016; 
Jeyaraj et al. 2017; Jiang et al. 2020). Under control con-
ditions, the relative expression of the AtFLS gene did not 
differ significantly between the transgenic (OE1) and WT 
plants (Fig. 10a). However, under salt stress, AtFLS was sig-
nificantly upregulated in the WT plants as compared to the 
transgenic plants at all time points except 72 h (Fig. 10a). 
The expression of AvFLS peaked in the OE1 plants after 24 h 
of salt treatment; at the same time point, the expression of 
AtFLS was relatively low (Fig. 10b).

Fig. 9  Physiological indexes in the leaves of transgenic A. thaliana 
overexpressing AvFLS (OE1) and wild-type A. thaliana (Col-0) under 
prolonged salt stress (100 mM NaCl). a Soluble sugar content. b Pro-
line content. c MDA content. d Total flavonoid content. The values 

shown are the means ± SDs of six biological replicates. Error bars 
represent the standard deviation of three replicates. Different letters 
within a treatment group indicate significant differences based on 
one-way ANOVAs (P < 0.05)
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AvFLS overexpression also affects the expression pat-
terns of some genes in the flavonoid synthesis pathway of 
A. thaliana. Two genes in the anthocyanin metabolic path-
way, AtDFR and AtANS, were significantly upregulated in 
the transgenic line as compared to the WT after 24 h, 72 h, 
and 120 h of salt stress (Fig. 10c, d). Similarly, the genes 
encoding flavanone 3-hydroxylase (AtF3H; Fig. 10e) and 
chalcone synthase gene (AtCHS; Fig. 10f) were significantly 
upregulated in the transgenic lines as compared to the WT 
lines after 120 h of salt stress. The chalcone isomerase gene 
(AtCHI) was significantly upregulated in both the transgenic 
and the WT lines as salt stress was prolonged; there was no 
significant difference in expression between the two lines 
(Fig. 10g).

4  Discussion

Flavonol synthase is a key enzyme in the plant flavonoid 
metabolic pathway and therefore plays an important role in 
flavonoid biosynthesis. Plant flavonoids, which are regulated 
by the flavonoid metabolic pathway, determine flower and 
seed-coat colors (Lou et al. 2014; Zhang et al. 2018). In 

addition, increases in flavonoid content can increase plant 
tolerance of biotic and abiotic stresses (Yuan, et al. 2015; 
Baskar et al. 2018; Li et al. 2018), because flavonoids can 
act as antioxidants or pro-oxidants to eliminate or reduce the 
tissue damage associated with the reactive oxygen species 
produced as a result of adverse environmental conditions 
(Lee et al. 2004; Tattini et al. 2004; Eghbaliferiz and Iran-
shahi 2016). Therefore, further systematic physiological and 
molecular experiments of FLS gene will be helpful to further 
reveal the mechanism of FLS gene in improving plant stress.

In this study, we successfully isolated and characterized 
AvFLS cDNA from A. venetum, demonstrated that AvFLS 
encodes a functional protein, and showed that AvFLS was 
ubiquitously expressed throughout A. venetum, including 
leaves, stems, and roots. AvFLS expression levels were 
higher in the leaves and lower in the stems and roots, these 
results are consistent with the research results of Wang 
et al.,(2021a, b, c, d).

To further investigate the flavonol synthase function of 
the FLS protein from A. venetum, the amino acid sequence 
of AvFLS was compared with predicted FLS sequences 
from other species using a phylogenetic tree. Phylogenetic 
analyses recovered A. venetum in a close relationship with 

Fig. 10  Expression levels of genes related to flavonoid synthesis 
pathway under salt stress. a Expression of the Arabidopsis flavonol 
synthase gene (AtFLS) in Col-0 and OE1 plants. b Expression of the 
A. venetum flavonol synthase gene (AvFLS) in OE1 plants. c Expres-
sion of the Arabidopsis dihydroflavonol-4-reductase gene (AtDFR) 
in Col-0 and OE1 plants. d Expression of the Arabidopsis anthocya-
nin synthase gene (AtANS) in Col-0 and OE1 plants. e Expression of 
the Arabidopsis flavanone 3-hydroxylase gene (AtF3H) in Col-0 and 

OE1 plants. f Expression of the Arabidopsis chalcone synthase gene 
(AtCHS) in Col-0 and OE1 plants. g Expression of the Arabidopsis 
chalcone isomerase gene (AtCHI) in Col-0 and OE1 plants. The val-
ues shown are the means ± SDs of three biological replicates. Error 
bars represent the standard deviation of three replicates. Different let-
ters within a treatment group indicate significant differences based on 
one-way ANOVAs (P < 0.05)



2328 Journal of Soil Science and Plant Nutrition (2024) 24:2317–2333

1 3

predicted FLS proteins from Capsicum baccatum (Wang 
et al. 2022a, b), Nicotiana tabacum (Shi et al. 2017), and 
Solanum lycopersicum (Morimoto and Tao 2016; Gao et al. 
2018).

At the subcellular level, AvFLS appeared to be localized 
in the cytoplasm and not in the nucleus, consistent with the 
observation that flavonoids are synthesized and localized in 
the cytoplasm in A. thaliana (Saslowsky et al. 2005; Kuhn 
et al. 2011) and Dendrobium officinale (Yu et al. 2020). 
However, there are many flavonoid metabolic enzymes that 
have been localized in the cytoplasm, including CHS, CHI, 
and FLS (Kuhn et al. 2011).

In response to stress, plants may synthesize osmotic 
regulators, such as proline, soluble sugars, and betaine to 
improve stress resistance (Farooq et al. 2009; Hao et al. 
2021). Proline accumulation is triggered by environmental 
stress (Hare and Cress 1997; Maggio et al., 2021) to pro-
tect cells from stress-associated damage (Hong et al. 2000; 
Kavi and Sreenivasulu et al., 2014). We observed that salt 
stress significantly increased the proline content of the 
leaves of both WT Arabidopsis seedlings and Arabidopsis 
seedlings overexpressing AvFLS. After 168 h of salt stress 
(100 mM NaCl), the proline content in the leaves of the WT 
was 522.8 μg·  g−1, a 13.7-fold increase compared to proline 
content under control conditions (0 h). Similarly, the pro-
line content in the transgenic leaves was 419.37 μg·g−1 after 
168 h of salt stress, corresponding to a 24.3-fold increase 
in proline content compared to control conditions (0 h). 
Under control conditions and during the early stages of salt 
stress (0 h, 6 h, and 24 h), soluble sugar content was sig-
nificantly greater in the transgenic plants than in the WT 
plants. Thus, AvFLS overexpression improved osmoregula-
tion and increased soluble sugar accumulation in Arabidop-
sis, enhancing resistance to salt stress. Similarly, the over-
expression of the FLS gene of Chrysanthemum morifolium 
(CmFLS) improved the stress resistance of tobacco (Wang 
et al. 2021a, b, c, d).

Photosynthesis provides the energy required for plant 
growth and development, and is thus critical for increases 
in plant biomass and economic crop yield (Richards et al., 
2006; Long et al. 2006; Zhu et al. 2008; Zhu et al. 2010). 
Chlorophyll content reflects the efficiency of plant photo-
synthesis. Therefore, chlorophyll concentration indicates 
the physiological state of the plant and can be considered a 
biochemical marker of stress tolerance (Arnon 1949; Rah-
neshan et al., 2018). Indeed, chlorophyll concentration has 
been specifically identified as an important physiological 
indicator of plant salt tolerance (Singh and Gautam 2013; 
Bernal-Vicente et al. 2018). Under stress conditions, the 
chlorophyll content of plants with strong stress resistance 
is higher than the chlorophyll content of plants with poor 
stress resistance (Billings and Mooney 1968; Quick et al. 
1992; Mukami et al. 2019). After 168 h of salt exposure, 

the contents of both chlorophyll a and chlorophyll b were 
significantly greater in the transgenic Arabidopsis seedlings 
overexpressing AvFLS that in WT plants, indicating that the 
transgenic plants were more resistant to salt stress. Consist-
ent with this, when the Euphorbia kansui flavonol synthase 
gene (EkFLS) was overexpressed in A. thaliana, chlorophyll 
content increased, affecting photosynthesis and promoting 
stress resistance (Wang et al. 2021a, b, c, d).

Under abiotic stress, plants produce large amounts of 
peroxides, and the resulting oxidative damage to plant cell 
membranes produces MDA (Parvanova et al. 2004). Due to 
their polyphenolic structure, flavonoids act as strong anti-
oxidants in plants, scavenging excess free radicals (Djeri-
dane et al. 2006). Increases in flavonoid content improve 
the antioxidant capacity of plants, which in turn improves 
plant stress tolerance (Ashraf 2009; Akula and Ravishanka 
2011). Here, MDA contents in the transgenic plants were 
lower than those of the WT under control and salt-stress 
conditions, indicating that AvFLS overexpression reduced 
the lipid peroxidation of cell membranes in Arabidopsis.

Studies have shown that in some cases, when the over-
expressed exogenous gene is highly similar to the endog-
enous gene, both genes in the transgenic plant are inhib-
ited (i.e., co-suppression; Facchini 2001). For example, the 
overexpression of the rice (Oryza sativa) FLS gene OsFLS 
in tobacco led to the downregulation of the early and late 
biosynthetic genes in the flavonoid pathway; the endogenous 
FLS gene NtFLS was particularly strongly inhibited (Park 
et al. 2019). Here, the expression levels of AtFLS did not dif-
fer significantly between the transgenic and WT A. thaliana 
lines under control conditions, but AtFLS was significantly 
downregulated in the transgenic plants as compared to the 
WT under salt stress. This indicated that overexpression of 
the AvFLS gene moderately suppressed the expression of the 
endogenous AtFLS gene in Arabidopsis. However, due to the 
strong upregulation of the AvFLS gene, total flavonoid con-
tent was significantly greater in the AvFLS-overexpression 
line under both salt-stress and control conditions. Consistent 
with this, AvFLS-overexpressing transgenic tobacco plants 
accumulated flavonoids to a greater extent than WT plants, 
which resulted in a significant positive effect on the recovery 
of growth under salinity stress (Wang et al. 2021a, b, c, d).

FLS transcript levels affect the contents of various fla-
vonols in plants, and thus participate in the regulation of 
the plant response to various external stresses (Khare et al. 
2018; Sharma et al. 2019; Hou et al. 2020). For example, 
the contents of flavonols, such as quercetin and kaempferol, 
increased significantly in Tartary buckwheat seedlings under 
salt stress, and the FtFLS2 gene was simultaneously sig-
nificantly upregulated (Li et al. 2018). Similarly, ultravio-
let radiation increased flavonol accumulation and strongly 
upregulated F3H and FLS in soybean (Kim et al. 2008). It 
also has been reported that EkFLS overexpression is strongly 
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correlated with an increase in flavonoid synthesis and there-
fore in abiotic stress tolerance in Arabidopsis (Wang et al. 
2021a, b, c, d). In addition, FtFLS2 was upregulated by SA 
and NaCl, affecting the flavonol biosynthetic pathway (Li 
et al. 2013). Similarly, overexpression of BnFLS increased 
flavonol accumulation and exhibited enhanced tolerance to 
multiple abiotic stressors in the transgenic plants (Vu et al. 
2015). Treatment with the flavonoid quercetin not only 
alleviated the adverse effects of mannitol-induced osmotic 
stress, but also upregulated CHI and FLS in Apocynum seed-
lings (Yang et al. 2021). The heterologous expression of the 
FLS gene led to the downregulation or non-expression of 
endogenous genes in N. tabacum (Jiang et al. 2020), while 
the overexpression of AvFLS in Arabidopsis downregulated 
the endogenous FLS gene AtFLS in our research work. 
In vivo, FLS and DFR genes competitively determine the 
accumulation of flavonols, anthocyanins, and flavan-3-ols 
in plants (Mahajan et al. 2011; Zhao et al. 2014; Luo et al. 
2016; Akita et al. 2018). However, the overexpression of 
AvFLS, the FLS gene from the halophyte A. venetum, in 
Arabidopsis upregulated not only the genes involved in fla-
vonoid biosynthesis but also the genes involved in antho-
cyanin synthesis. That is, the expression levels of AtDFR 
and AtANS in the transgenic plants after 24 h, 72 h, and 
120 h of salt stress were significantly higher than those in 
wild-type Arabidopsis at the same time points. Interestingly, 
studies have shown that, in FLS-overexpressing plants, the 
early genes in the flavonoid synthesis pathway (CHS and 
F3H) were not expressed or were expressed at low levels 
(Park et al. 2019; Li et al. 2021). Our results showed that the 
expression levels of AtCHS and AtF3H in transgenic plants 
treated with salt for 6 h and 24 h were significantly lower 
than those of wild-type plants at the same time points. How-
ever, these genes were significantly upregulated in the trans-
genic plants compared to the wild-type plants after 120 h salt 
treatment. At the same time, we also found that the falvonoid 
content of transgenic Arabidopsis overexpressing AvFLS was 
significantly greater than that of WT Arabidopsis after 120 h 
of salt treatment. The upregulation of these genes indicated 
that the activity of the flavonoid synthesis pathway increased 
in response to salt stress in the transgenic overexpression 
line, corresponding to the observed significant increase in 
total flavonoid content.Together, these results indicate that 
FLS genes in halophytes and glycophytes may play different 
functions under salt stress, and it is necessary to continue to 
study the related mechanisms in subsequent studies.

5  Conclusion

Overexpression of the AvFLS gene in transgenic Arabi-
dopsis improved plant growth and development under salt 
stress compared to the WT. In transgenic Arabidopsis, the 

expression level of the endogenous AtFLS gene differed sig-
nificantly from that of wild type. In addition, AvFLS expres-
sion in transgenic Arabidopsis increased with prolonged salt 
stress. This study not only helped to clarify the molecular 
mechanisms of salt-tolerance genes, but also provided a 
theoretical basis for the further mining of Apocynum genes, 
the molecular breeding of plants with improved resistance to 
salt stress, and the consequent improvement of crop quality.
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