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Abstract
This study aimed to explore natural aging effect of distiller’s grain-derived biochar (DGB) at various amendment rates (2%, 
4%, w/w) on wheat (Triticum aestivum L.) growth, development and Cd uptake in soil, and provide novel insights in effect 
mechanisms from views of soil Cd fractions and rhizospheric microbiota. Results showed that DGB amendment promoted 
wheat growth. Rising DGB rate progressively increased soil pH, soil organic matter (SOM), total carbon (TC), total nitrogen 
(TN),  NH4-N, available K, and residual Cd content to more greatly promote chlorophyll content and decrease Cd uptake of 
wheat. With 6-month aging, soil TN, available K and residual Cd content continuously increased to decline Cd bioavailabil-
ity, which further restricted Cd uptake by wheat roots, stems, and leaves, and did not obviously change Cd uptake by wheat 
grains. Contrarily, soil  NO3-N content progressively decreased with rising DGB rate and aging, partly due to progressively 
decreased nitrifier abundances of Nitrosomonadaceae and Nitrospiraceae with rising DGB rate and aging, according to 
rhizospheric bacterial composition. Statistical analysis verified that DGB rate and aging were synergistic factors to jointly 
involve soil nutrient increase and Cd fractions re-distribution. Rising DGB rate and aging jointly increased the abundances 
of Actinobacteria, Cyanobacteria, and Fibrobacteria phyla, and Lysobacter, Massilia, Pseudarthrobacter, and Iamia genera 
that positively correlated to soil residual Cd, TN, SOM, TC, and available K content, suggesting that such bacterial groups 
also drove soil fertility improvement and Cd bioavailability decrease. Consequently, amending 4% DGB with aging was 
proposed as appropriate for improving soil fertility and blocking Cd-induced health risk.

Keywords Cadmium · Distiller’s grain-derived biochar · Natural aging · Rhizospheric bacterial composition · Soil nutrient · 
Wheat

1 Introduction

Soil cadmium (Cd) pollution is highly severe and major con-
cern in China (Hamid et al. 2020; Yuan et al. 2021a). Cd 
bioavailability relies on Cd fractions distribution, including 

acid-soluble, reducible, oxidizable, and residual fractions 
with decreasing bioavailability in sequence, which affect 
crop growth and Cd uptake (Chen et al. 2019). Wheat is 
cereal crop for global consumption but susceptible to Cd 
uptake. Cd can transfer to aboveground part and accumulate 
in wheat grains to endanger human health (Zhou et al. 2020; 
Wang et al. 2021). Seeking eco-benign option for declining 
Cd bioavailability to alleviate Cd uptake and promote wheat 
growth is desirable.

Biochar, a carbonaceous material derived from biomass, 
always act as soil amendments and pollution-remediating 
agents (Beesley et al. 2011; Shaheen et al. 2018; Yuan et al. 
2021b; Zhang et al. 2021). Biochar can decrease soil heavy 
metal (HM) bioavailability via oxidation/reduction and 
complexes formation and/or via sorption by porous struc-
ture and functional groups (Zhang et al. 2013; Rehman et al. 
2016; Zhao and Li 2022). Distiller’s grains (DGs) are main 
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by-product of white-spirit industry with sorghum and rice 
husks as raw materials and often used as animal feed or 
randomly discarded. A huge amount of DGs are generated 
annually by Chinese white-spirit industry, and improper 
DGs disposal undoubtedly causes pollution and resource-
wasting (Lian et al. 2019; Liu et al. 2022). Recycling DGs is 
vital to lessen DG-caused environmental burdens. Because 
DGs hold massive digestible fiber, polysaccharide, and pro-
tein due to starch removal during fermentation, it is feasible 
to convert DGs into biochar for Cd-immobilization (Cheng 
et al. 2021), which promotes DGs’ added value and sustain-
able development of brewing industry. Using DG-derived 
biochar (DGB) for aqueous HM-removal attracted recent 
interests (Zhang et al. 2016; Lian et al. 2019; Zhao and Li 
2022), but few study applied DGB to immobilize soil Cd 
and mitigate agro-food risk, which merits urgent research.

Once amended in soils, biochar interacts with soil matrix 
and biochemical processes occur on biochar-soil interface 
(so-called natural aging) to alter biochar properties and thus 
modify biochar’s effects on soil Cd bioavailability (Zhang 
et  al. 2016; Tan et  al. 2020). Using biochars formed at 
550–650 °C, Nie et al. (2021) showed stronger Cd sorption 
by aged than fresh biochar-amended soils (0.5–2%, w/w) 
regardless of biochar’s precursors, whereas Bandara et al. 
(2021) found that Cd bioavailability declined in poultry lit-
ter biochar-amended soils but increased in wood biochar-
amended soils (3%, w/w) after natural aging. These indicated 
that natural aging effect of biochar on soil Cd bioavailabil-
ity could differ with biochar’s precursors and thus requires 
further study on case-by-case basis to avoid adverse effect. 
Notably, many artificial aging methods (e.g., dry–wet/
freeze–thaw cycle, chemical oxidation) cannot simulate and 
actually reflect natural aging effect of biochar, because natu-
ral aging induces complex biochemical processes that cannot 
be realized during artificial aging (Qian and Chen 2014; Tan 
et al. 2020; Meng et al. 2022). To date, research on natural 
aging effects of biochar on soil Cd bioavailability and wheat 
growth in Cd-laden soil, as well as effect mechanisms, were 
still quite rare and insufficient, especially how natural aging 
influenced DGB’s properties and effects on wheat growth 
and Cd uptake by altering soil Cd fraction distribution was 
unclear. Exploring this concern would help to optimize DGB-
amending scheme to mitigate Cd-induced agro-food risk.

Bacterial community as soil quality indicator can improve 
soils to directly affect soil HMs’ bioavailability, during 
which key bacterial abundance changes (Huang et al. 2017; 
Wang et al. 2020a). Rhizospheric bacterial composition 
may change in response to changing soil properties caused 
by DGB amendment with aging and in turn alter wheat 
growth and Cd uptake, but how natural aging of biochar 
in soil affected bacterial community’s role in regulating 
soil Cd bioavailability, wheat growth, and Cd uptake are 
always ignored. Exploring natural aging effect of DGB on 

rhizospheric microbiota in Cd-laden soil can reveal effect 
mechanisms from microbial insight.

To fill above gaps, this study explored the effect of dif-
ferent DGB-amending schemes on Cd fractions distribution, 
wheat growth, Cd uptake, and rhizospheric bacterial compo-
sition in Cd-laden soil, where DGB was amended at various 
rates without aging (fresh) or with 6-month aging in soil. 
All DGB-amended soils were characterized. At different 
DGB-amending schemes, wheat growth and Cd uptake were 
measured, and soil Cd fractions reflecting Cd bioavailability 
and rhizospheric bacterial composition were determined to 
interpret regulatory effect mechanisms. Results shed novel 
insights in effect mechanisms of different DGB-amending 
schemes on wheat growth and Cd uptake and guided to fea-
sibly amending DGB to block soil Cd-pollution and increase 
soil fertility and agro-food safety.

2  Materials and Methods

2.1  Soil Collection and DGB Preparation

Soil was collected from 0 to 15 cm layer at Shangzhuang 
Experimental Station (40°08′ 21′′N, 116°10′ 52′′E) of China 
Agricultural University in Beijing, China. Air-dried soil was 
milled to pass through 2 mm size-sieve and pre-incubated 
at 25 °C for a week to stabilize bioactivity. The soil was 
HM-free soil (Table S1), according to environment quality 
risk control standard for soil contamination of agricultural 
land (GB15618-2018). DGs obtained from Luzhou Lao-
jiao Co. Ltd. were by-products of liquor, with sorghum and 
rice-husk as main and auxiliary material, respectively, and 
mainly contained cellulose, hemicellulose, sugar, proteins, 
and nutrient components. Air-dried DGs were pyrolyzed into 
DGB at 600 °C for 2 h with heating rate of 5–10 °C/min 
under oxygen-limited conditions in a muffle furnace, and 
the DGB was milled to pass through 2 mm-size sieve before 
experiment. DGB characterization procedure was described 
in Supplementary Information.

2.2  Pot experiment Design

Cd was spiked at 20 mg  kg−1 soil according to Cd tolerance 
of wheat, and 2 kg of Cd-laden soil was filled in plastic 
pot (16.2 cm diameter, 23.5 cm height). To mimic emergent 
remediation by applying DGB immediately after Cd enter-
ing soil, DGB was evenly amended in Cd-laden soil at low 
(2%, w/w) and high rate (4%, w/w), respectively, accord-
ing to actual biochar-amendment rates in farmland soils (Li 
et al. 2011; Aamer et al., 2020). Thus, fresh DGB-amended 
soil was obtained. To obtain aged DGB-amended soil, DGB 
was kept in Cd-laden soil for 6 months at 25 °C and care-
fully retrieved by forceps for aged DGB characterization. 
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Differently amended soils were termed as low rate-bio-
char Cd soil (LBCd), high rate-biochar Cd soil (HBCd), 
LBCd + 6 and HBCd + 6, respectively, based on DGB rate 
(low, high) and aging time (6 months). Cd-laden soil without 
DGB was control soil (i.e., CONCd).

Pot experiments were done in greenhouse at west cam-
pus of China Agricultural University. Each amended soil 
was obtained simultaneously to ensure that all pot experi-
ments commenced concurrently. Pot system for amended 
and control soils was run in triplicate, where 0.5 g of urea 
was applied. All soils were moistened at 60% of water-hold-
ing capacity to mimic farmland soil moisture. Five seeds 
of wheat (Triticum aestivum L.) cultivar ‘Aikang 58’ were 
sowed per pot and after sprouting three seedlings continued 
to grow for 60 days, during which water loss from soil was 
compensated by deionized water.

2.3  Wheat Growth and Cd Uptake Analyses

At harvest, leaf chlorophyll content was directly monitored 
by chlorophyll meter (Yaxin-1260, China). The whole wheat 
was retrieved and roots were gently swept using brush to 
retrieve rhizospheric soil that immediately stored at –80 °C 
for further test. Wheat height was recorded to characterize 
growth. To clarify Cd uptake, wheat sample was separated 
into such four parts as roots, stems, leaves, and grains, which 
were rinsed by deionized water and oven-dried at 105 °C. Cd 
in each part was quantified by inductively coupled plasma 
optical emission spectrometer (ICP-OES) (Agilent 5110, 
USA) after microwave digestion with  HNO3 at 1000 W and 
180 °C for 30 min.

2.4  Soil Characterization and Soil Cd Fractions 
Analyses

At harvest, DGB-amended and control soils were air-dried 
and characterized by procedures in Supplementary Infor-
mation. Three-stage sequential fractionation procedure 
proposed by European Community Bureau of Reference 
was used to extract acid-soluble, reducible, oxidizable, and 
residual fractions of soil Cd (Supplementary Information). 
The procedure was repeated thrice for each soil. After each 
fractionation, mixture was centrifuged to retrieve superna-
tant. Residue was washed by deionized water, and the wash-
ings were combined with the supernatant. The residue was 
then used for next fractionation step. Each Cd fraction was 
detected by ICP-OES (Agilent 5110, USA).

2.5  Rhizospheric Bacterial Composition Analysis

Rhizospheric soil DNA from triplicate sample was extracted 
by DNeasy PowerSoil kit (Qiagen, Germany) and pooled. 
DNA purity and quantity were verified by spectrophotometer 

(NanoDrop Technologies, USA). V3–V4 region of bacterial 
16S rRNA was PCR-amplified with primers 343F (5′-TAC 
GGR AGG CAG CAG-3′) and 798R (5′-AGG GTA TCT AAT 
CCT-3′). Detail PCR protocol, product purification, and 
quantification procedures were described in Supplementary 
Information.

High-throughput paired-end (2 × 300 bp) sequencing 
was run on Illumina Miseq platform. Raw sequencing data 
were trimmed by discarding primer sequences by Cutadapt 
(1.18). Paired-end reads were assembled using PEAR (0.9.8) 
and filtered by removing sequences with quality scores < 20 
using PRINSEQ (0.20.4). High-quality reads were clustered 
into operational taxonomic units (OTUs) at 97% similarity 
threshold. Heatmap analysis was run based on Kyoto Ency-
clopedia of Genes and Genomes (KEGG) level 2. Cluster-
ing correlation heatmap was generated using R with gplots 
package (3.0.1.1). Linear discriminant analysis Effect Size 
(LEfSe) was run with LEfSe (1.1.0) to discern differently 
abundant taxa among different rhizospheric soils. Redun-
dancy analysis (RDA) was run by Canoco (5.0) to exam-
ine the relationship between soil properties and bacterial 
composition. Significance, high significance and extremely 
high significance was assigned at p < 0.05, p < 0.01, and 
p < 0.001, respectively.

2.6  Statistical Analysis

One-way analysis of variance with Duncan’s multiple compari-
son was conducted using SPSS software (26.0) to determine 
statistically significant difference among treatments at p < 0.05.

3  Results

3.1  Fresh and Aged DGBs Characterization

After aging in Cd-laden soil, DGB had more abundant O but 
lower C content (Table 1), because labile organic fractions 
could be decomposed during aging to decrease C content 
while oxidation during aging could generate oxygenic groups 
to increase O content. Thus, aged DGB showed higher O/C 
value that denoted higher aromaticity, while fresh DGB had 
lower aromaticity and thus lower biochemical stability. K 
and Si drove soil cation exchange to regulate HMs sorp-
tion. Compared to fresh DGB, aged DGB had higher K but 
lower Si content and had smaller SSA, total pore volume, 
and average pore size, thus aging in soil destroyed DGB’s 
porous structure (Table 1). Obeying SSA and porosity data, 
SEM results showed that fresh DGB had developed poros-
ity, where pore channels were intact and clear to well form 
porous structure, whereas porous structure of aged DGB was 
mostly destroyed with rougher surface (Fig. 1).
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The  functionality of DGB  was identified by FTIR 
(Fig.  2). Judged from peak intensity at 1089   cm−1 that 
represented aliphatic C-O stretching, both fresh and aged 
DGBs had abundant C-O group because DGs were rich in 
cellulose, hemicellulose, and sugar. The peak at 1584 and 
805.24  cm−1 resulted from aromatic C = C stretching and 
aromatic C-H bending wagging, respectively (Fig. 2). Aged 
DGB had stronger intensity of these peaks than fresh DGB, 
thus aging process induced production of aromatic structure, 
which obeyed O/C value verified by element analysis (Fig. 2, 
Table 1). Correspondingly, the peak at 2921.72  cm−1 repre-
senting aliphatic or cycloparaffin C-H stretching disappeared 
(Fig. 2). The peak intensity at 3300–3600  cm−1 denoted -OH 
group stretching, which was crucial for Cd passivation via 
Cd-ligands coordination bonds.

3.2  Fresh and Aged DGB‑Amended Soil 
Characterization

Compared to control soil (CONCd), the pH of 2% DGB-
amended soil (LBCd) and 4% DGB-amended soil (HBCd) 
increased from 7.72 to 7.82 and to 7.91, respectively, yet 
soil pH slightly dropped after 6-month aging. Concretely, 
the pH of LBCd + 6 and HBCd + 6 decreased by 3.66% 
and 1.54%, respectively (Table 1). Likewise, soil organic 
matter (SOM) content increased by 6.80 and 11.08 times 
at 2% and 4% DGB amendment, respectively, but slightly 
dropped by 17.53% and 16.15% at 2% and 4% DGB amend-
ment after aging, which still exceeded CONCd. Total carbon 
(TC) content in soil also increased from 4.34 to 16.53 and 
21.83 g  kg−1 at 2% and 4% DGB amendment, respectively, 

Table 1  Element composition, specific surface area (SSA) and porosity of fresh and aged distiller’s grain-derived biochar (DGB)

* Higher O/C value denotes higher aromaticity (Spokas 2010; Li et al. 2018)

C N O K Si O/C* SSA
(m2  g-1)

Total pore volume
(cm3  g-1)

Average pore size
(nm)

Fresh DGB 60.3% 0.09% 21.56% 0.45% 17.6% 35.75 5.3774 0.0198 14.7283
Aged DGB 40.33% 2.51% 39.91% 1.74% 8.95% 98.96 3.7273 0.0091 9.6734

a b c

d e f

Fig. 1  The morphology of fresh distiller’s grain-derived biochar (DGB) (a, × 1000; b, × 2000; c, × 5000) and aged DGB (d, × 1000; e, × 2000; 
f, × 5000)
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but declined to 12.16 and 17.97 g  kg−1 at 2% and 4% DGB 
amendment after aging (Table 1).

In comparison, total nitrogen (TN) content increased 
from 0.27 to 0.63 and 1.03 g   kg−1 at 2% and 4% DGB 
amendment, respectively, and continuously elevated after 
aging. At 2% and 4% DGB amendment, available K con-
tent increased by 133.71% and 172.27%, respectively, and 
continuously elevated by 5.22% and 0.31%, respectively, 
after aging (Table 1). Contrarily,  NO3-N content largely 
decreased after DGB amendment compared to CONCd 
(Table 1), likely because DGB suppressed nitrifier abun-
dance but promoted more N accumulation as  NH4-N for 
wheat assimilation.

3.3  Wheat Growth and Cd Uptake

DGB significantly increased wheat growth and relative 
chlorophyll content (soil–plant analyzer development 
(SPAD) index). Specifically, 2% and 4% DGB amend-
ment increased wheat height by 25.67 and 22.57  cm, 
respectively, and increased relative chlorophyll content by 
27.87% and 80.46%, respectively, compared to CONCd 
(Fig. 3). This was because DGB amendment raised soil 
nutrient content and improved K and TN sequestra-
tion (Table 1). Yet, wheat growth and chlorophyll con-
tent somewhat dropped after aging. At 2% and 4% DGB 
amendment, wheat height dropped by 35.33% and 11.58%, 
respectively, and chlorophyll content dropped by 3.09% 
and 8.20%, respectively, after aging compared to those 
without aging, but height and relative chlorophyll content 
after aging still exceeded CONCd (Fig. 3).

DGB amendment generally decreased Cd content in 
wheat roots, stems, leaves, and grains (Fig. 4). Compared 
to CONCd, Cd content in roots decreased by 23.17% and 
42.97%, respectively, and further decreased by 6.65% and 
2.66% after aging, respectively, at 2% and 4% DGB amend-
ment (Fig. 4a). Cd content in leaves decreased by 0.65% and 
31.60%, respectively, and further decreased by 7.54% and 
28.90% after aging, respectively, at 2% and 4% DGB amend-
ment (Fig. 4b). Cd content in stems decreased by 6.91% and 
6.91%, respectively, and further decreased by 45.54% and 
60.74% after aging, respectively, at 2% and 4% DGB amend-
ment (Fig. 4c). Cd content in grains decreased by 15.49% 
and 26.06%, respectively, without apparent change after 
aging at 2% and 4% DGB amendment (Fig. 4d).

3.4  Soil Cd Fraction Distribution

DGB amendment altered Cd fractions distribution in soil. 
Concretely, the proportion of acid-soluble Cd decreased 

Fig. 2  Fourier transform infrared (FTIR) spectra of fresh DGB and 
aged DGB

Fig. 3  Relative chlorophyll content (a) and height (b) of wheat in different treatments. Mean and standard error (SE) of triplicate are shown as 
bar. Different letters indicate significant (p < 0.05) difference in means among different treatments
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from 91% to 83% and 71% at 2% and 4% DGB amend-
ment, respectively. After aging, acid-soluble Cd increased 
to 89% at 2% DGB amendment, which was still lower than 
CONCd, yet acid-soluble Cd sharply declined to 48% at 
4% DGB amendment (Fig. 5). Thus, acid-soluble Cd frac-
tion in soil progressively decreased as DGB rate increased 
(Fig. 5). Contrarily, soil residual Cd fraction continuously 
increased as DGB rate increased and aging proceeded. The 
proportion of residual Cd fraction did not change but after 
aging residual Cd increased to 3% at 2% DGB amendment, 
while at 4% DGB amendment the residual Cd increased 
to 6% and further elevated up to 18% after aging, com-
pared to CONCd (Fig. 5). Soil reducible Cd decreased 
from 7% to 8% and 33% after aging at 2% and 4% DGB 
amendment, respectively, and soil oxidizable Cd fraction 
did not change obviously at DGB amendment (Fig. 5). Soil 
acid-soluble and residual Cd fraction contents implied that 
wheat had lower Cd-absorbing capability at higher-rate 
(4%) DGB amendment, especially after aging, agreeing to 
the result of Cd uptake by each wheat part (Fig. 4).

3.5  Rhizospheric Bacterial Composition

Generally, 2485 OTUs were shared among different treat-
ments (i.e., CONCd, LBCd, LBCd + 6, HBCd, HBCd + 6) 
(Fig. S1). Compared to CONCd, no significant difference 

existed in OTU number between LBCd and HBCd (5799 
vs. 5819), but after aging OTU number of LBCd and HBCd 
declined to 5127 and 4527, respectively, indicating that bio-
diversity sharply decreased after aging, coincided with Chao 
index result (Fig. 6a, S1). Shannon and Simpson index can 
evaluate alpha-diversity in community. After aging, Shannon 
index obviously decreased, signifying decreased biodiversity. 
Similar result was reflected by Simpson index (Fig. 6b, c). 
Figure 6d depicted that sequencing depth here was enough 
to highly cover overall composition of each treatment, so 
sequencing data were reliable for downstream analyses.

Bacterial composition at each taxonomic level was illus-
trated in Fig. 7, with the height of each color square in col-
umn representing the abundance of each group in commu-
nity. At phylum level, dominant groups were Proteobacteria, 
Actinobacteria, and Bacteroidetes, whose abundance totally 
occupied nearly 80% in each treatment (Fig. 7a). Compared 
to CONCd, DGB amendment increased Actinobacteria and 
decreased Proteobacteria abundance. After aging, Actino-
bacteria abundance continued to increase but Proteobacteria 
abundance continuously decreased. Besides, the abundance 
of Acidobacteria, Nitrspirae, Elusimicrobia, and Latesci-
bateria phyla declined as DGB rate increased and aging 
proceeded, while Verrucomicrobia abundance was not sig-
nificantly affected by DGB rate but increased as aging pro-
ceeded, and Cyanobacteria increased with rising rate and 

Fig. 4  Cd content in roots (a), leaves (b), stems (c), and grains (d) of wheat in different treatments. Mean and standard error (SE) of triplicate are 
shown as bar. Different letters indicate significant (p < 0.05) difference in means among different treatments
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aging (Fig. 7a). LEfSe analysis verified that Actinobacteria 
and Acidobacteria were the discriminant phyla among dif-
ferent treatments, especially Acidobacteria abundance in 
CONCd and Actinobacteria abundance in HBCd + 6 sig-
nificantly exceeded that in other treatments (Fig. 8).

At order level, Cytophagales and Microtrichales abun-
dance increased, while Myxococales and Betaproteobac-
teriales abundance decreased as DGB rate increased. As 
aging proceeded, Cytophagales, Propionibacteriales, Mic-
rococcales, and Microtrichales increased, but Myococcales 
showed decrease trend (Fig. 7b). At family level, with rising 
DGB rate, Microscillaceae and Nocardioidaceae abundance 
increased, but Haliangiaceae, TRA3-20, Gaiellaceae, Nitro-
spiraceae, and Nitrosomonadaceae decreased. As aging pro-
ceeded, Microscillaceae and Nocardioidaceae increased, but 
Haliangiaceae, Nitrosomonadaceae, and Alteromonadaceae 
showed decrease trend (Fig. 7c). Four orders (Cytophagales, 
Betaproteobacteriales, Propionibacteriales, Micrococcales) 
and four families (Nocardioidaceae, Nitrosomonadaceae, 
Microscillaceae, Micrococcaceae) were identified as dis-
criminant groups among different treatments (Fig. 8). Par-
ticularly, abundance of Nitrosomonadaceae (belonging to 

Betaproteobacteriales order) in CONCd and Nocardioi-
daceae (belonging to Propionibacteriales order), Microscil-
laceae (belonging to Cytophagales order), and Micrococ-
caceae (belonging to Micrococcales order) in HBCd + 6 
significantly exceeded other treatments (Fig. 8).

At genus level, MND1 and Sphingomonas decreased 
with rising DGB rate, and Nitrospira and Haliangium 
decreased as aging proceeded. Marmoricola, Lysobacter, 
Pseudarthrobacter, and Massilia increased with rising 
DGB rate and aging process (Fig. 9). Three identified gen-
era (Nocardioides, Pseudarthrobacter, MND1) were dis-
criminant genera among different treatments, where MND1 
(belonging to Nitrosomonadaceae family) abundance in 
LBCd, Nocardioides (belonging to Nocardioidaceae fam-
ily) and Pseudarthrobacter (belonging to Micrococcaceae 
family) abundances in HBCd + 6 were significantly higher 
than other treatments (Fig. 8).

Based on above data, DGB amendment here altered soil 
fertility and Cd bioavailability and thus changed dominant 
groups abundance at each taxonomic level, but signifi-
cant abundance changes of several dominant groups were 
mostly observed in HBCd + 6 (Figs. 7 and 8).

Fig. 5  Proportion of soil Cd fractions in different treatments
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4  Discussion

Converting DGs into DGB as soil amendment is a reason-
able option for soil Cd-immobilization and agro-food risk 
mitigation, which was a promising development direction 
that promotes DGs’ recycling and added value of brew-
ing industry, but almost no attempt focused on this issue. 
Besides, natural aging effects of DGB at different amend-
ment rates on wheat growth and Cd uptake, soil Cd fractions 

distribution, and soil nutrient content still remained unclear, 
and in particular how rhizospheric microbiota changed as 
response to DGB amendment with aging process in Cd-
laden soil was unknown. To address above gaps, this study 
converted DGs into DGB to promote Cd-immobilization 
and wheat growth in Cd-laden soil and elucidate underlying 
mechanisms from the perspective of Cd uptake, soil nutrient 
and Cd bioavailability, and rhizospheric bacterial composi-
tion. Results revealed that natural aging in soil increased K 

Fig. 6  Alpha-diversity indices, including Chao (a), Shannon (b) and Simpson (c) index, and sequencing coverage (d) for rhizospheric bacterial 
composition in different treatments
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but decreased Si content of DGB (Table 1), implying that Si 
could be released into soil during aging to combine with soil 
Cd and form Si-Cd composites for preventing Cd transloca-
tion through roots and decreasing Cd transport-related gene 
expression (Wang et al. 2020b; Khan et al. 2021). Aging 
also destroyed DGB’s porous structure (Fig. 1, Table 1), 
likely because soil microbes and organic particles filled and 

blocked pores, and organic matter biodegradation might 
also break intact porous structure (Martin et al. 2012; Yuan 
et al. 2021c). Since DGB’s porous structure was destroyed 
after aging, thus O and/or H atoms could be adsorbed 
onto broken pores during aging to form oxygenic groups 
(Mukherjee et al. 2011). The increased oxygenic groups 
(e.g., -OH, C-O) could also result from oxidation during 

Fig. 7  Rhizospheric bacterial composition at phylum level (a) (with 
the top 15 most abundant groups shown) and at order (b), and family 
(c) level (with the top 30 most abundant groups shown) in different 

treatments. The height of each color square in column represents the 
relative abundance of each group
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aging, which declined HMs’ bioavailability and mobility 
via forming stable HM-complexes/precipitates (Fan et al. 
2018; Gao et al. 2019).

Soil pH more greatly increased with rising DGB rate, but 
slightly dropped after 6-month aging (Table 2). Increased 
soil pH at DGB amendment was due to inherent alkalin-
ity of DGB that can increase surface alkali groups in soil, 
but extensive oxidation during aging could enhance sur-
face acidity by generating oxygenic groups (e.g., carboxyl, 
hydroxyl) to decrease soil pH after aging (Mukherjee et al. 
2014; Yuan et al. 2021c). New carbonate formed by adsorb-
ing  CO2 and low-molecular-weight organic acid decom-
posed from organic carbon of DGB during aging process 
could also decrease soil pH (Yao et al. 2010; Xu et al. 2016). 
Moreover, rising DGB rate more strongly increased soil TC, 
TN, available K, and SOM to promote wheat growth and 
relative chlorophyll content, while 6-month aging further 

increased soil TN and available K content but slightly 
dropped SOM and TC content (Table 2). These indicated 
that higher DGB rate more greatly improved soil nutrient 
and fertility, regardless of fresh and aged DGB. Thus, DGB 
as soil amendment enhanced soil nutrient sequestration to 
avoid nutrients loss, similar to Jabbrova et al. (2023) where 
biochar promoted crop growth by raising soil nutrient avail-
ability. Yet, aging impeded the further increase of SOM and 
TC contents, mostly because SOM could be decomposed 
with some carbohydrates being degraded into inorganic 
compounds during aging (Yuan et al. 2021d). Contrary to 
SOM and TC trends, TN and available K content continu-
ously increased as aging proceeded. One reason was that 
DGB could bind to elements adsorbed on pore surface, 
especially aged DGB with increased oxygenic groups (e.g., 
-OH, C-O) could form H-bond with N-containing ions, thus 
enhancing TN sequestration (Luo et al. 2021). Besides K 

Fig. 8  Taxonomic differences of rhizospheric bacterial composition at phylum, class, order, family, and genus levels among different treatments 
based on Linear discriminant analysis Effect Size (LEfSe)
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release from DGB, complex biochemical conversion and 
stimulated microbial activity might cause the continuously 
increased available K content along aging process (Basak 
et al. 2022). Overall, SOM content and pH dropped after 
aging due to organic fraction decomposition and oxygenic 

groups generated, while aging process further sequestrated 
soil TN and available K to avoid their losses.

Contrarily, soil  NO3-N content more strongly decreased 
with rising DGB rate and further decreased with aging pro-
cess (Table 2). Nitrification is a process where microbes 
oxidize  NH4-N to  NO2-N and  NO3-N and included two 
stages: the first is ammonia oxidation stage mainly initiated 
by ammonia-oxidizers, and the second is nitrite oxidation 
stage (Norton and Stark 2011). The nitrifier abundances 
of Nitrosomonadaceae and Nitrospiraceae more largely 
decreased with rising DGB rate and aging process (Fig. 7c). 
This suggested that rising DGB rate tended to inhibit nitri-
fication but enhance N-fixation, thus explaining the reason 
for continuously decreased  NO3-N but increased TN content 
along aging at each DGB rate (Table 2). Likewise, Yao et al. 
(2022) revealed that wheat straw-derived biochar amend-
ment inhibited soil nitrification by shifting the community 
structure and decreasing the abundance of ammonia-oxi-
dizers. Moreover, rising DGB rate more sharply increased 
N-fixer Ensifer_meliloti abundance, which might also be 
responsible for increased  NH4-N with rising DGB rate 
(Table S2).

Previous studies observed declining Cd uptake by plant 
roots, stems, and/or grains with rising amendment rate 
(Bashir et al. 2018; Akca et al. 2023; Usman et al. 2023). 
This study verified that rising DGB rate more sharply 
decreased Cd uptake by each part of wheat, and Cd content 
in each part was negatively related to DGB rate (Fig. 4) 
and further surveyed aging effect of different DGB rates 
on Cd uptake by each wheat part. Results innovatively 
showed that 6-month aging tended to further decrease Cd 
uptake by wheat roots, stems, and leaves and did not obvi-
ously change Cd uptake by wheat grains, which is edible 
part for consumption (Fig. 4). This involved the re-distri-
bution of soil Cd fractions after DGB amendment with 
aging process. Here, residual Cd fraction increased with 
rising DGB rate and aging process, implying that higher-
rate DGB elicited stronger Cd passivation than lower-rate 
DGB, likely because high-rate DGB caused greater elec-
trostatic force and surface sorption to form complexation 
and/or precipitation that promoted soil Cd passivation. As 
aging proceeded, more oxygenic acidic groups were gener-
ated to render DGB more negatively charged by ionization 
and deprotonation, thus enhancing electrostatic attraction to 
cationic Cd. Meanwhile, Si was released from DGB during 
aging to form stable Cd-composites/precipitates and thus 
further increased residual Cd fraction to promote Cd pas-
sivation (Fig. 2, Table 1). Cheng et al. (2020) proposed 
that  NO3-N addition promoted Cd accumulation in wheat 
roots, regardless of soil  NH4-N level. From this view, DGB 
amendment here decreased soil  NO3-N and after aging 
 NO3-N further decreased, thus blocking Cd accumula-
tion in wheat roots. Above effects decreased Cd uptake by 

Fig. 9  Heatmap of rhizospheric bacterial composition at genus level 
(with the top 30 most abundant genera shown) in different treatments. 
The red in color bar represents higher relative abundance and blue 
indicates lower relative abundance
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wheat and interrupting Cd transfer in soil-wheat system 
(Fig. 5). Besides, soil pH might induce increased residual 
Cd. Previous studies proposed that rising pH caused by 
biochar-amendment facilitated oxygenic group dissociation 
to induce soil Cd stabilization (Houben and Sonnet 2015; 
Wang et al. 2018). However, soil pH increase caused by 
biochar-amendment was time-limited, partly due to alkali 
metal-leaching from biochar (Shi et al. 2019; Gao et al. 
2020). This study observed that soil pH increased at DGB 
amendment but somewhat dropped after aging, thus soil pH 
was not crucial factor for continuously increased residual 
Cd content as aging proceeded. Consequently, the mecha-
nisms by which rising DGB rate and aging process affected 
wheat growth and Cd uptake involved the increased soil 
nutrient content (SOM, TC, TN,  NH4-N, available K) and 
decreased soil Cd bioavailability (Figs. 4, 5, Table 2). Con-
sidering improved soil fertility, decreased Cd bioavailabil-
ity, promoted growth, and decreased Cd uptake of wheat, 
4% DGB rate with 6-month aging could be suitable DGB-
amending scheme for promoting soil fertility and blocking 
Cd-induced risk in soil.

RDA was conducted to reveal the correlation between soil 
Cd fractions, nutrient contents, and bacterial composition. 
At phylum and genus level, both axes (RDA1, RDA2) jointly 
explained 76.9% and 58.3% of total variation in Cd frac-
tions, nutrient contents, and bacterial composition, respec-
tively, indicating a critical influence between soil Cd frac-
tions, nutrient contents, and bacterial composition variation 
(Fig. 10). Residual Cd fraction had positive correlation with 
soil TN, SOM, TC, and available K content, but negative 
correlation with soil  NH4-N content. Acid-soluble Cd frac-
tion was positively correlated to  NH4-N and  NO3-N content, 
but negatively to TN, SOM, TC, and available K content 
(Fig. 10). Thus, improved soil fertility at DGB amendment 
was closely related to fractions re-distribution. Furthermore, 
three treatments as HBCd + 6, HBCd, and LBCd + 6 were 
positively correlated to TN, SOM, TC, available K, and 
residual Cd content. Consequently, both factors of DGB rate 
and aging statistically involved soil fertility improvement 
and Cd conversion into residual fraction (Fig. 10).

Rhizospheric bacterial composition could also contribute 
to soil fertility change and Cd fractions re-distribution. At 

Table 2  Key soil parameters reflecting nutrient content of different treatments

* Mean and standard error of triplicate are shown. Different letters indicate significant (p < 0.05) difference in means among different treatments

Treatment pH Soil organic matter
(SOM, g  kg−1)

Total carbon
(TC, g  kg−1)

Total nitrogen
(TN, g  kg−1)

NH4-N
(mg  kg−1)

NO3-N
(mg  kg−1)

Available K
(mg  kg−1)

CONCd 7.72 ± 0.02 ab* 2.61 ± 0.68 c 4.34 ± 0.38 d 0.27 ± 0.01 c 0.23 ± 0.05 b 1.35 ± 0.96 a 48.21 ± 2.28 c
LBCd 7.82 ± 0.02 ab 17.74 ± 5.65 b 16.53 ± 3.75 b 0.63 ± 0.15 b 0.97 ± 0.03 a 0.69 ± 0.15 ab 112.67 ± 12.19 b
LBCd + 6 7.70 ± 0.17 ab 14.63 ± 1.75 b 12.16 ± 0.46 c 0.76 ± 0.04 b 0.22 ± 0.11 b 0.66 ± 0.36 ab 118.55 ± 3.61 ab
HBCd 7.91 ± 0.20 a 28.92 ± 1.91 a 21.83 ± 0.70 a 1.03 ± 0.23 a 1.02 ± 0.04 a 0.84 ± 0.42 ab 131.26 ± 8.77 a
HBCd + 6 7.63 ± 0.05 b 24.25 ± 3.92 a 17.97 ± 0.87 b 1.18 ± 0.17 a 0.16 ± 0.03 b 0.26 ± 0.09 b 131.66 ± 3.32 a

Fig. 10  Redundancy analysis (RDA) for correlations between soil nutrients/Cd fractions and rhizospheric bacterial composition at phylum (a) 
and genus (b) level among different treatments
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phylum level, DGB amendment increased Actinobacteria but 
decreased Proteobacteria abundance, and after aging Act-
inobacteria abundance increase and Proteobacteria abun-
dance decrease continued (Fig. 7a). Actinobacteria phylum 
included many members with high metabolic ability and 
bioremediation potential (Alvarez et al. 2017). Proteobac-
teria, as a common phylum in soil and sediment, acted as a 
large population with strong Cd-tolerance in HM-laden soil, 
and its abundance was also related to HM-removal (Gillan 
et al. 2005; Kuppusamy et al. 2016; Yu et al. 2021; Zuo et al. 
2023). Effect of HMs on soil bacterial composition mainly 
depended on soil HMs bioavailability (Alvarenga et al. 2008).
Here, decreased Proteobacteria and increased Actinobacte-
ria abundance after DGB amendment with aging process 
accorded with decreased soil Cd bioavailability and promoted 
Cd passivation after DGB amendment and aging (Fig. 5). 
As verified statistically, obvious positive correlation existed 
between Actinobacteria, Cyanobacteria, and Fibrobacteria 
abundance and residual Cd, TN, SOM, TC, and available K 
content, while Proteobacteria, Acidobacteria, Elusimicobia, 
Latescibacteria, and Nitrospirae abundance negatively corre-
lated to residual Cd, TN, SOM, TC, and available K content. 
Acid-soluble Cd fraction was positively correlated to Proteo-
bacteria, Nitrospirae, Latescibacteria, Elusimicobia, Gem-
matimonadetes, and Acidobacteria abundance (Fig. 10a). At 
genus level, Marmoricola, Lysobacter, Pseudarthrobacter, 
and Massilia increased with rising DGB rate and aging pro-
cess (Fig. 9). Among these genera, Lysobacter members are 
biocontrol bacteria antagonistic against diverse plant patho-
gens and commonly inhabit plant rhizosphere. Involvement of 
Lysobacter in controlling plant pathogens could be sustained 
by its ability to prey on other microbes through ‘wolf-pack 
behavior’ and to produce various lytic enzymes and bioactive 
metabolites (Seccareccia et al. 2015; Puopolo et al. 2018). 
Presence of Lysobacter members in croplands was often 
related to suppression of soil pathogenic microbes (Bacosa 
and Inoue 2015). Here, Lysobacter abundance increased with 
rising DGB rate and aging process, thus aged DGB amend-
ment tended to improve soil resistance to various pathogens. 
Massilia belonging to Betaproteobacteria was another key 
rhizospheric genus that can secret multiple metabolites/
enzymes, solubilize phosphorus, degrade phenanthrene, and 
resist HMs (Zheng et al. 2017; Yang et al. 2020). Wang et al. 
(2020a) identified a mercury-tolerator as Massilia and found 
increased Massilia tolerance and abundance with increasing 
mercury level. Here, increased Massilia abundance could 
reflect enhanced P bioavailability and bioactive metabolites 
contents with rising DGB rate and aging process. RDA veri-
fied that Lysobacter and Massilia abundance, together with 
Pseudarthrobacter, Iamia, Nitrospira, Flavisolibacter, Devo-
sia, and Marmoricola abundance, were positively correlated 
to residual Cd, TN, SOM, TC, and available K content, but 
acid-soluble Cd fraction was positively correlated to MND1, 

Sphingomonas, Haliangium, and Enterobacter abundance 
(Fig. 10b). According to RDA result, rising DGB rate and 
DGB aging jointly increased the abundances of Actinobac-
teria, Cyanobacteria, Fibrobacteria phyla, and Lysobacter, 
Massilia, Pseudarthrobacter, and Iamia genera. Thus, close 
correlation existed between DGB rate, DGB aging, and 
dominant groups abundance (Fig. 10). Particularly, higher 
rate (4%) DGB with aging process led to significant change 
in bacterial composition and soil nutrient/Cd bioavailability.

Spearman correlation analysis between Cd fractions, 
nutrient contents, and bacterial composition was further 
performed (Fig. S2). At phylum level, TN, SOM, TC, avail-
able K, and residual Cd content showed negative correla-
tion with Acidobacteria, Elusimicobia, Latescibacteria, and 
Proteobacteria abundance, but positive to Actinobacteria and 
Cyanobacteria abundance (Fig. S2). At genus level, TN and 
available K content were positively correlated to Devosia, 
Flavisolibacter, Massilia, Aeromicrobium, Iamia, Nocar-
dioides, Pseudarthrobacter, and Marmoricola abundance, 
but negatively to Bacteroides, Haliangium, and MND1 
abundance (Fig. S2). Unlike TN and available K, acid-sol-
uble Cd content had significant negative correlation with 
Devosia, Massilia, Aeromicrobium, Iamia, Nocardioides, 
Pseudarthrobacter, and Marmoricola abundance, but was 
positively correlated to Bacteroides, Haliangium, and MND1 
abundance (Fig. S2). Spearman correlation result generally 
agreed to RDA result. Taken together, this study shed the 
advantages of DGB as soil amendment and guided to fea-
sibly applying DGB to mitigate soil Cd-induced risk and 
acquiring underlying mechanisms.

5  Conclusions

Distiller’s grain-derived biochar amendment promoted 
wheat growth in Cd-laden soil. Biochar rate and aging pro-
cess jointly involved soil nutrient increase and Cd bioavail-
ability decrease. Rising rate progressively increased soil 
pH and fertility but decreased soil Cd bioavailability by 
increasing residual Cd, thus more strongly promoting rela-
tive chlorophyll content and decreasing Cd uptake of wheat. 
As aging proceeded, although soil pH, organic matter, and 
total carbon contents somewhat dropped, residual Cd contin-
uously increased to decrease Cd bioavailability via potential 
interactions of Cd with released Si and generated oxygenic 
groups of biochar during aging, which further decreased Cd 
uptake by most parts of wheat. Exceptionally, soil  NO3-N 
content progressively decreased with rising biochar rate and 
aging, partly due to the declined nitrifiers (e.g., Nitroso-
monadaceae, Nitrospiraceae) abundance with rising biochar 
rate and aging. Rising biochar rate and aging jointly elevated 
the abundances of Actinobacteria, Cyanobacteria, and Fibro-
bacteria phyla and Lysobacter, Massilia, Pseudarthrobacter, 
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and Iamia genera that positively correlated to soil organic 
matter, residual Cd, total nitrogen, total carbon, and avail-
able K content. Thus, these key rhizospheric bacteria also 
contributed to soil fertility improvement and Cd fraction re-
distribution. Considering improved wheat growth/develop-
ment and soil fertility and decreased Cd bioavailability and 
Cd uptake of wheat, amending 4% biochar with aging in soil 
was suitable scheme to promote soil fertility and minimize 
Cd-induced risk.
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