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Abstract
Salinity stress is one of the most important environmental factors that substantially affects the yield of plants and changes 
their secondary metabolites worldwide. Biochar is a vital eco-friendly amendment widely used to improve soil health and 
promote plant productivity under stress conditions. In the present study, the effect of biochar, a carbon-rich organic substance 
(0, 1, 2, and 3% of the total mass of the pot), on agro-morphological and physiological traits, essential oil and carvacrol per-
centage, and antioxidant activity of Satureja khuzistanica under salt stress conditions (0, 2, 4, and 8 ds  m−1 NaCl). The plant 
agro-morphological traits and yield, including plant height, number of main and secondary branches, length and width of 
leaf, fresh and dry weight of aerial parts, and dry weight of leaves and flowers were decreased with increasing salinity level, 
but these traits were improved with the application of biochar. The highest yield was observed in the 3% biochar treatment 
in normal conditions. The highest percentage of essential oil (3.55%) and carvacrol (97.66%) were obtained from the plants 
under salinity stress (8 ds  m−1) treated without and with 3% biochar. With increasing levels of salinity stress, the amount 
of SPAD decreased, and electrolyte leakage (EL) and the activities of peroxidase (POD), superoxide dismutase (SOD), and 
catalase (CAT) enzymes increased. However, biochar treatments effectively reduced the damage caused by salinity stress, 
so that the addition of 3% biochar treatment will decrease the destructive effects of salinity stress in the S. khuzistanica, so 
that decreased EL content and the activity of POD, SOD, and CAT enzymes. According to the positive effects of biochar on 
functional traits, essential oil content, carvacrol percentage, and SPAD index, its application can be suggested as a sustain-
able strategy to increase the yield of S. khuzistanica under salinity stress.

Keywords Biochar soil amendments · Antioxidant enzymes · Carvacrol · Proline · Salinity

1 Introduction

Satureja khuzistanica Jamzad (Lamiaceae) is a perennial 
medicinal plant that is widely distributed in the southwest-
ern regions of Iran (Jamzad 2011; Khani et al. 2019; Ghor-
banpour et al. 2016). The plant is locally utilized as a spice, 
herbal tea, analgesic, and antiseptic in traditional medicine 
and pharmaceutical industries (Shariat and Sefidkon 2021) 
and exhibits antifungal, antimicrobial, antibacterial, anal-
gesic, antidiabetic, antioxidant, anti-inflammatory, and 
antilipemic properties (Hadian et al. 2011). Based on the 
results of the previous studies, several drugs such as dentol, 
saturex, and orthodentol are produced from this plant, and 
new formulations, like zagrol are prepared for the veterinary 
industry. Further, plant pomace, after extraction, is used as 
livestock forage (Hadian et al. 2011; Nooshkam et al. 2017).
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Aerial parts of S. khuzistanica have been collected from 
its natural habitats for medicinal uses during the past two 
decades. Considering the growing importance of this plant 
and the need of the pharmaceutical and food industries for 
plant raw materials, it is necessary to domesticate and com-
prehensively cultivate these plants. The plant has unique 
qualities by growing on low-input lime soil and in a dry envi-
ronment, making it a promising candidate to be cultivated 
in marginal lands and low-input farming systems (Hadian 
et al. 2016). Salinity is one of the main limiting factors in 
marginal lands and low-input farming systems. Salinity is 
rapidly rising, occupies approximately 20% of water bodies 
worldwide, and affects 50% of the area under cultivation 
in the most fertile lands of the world by 2050 (FAO 2017). 
Irrigation with saline water, improper drainage structures 
in agriculture, and Earth’s global warming are expected to 
increase the level of saline soil in various regions worldwide 
(Munns & Gilliham 2015). Salt stress negatively influences 
plant growth, normal physical-biochemical processes, and 
nutrient uptake. Furthermore, it disturbs photosystem II 
(PSII) reactions and indirectly causes molecular damage 
through reactive oxygen species (ROS) (Farouk et al. 2020; 
Jiang et al. 2020; Ren et al. 2020; Sheng et al. 2020; El-
Banna et al. 2022; Farouk & AL-Huqail 2022). The appli-
cation of organic amendments, which enhance soil fertility 
along with modifying soil, is known as one of the methods 
to remove salt from the soil profile. Given the expansion 
of saline lands in the world, biological approaches such as 
various organic materials (e.g., manure, plant residues, and 
biochar) can be adopted as one of the essential solutions to 
reduce the adverse effects of salt stress on plants (Xu et al. 
2016).

Biochar, called black gold in agriculture, is a carbon-
rich organic substance, which is obtained by pyrolyzing 
biomass or plant residues in the presence or absence of 
oxygen at 300–1000 °C (Akhtar et al. 2014). The material 
can affect soil physic-chemical characteristics, leading to a 
change in its biological yield and better fertility, and con-
sequently, more plant yield (Farrell et al. 2014; El-Gamal 
et al. 2021; Farouk & AL-Huqail 2022). In addition, bio-
char results in absorbing and retaining nutrients, raising 
water holding capacity, increasing cation exchange capac-
ity, improving soil structure, and subsequently providing 
mineral nutrients (e.g., P,  Mg2+,  Ca2+, and  K+) for plants. 
The high specific surface area of biochar structure and the 
presence of many pores lead to decreased nutrients (Clough 
et al. 2013; Ghezzehei et al. 2014). Accordingly, biochar can 
enhance plant productivity rate and growth (Jeffery et al. 
2011; Kim et al. 2016; El-Gamal et al. 2021; Farouk & AL-
Huqail 2022; Farouk et al. 2023). Further, the percentage of 
biochar effect on plant growth and development depends on 
several items, including the type of biochar, the availability 
of nutrients following the use of biochar, plant species, and 

the texture of soil (Xu et al. 2016). The utilization of biochar 
retains macro- (P,  N+,  K+,  Ca2+) and micronutrients  (Zn2+, 
 Mg2+) for plants. Several researchers demonstrated that bio-
char decreases sodium ion  (Na+) uptake and improves the 
amount of potassium ion  (K+) under salt stress, although 
the substance fails to influence N and  Zn+ content (Brantley 
et al. 2016; Chaganti & Crohn 2015). According to previous 
studies, biochar enhances soil physicochemical properties 
(Lv et al. 2023; Ge et al. 2023). It diminishes the effects of 
salt stress during the growth of Brassica chinensis L. (Tang 
et al. 2020), Sorghum bicolor L. (Ibrahim et al. 2013), Gly-
cyrrhiza uralensis Fisch. (Egamberdieva et al. 2021), and 
Borago officinalis L. (Farouk et al., 2020).

Little is known about the effects of wood-derived bio-
char amendments on agro-morphological and physiological 
traits, essential oil production (content and yield), and the 
major essential oil constituents (carvacrol) percentage, as 
well as their antioxidant activity of S. khuzistanica under salt 
stress conditions in a controlled pot experiment. We hypoth-
esized that increasing biochar amendments would increas-
ingly promote beneficial effects on S. khuzistanica growth, 
plant physiological properties, agro-morphological traits, as 
well as on essential oil percentage/yield and carvacrol con-
tent. Thus, the results of the present study can increase the 
knowledge about the effect of biochar in enhancing growth 
parameters, physiological, and phytochemical traits as well 
as essential oil compounds under salinity stress.

2  Materials and Method

2.1  Biochar and Plant Materials

To prepare biochar, the required amount of pomegranate 
wood (Punica granatum) was collected from the pomegran-
ate orchards in the Saveh region, dried, packed in aluminum 
sheets, and placed in a furnace at 450 °C for 4 h to perform 
the pyrolysis process. Then, biochar was removed from 
the furnace and subjected to chemical analysis, the results 
of which are provided in Table 1. The plant seeds were 
obtained from Pakan Bazar Company (Isfahan, Iran) and 
planted in pots with 20 cm diameter and 25 cm depth, which 
were filled with sandy loam soil (71.43% sand, 20.81% silt, 
and 7.76% clay). Table 1 summarizes the physicochemical 
properties of the applied soil.

2.2  Experimental Design

This study was performed based on a factorial, completely 
randomized design with three replicates at the greenhouse 
of Medicinal Plants and Drugs Research Institute, Sha-
hid Beheshti University (Tehran, Iran). The experimental 
treatments included four percentages of biochar (0, 1, 2, 
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and 3% biochar in potting soil) and four concentrations 
of NaCl (0, 2, 4, and 8 ds/m). Before filling the pots, bio-
char was powdered, passed through a sieve with 1–2 mm 
diameter, and mixed with the soil in desired ratios. The 
mixtures were incubated for 1 week, followed by transfer-
ring S. khuzistanica transplants at the four-leaf stage to 
the pots containing biochar in the spring (10th of May) 
of 2022. One plant was placed in each pot, to which four 
salinity levels were applied at the six-leaf stage by adding 
NaCl to irrigation water. In order to prevent the accumu-
lation of salt in the pots, two holes with a diameter of 
1 cm were built at the bottom of them as drainage, and 
sand was poured at the bottom of each pot to a height of 5 
cm. The pots were placed under greenhouse conditions at 
17/26 °C (night/day) and 65–80% relative humidity. The 
soil moisture content was maintained at field capacity, and 
irrigation time was based on the soil moisture measure-
ment using a time-domain reflectometer (TDR) (Model 
Sabta Barbara 6050X, USA).

2.3  Evaluation of Agro‑Morphological Traits 
and Yield

Following the treatment application, the plants were grown 
for 70 days, and four subshrubs were selected from each 
treatment to assess morphological and functional character-
istics. Morphological properties, such as plant height, leaf 
length and width, as well as the number of main and side 
branches, were examined at the full flowering stage. After 
harvesting, the shoot’s fresh weight was determined, and 
then the plant materials were dried at room temperature. 
The flower and leaf were removed from the shoot, and the 
dry weight of the shoot, leaf, and flower was measured by 
using the scale.

2.4  Antioxidant Enzyme Activity Assay

A Powerwave XS Microplate spectrophotometer (Bio-Tek 
Instruments, Inc., USA) was utilized to evaluate the activ-
ity of enzymes. Regarding the antioxidant enzyme activity 
assay, 0.1 g of fresh leaf samples was mixed with 1 ml of 
cold 50 mM phosphate buffer (pH = 7.8) and centrifuged at 4 
°C for 20 min at 12,000 × g. Catalase (CAT) enzyme activity 
measurement was performed based on  H2O2 decomposition 
rate and reduction of absorbance rate at 240 nm during 3 
min. The reaction mixture contained potassium phosphate 
buffer (50 mM),  H2O2 (15 mM), and 100 µL of enzymatic 
extract. Enzyme activity was expressed as U  g−1 FW unit 
(Aebi 1984). Peroxidase (POD) activity: 1 g of each leaf 
sample was separately milled in 5 mL of assay buffer. The 
homogenates were centrifuged at 12,000 × g for 30 min at 
4 °C (Zhang 1992). Five milliliters of the assay buffer for 
the peroxidase activity contained the following: 125 µM of 
phosphate buffer, 50 µM of pyrogallol, 50 mM of H2O2, pH 
6.8, and 1 mL of the 20 times diluted enzyme extract. This 
was incubated for 5 min at 25 °C, and subsequently, the reac-
tion was stopped by adding 0.5 mL of 5% (v/v) H2SO4. The 
amount of purpurogallin was determined by measuring the 
absorbance at 420 nm. In order to evaluate the superoxidase 
dismutase (SOD) activity rate, 100 µL of enzymatic extract 
was added to the reaction mixture (contained potassium 
phosphate buffer 50 mM, methionine 0.013 M, EDTA 0.1 
µM, and riboflavin 2 µM) and then, absorbance rates were 
recorded at 560 nm. Enzyme activity was expressed as U 
 g−1 FW unit (Beauchamp & Fridovich 1971). The extrac-
tion and measurement of free proline in leaf tissues were 
performed according to the acid ninhydrin method described 
by Bates et al. (1973). Briefly, samples of 100 mg frozen 
leaves were homogenized with 2 mL of 3% sulphosalicylic 
acid in a pre-chilled mortar and pestle. The extracts were 
shaken for 30 min at 750 rpm. The residues were removed 
by centrifugation at 12,000 × g for 20 min. Supernatants (0.8 
mL) were mixed with an equal volume of an acid-ninhydrin 
reagent (1.25 g ninhydrin, 30 mL of glacial acetic acid, and 
20 mL of 2 M orthophosphoric acid) and incubated for 60 
min in boiling water. After cooling, the reaction mixture was 
extracted with 2 mL of toluene, mixed vigorously, and left 
at room temperature for 20 min until separation of the two 
phases occurred. The absorbance of the toluene phase was 
measured at 520 nm using pure toluene as a blank.

2.5  Cell Membrane Damage

The cell membrane leakage was examined by determining 
electrolyte leakage (EL) according to Lutts et al. (2004). To 
this end, 0.30 g of fresh leaves were collected, washed three 
times with distilled water, cut into smaller pieces (length, 1 
cm), and transferred to a test tube with distilled water (10 

Table 1  Chemical and physical properties of the soil and biochar

Soil Biochar

pH 8.2 pH 7.6

Texture Sandy loam Ash content 2.1%
Sand (%) 71.43 Moisture content 4.39%
Silt (%) 20.81 Volatile matter 71.5%
Clay (%) 7.76 Organic carbon 65.43%
EC (dS/cm) 3.92 N (%) 0.21
OC (%) 0.81 P (%) 0.18
N (%) 0.067 K (%) 0.58
P (mg/kg) 21.86 Na (%) 0.32
K (mg/kg) 235 Mg (meq/l) 0.28
Ca (meq/l) 15.3
Mg (meq/l) 11
Cl (meq/l)) 15
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mL). After keeping in room condition for 24 h, primary EL 
(EL1) was obtained by using an electrical conductivity meter 
(Inobl, Japan). Then, the samples were incubated at 121 °C 
for 15 min. Afterward, the solution was cooled at the room 
condition, the electrical conductivity of which was assessed 
(EL2). Finally, the rate of cell membrane damage was evalu-
ated by dividing EL1 by EL2 and expressed as EL%.

2.6  SPAD Measurements

The number of 10 leaves of each plant with different ages 
and colors was randomly chosen to determine leaf chlo-
rophyll content under diffuse lighting (Xiong et al. 2015). 
Each leaf measurement averaged 5–10 readings using a chlo-
rophyll meter SPAD-502 (Minolta, Japan) (Uddling et al. 
2007).

2.7  Essential Oil Extraction and Analysis

To extract the essential oil, about 30 g of dried flowers 
and leaves were finely chopped and heated in a Clevenger 
apparatus for 3.5 h, according to the British Pharmacopoeia 
(1993). The obtained essential oil was dehydrated with dry 
sodium sulfate, weighed carefully, and stored in a refrigera-
tor (4 °C) until analysis. The amount of essential oil was 
calculated based on the weight obtained from 100 g of the 
plant samples (w/w). Then, gas chromatography coupled 
with mass spectrometry (GC–MS) was applied to identify 
the essential oil constituents quantitatively and qualitatively. 
The essential oil was analyzed using an Agilent 7890A gas 
chromatograph (Agilent Technology, USA) coupled to 
a mass spectrometer equipped with an HP-5MS column 
(length, 30 m; internal diameter, 0.25 mm; and thin layer 
thickness, 0.25 µm). Further, oven temperature increased 
from 50 to 250 °C at a rate of 4 °C/min and was kept at 250 
°C for 10 min. Helium carrier gas with a flow rate of 1 mm/
min was utilized, and the ionization energy and ionization 
source temperature were 70 eV and 270 °C, respectively. 
Finally, the GC-FID and GC–MS analyses were performed 
based on the equipment and approach of Hadian et al. (2014) 
to quantify the carvacrol content of the essential oils.

2.8  Statistical Analysis

Regarding the experimental data analysis, the normality of 
the data was first checked in Minitab 16 software. Then, the 
data were subjected to the ANOVA using R 4.0.4 software 
(https:// www.r- proje ct. org), followed by utilizing the least 
significant difference (LSD) test to compare the means. All 
diagrams were drawn by using Origin 2021 software.

3  Results

3.1  Agro‑Morphological Characteristics

The results suggested decreased morphological and 
functional properties after salt stress. An increase in the 
stress level led to a further reduction in the traits so that their 
minimum was observed in the salinity of 8 ds/m (Table 2). 
In addition, the use of biochar, especially 3%, significantly 
improved the morphological and functional characteristics 
(Table 2). The results of ANOVA revealed the significant 
interaction effect of biochar amendment and salt stress on 
the plant height, shoot fresh weight, leaf length and width, 
as well as the dry weight of the flower, leaf, and shoot, 
and the number of main and side branches (P < 0.01) As 
shown in Table 2, the plant height is maximized (63.66 cm) 
following the  B3S0 treatment (3% biochar + 0 ds/m salinity). 
In comparison, the lowest height (34.00 cm) is related to the 
exposure to the salinity of 8 ds/m without biochar  (B0S3). 
The plant height increased sharply with increasing levels 
of biochar 3% treatments, which significantly increased by 
18.70% compared with the control. In addition, applying salt 
reduced the plant height by 41.98% compared to the control.

Applying biochar under the various levels of salinity 
promoted the number of main and side branches, as well as 
leaf length and width compared to the control  (B0S0). The 
treatment could moderate the effect of salinity and lead to 
a lower decrease in the properties compared to the control. 
The highest number of main (36) and side branches (4.66), 
as well as the largest leaf length (17 cm) and width (11.6 
mm), was found after applying the  B3S0 (Table 2). Biochar 
treatments  (B3S0) increased the number of main branches, 
number of secondary branches, leaf length, and leaf width 
by 46.38%, 18.75%, 79.45%, and 60.11%, respectively, com-
pared to the control. Further, biochar amendment in salinity 
conditions was effective on shoot fresh weight, as well as 
the wet weight of the shoot, flower, and leaf so that the traits 
were maximized following the  B3S0 (176.66, 84. 33, and 
33 g/plant in order) (Table 2). The application of biochar 
improved the fresh weight, dry weight, and leaf and flower 
dry weight by 221.2%, 237.32%, and 205.55%, respectively, 
compared to the conditions of salinity stress  (B0S3).

3.2  Essential Oil and Carvacrol Content

The content of essential oil was determined at the full 
flowering stage. The main and interaction effects of bio-
char amendment and salt stress on essential oil and car-
vacrol percentages were significant (P < 0.01). Biochar 
utilization under various salinity levels led to a rise in 
the two parameters compared to the control. The mean 

https://www.r-project.org
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comparison results introduced  B0S3 (0% biochar + 8 ds/m 
salinity) and  B3S3 (3% biochar + 8 ds/m salinity) as the 
treatments leading to the highest essential oil (3.55%) and 
carvacrol percentage (97.66%), respectively. However, 
the lowest amounts of the two variables equaled 2.18 
and 83.00%, respectively, which were related to the con-
trol. At the highest salinity level, the biochar application 
increased the essential oil and carvacrol percentage by 
about 56.42% and 17.66%, respectively, compared with 
control. The results indicated higher levels of essential oil 
and carvacrol by elevating the concentrations of biochar 
and salt (Table 2, Fig. 1).

3.3  Physiological Parameters

3.3.1  Leaf Photosynthetic Pigment Content

According to variance analysis, the interaction effect of the 
various levels of biochar and salinity on the SPAD index was 

significant (P < 0.01). SPAD readings varied from 13.23 to 
31.20. Furthermore, SPAD diminished by increasing salin-
ity, while it improved after amending with biochar. The 
greatest SPAD was 31.20, which was observed following 
the application of 3% biochar without salt stress, an increase 
of 18.18% compared to the control (Fig. 2A).

3.3.2  Determination of Membrane Damage

The membrane damage in the plant was significantly affected 
by the main and interaction effects of the various levels of 
biochar and salinity (P < 0.01). The use of biochar reduced 
the EL, while a significant rise was detected in the variable 
by exposing it to more salinity (Fig. 2B). The highest salinity 
treatment of 8 ds/m significantly increased the EL by 88.12% 
compared with the control. So that, the  B0S3 (0% biochar + 8 
ds/m salinity) and  B3S0 (3% biochar + 0 ds/m salinity) treat-
ments led to the maximum (74.12%) and minimum (30.42%) 
membrane damage, respectively (Fig. 2B).
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Fig. 1  The GC–MS chromatogram of S. khuzistanica essential oil



196 Journal of Soil Science and Plant Nutrition (2024) 24:190–202

1 3

3.3.3  Antioxidant Enzyme Activities and Leaf Proline 
Content

The exposure of the plant to the various concentrations of 
salt in the absence of biochar improved the activity of POD, 
SOD, and CAT, although the enzymes exhibited lower activ-
ities when biochar was added. Further, the enzyme activities 
increased by raising salinity, while biochar decreased the 
stress regulation and enzyme activities. The highest salin-
ity level (8 ds/m) SOD and POD increased about 302.22% 
and 226.07%, respectively. So, the highest activity of SOD 
and POD was related to the  B0S3 treatment (Fig. 3A, B), 
although the  B3S8 and control ones resulted in maximizing 
(with a 135% increase compared to the control) and mini-
mizing CAT activity, respectively (Fig. 3C). Furthermore, 
proline concentration elevated under salt stress, and the 
salinity of 8 ds/m significantly increased (345.45%) accu-
mulation in the vegetative tissue compared to the control. 
However, using biochar at various salinity levels diminished 
proline content (Fig. 3D).

4  Discussion

Salt stress is one of the main abiotic risks, which limits plant 
growth and biomass production (Sheng et al. 2020; Yang 
et al. 2020; Zhang et al. 2021). The results of the present 
study represented that salt stress decreased morphological 
and functional properties. An elevation in the stress level led 
to more reduction in the characteristics so that their lowest 
amount was related to the salinity 8 ds/m, which is consistent 
with the results of Taarit et al. (2011) on the growth traits 
of Salvia sclarea under salt stress and those of Mehdizadeh 
et al. (2020) on S. hortensis under stress. Salinity reduces 
plant growth rate by affecting metabolic pathways and 
molecular responses associated with the present results. Fur-
thermore, salt stress can disrupt plant ion homeostasis lead-
ing to lower photosynthesis activity and membrane stability. 
Ion toxicity, lower cell water, less osmotic potential, osmotic 
stress stimulation, and lower dry weight are the other domi-
nant adverse effects of salinity (Ren et al. 2020; Yang et al. 
2020; El-Banna et al. 2022). Salinity disrupts chloroplast 

Fig. 2  Effect of salinity levels 
and biochar application on leaf 
photosynthetic pigment (A) and 
cell membrane injury (B) of S. 
khuzistanica. S, salt;  S0, without 
salt;  S1, 2 dS  m−1;  S2, 4 dS  m−1; 
 S3, 8 dS  m−1 NaCl/; B, biochar; 
 B0, non-biochar;  B1, 1% of total 
pot mass;  B2, 2% total pot mass; 
 B3, 3% total pot mass. Bars with 
the same letter(s) are not sig-
nificantly different at P < 0.05 
according to the LSD test
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function and reduces cell water potential, resulting in clos-
ing stomata and absorbing a limited level of  CO2 after a 
short time, consequently stopping cell division (Bukhat et al. 
2019; Farouk & AL-Huqail 2022). Following the salt stress, 
ROS accumulation increases, which accelerates oxidative 
damage, leads to constant oxidative damage by weakening 
essential cellular compounds, inactivates antioxidant capac-
ity, interrupts plant-water relations, and diminishes nutrient 
uptake (Ahmad et al. 2021; Bukhat et al. 2019; Farouk et al. 
2020; Yang et al. 2020).

Further, a significant improvement was observed in the 
morphological and functional properties after utilizing 
biochar, especially 3%. Biochar enhances plant ability to 
resist environmental stress factors and elevates agricultural 
productivity (Ran et al. 2019; Farouk & AL-Huqail 2022; 
Farouk et  al. 2023). The substance results promote the 
growth of S. hortensis (Mehdizadeh et al. 2020) and Sola-
num tuberosum (Akhtar et al. 2015) under salt stress, which 
are in line with the results of the present study. Furthermore, 
the application of biochar increases shoot weight in maize 
(Abiven et al. 2015), as well as the biomass of aerial parts 
and the length of roots in potato crops (Akhtar et al. 2015) 
under salt stress. Limited information is available concern-
ing the exact mechanism of biochar on plant growth and the 
interaction between biochar and salinity.

Biochar may stabilize salt ions in saline soils or form 
non-saline microsites to enhance nutrient uptake (Ghezzehei 
et al. 2014). However, the enhanced growth rate could be 
related to increased stomatal conductivity and plant water 
consumption (Akhtar et al. 2015; Zhang et al. 2013). It 
seems that a rise in water-holding capacity and ionic solute 
uptake because of utilizing biochar in saline conditions is 
associated with lower salt concentration in the soil, leading 
to less adverse effects of NaCl on plant growth parameters. 
Additionally, biochar stimulates leaf photosynthetic perfor-
mance and decreases oxidative stress, causing more biomass 
and plant yield under salinity conditions (Yang et al. 2020). 
Some of the most important characteristics of soil, such as 
pH, enzyme activity, microbial biomass, and nutrient and 
water holding capacity, elevate after treatment with biochar 
(Jeffery et al. 2011). In the biochar-amended soil, root sen-
sitivity to osmotic stress diminishes by increasing soil mois-
ture and improving soil properties, as well as Na binding to 
the biochar structure (Akhtar et al. 2015; Mehdizadeh et al. 
2020).

The quantity and quality of the essential oil of medicinal 
plants can be influenced by environmental stresses and 
nutrient availability. Despite the reduced plant productivity, 
different results have been reported regarding the changes 
in the quantity and quality of medicinal plant essential oil 
in response to salinity levels. Some researchers have found 
a rise in the essential oil content of Coriandrum sativum 
(Nefati et al. 2011), Ocimum basilicum (Farasaraei et al. 
2020), Mentha spicata (El-Danasoury et  al. 2010), and 
Lallemantia iberica (Heydari & Pirzad 2020) at high salinity 
level. In some plant species, essential oil accumulation 
can be ascribed to an increased density of essential oil 
glands along with the production of more glands during 
stress (Ghassemi-Golezani & Farhadi 2022), as well as 
net assimilation or assimilate distribution during growth 
and differentiation processes (Chrysargyris et al. 2018). 
Further, a reduction in plant primary metabolism during 
stress can result in the accumulating of specific products 
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Fig. 3  Effect of salinity levels and biochar application on superoxide 
dismutase (SOD) (A), catalase (CAT) (B), peroxidase (POD) (C), and 
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 S2, 4 dS  m−1;  S3, 8 dS  m−1 NaCl/; B, biochar;  B0, non-biochar;  B1, 
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Bars with the same letter(s) are not significantly different at P < 0.05 
according to the LSD test
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(intermediates), which can be shifted toward the synthesis 
of secondary metabolites such as essential oils (Ghassemi-
Golezani & Farhadi 2022). In the present study, the essential 
oil percentage was significantly affected by biochar. 
The treatments could enhance plant yield and essential 
oil content under salt stress because of having specific 
physicochemical traits, minimizing sodium uptake, and 
maximizing the amounts of available nutrients (Ghassemi-
Golezani & Farhadi 2022). The results of several studies 
have demonstrated different carvacrol biosynthesis and 
accumulation in response to various environmental factors 
(Majdi et al. 2017; Mohammadi et al. 2019). Some plant 
species like mint (Aziz et al. 2008) and basil (Ashraf & Orroj 
2006) have less essential oils, especially monoterpenes, 
following salt stress. However, the stress is associated with 
the elevated concentrations of essential oil components in 
some other plant species, such as chamomile (Baghalian 
et al. 2008). The results of the present study represented a 
more significant carvacrol percentage in salinity conditions, 
which is in line with those of Neffati and Marzouk (2008).

Furthermore, SPAD significantly diminished under 
salt stress, which is in agreement with the results of Taïbi 
et al. (2016) on Phaseolus vulgaris L., Taffouo et al. (2010) 
on Vigna subterranean L., and Farouk et al. (2020) on 
Ocimum basilicum L. The lower photosynthetic pigment 
level of plants under salt stress is considered a typical sign 
of oxidative stress and is attributed to the inhibition of 
chlorophyll synthesis and activation of its degradation by 
chlorophyllase (Santos 2004; Smirnoff 1996; Taïbi et al. 
2016). The declined chlorophyll content caused by slow 
synthesis or rapid degradation suggests the presence of 
a light protection mechanism through decreasing light 
absorption by reducing chlorophyll amount (Elsheery & 
Cao 2008). Based on the results of the previous studies, 
a rise in salinity level diminishes the chlorophyll content 
of basil due to light inhibition, increased chlorophyllase 
activity, and enhanced ROS production, as well as the 
instability of the protein structure of pigments (Heidari 
2012). In the present study, a higher SPAD was found by 
applying biochar under salinity conditions. The results 
of other studies indicated that biochar treatment elevates 
chlorophyll amount, improves PSII activity, and facilitates 
electron transfer (Lyu et al. 2016), as well as maximizing 
the production of chlorophyll, carotenoid, amino acids, and 
protein in plants (Younis et al. 2015).

Some defense systems, like cell membrane stability, 
protect plants against the adverse effects of stress. Cell 
membrane stability and EL refer to the cell damage rate 
induced by environmental stress in plants, respectively. 
As for the basil, the EL increases significantly under salt 
stress because of enhancing membrane permeability, and 
consequently increasing solute leakage (Hu et al. 2012). 
Salinity conditions are accompanied by higher membrane 

damage and lipid peroxidation due to the greater concen-
trations of  Na+ in plants (Banu et al. 2009). After exposure 
to salt stress, EL improves in O. basilicum (Farasaraei 
et al. 2020), S. hortensis (Mehdizadeh et al. 2020), and 
Thymus daenensis and T. vulgaris (Bistagni et al. 2019), 
which is consistent with the results of the present study. 
The stress causes nutritional imbalance in plant tissue by 
elevating the accumulation of specific ions like  Na+, lead-
ing to toxic effects on membrane stability and permeabil-
ity, as well as more EL (Tavakkoli et al. 2010). Further, 
it increases membrane damage by promoting the levels of 
cell free radicals in many plants (Farasaraei et al. 2020). 
Regarding the results of the present study, cell membrane 
damage was reduced by utilizing biochar, which aligns 
with the results of Mehdizadeh et al. (2020) on S. hort-
ensis. Biochar enhances water-holding capacity in soil, 
improving soil moisture and lowering salt concentration 
in soil solution (Akhtar et al. 2015).

Like to other abiotic stresses, salt stress causes excessive 
ROS production in plants (An et al. 2016). Furthermore, 
SOD, POD, and CAT are the main components of the 
antioxidant enzyme system and play a crucial role in 
removing ROSs. Plant antioxidants are a natural defense 
system against various stresses (Zulfiqar et al. 2021). The 
results of the present study revealed that the activities of 
CAT, SOD, and POD elevated by increasing salinity, 
while they were modulated after amending with biochar. 
Some researchers have reported using biochar promotes 
the systemic resistance of antioxidant enzymes in plants 
(Quartacci et al. 2017; Rehman et al. 2019; Abideen et al. 
2020; Rasool et al. 2021).

Proline, as one of the compatible soluble substances, 
plays an important role in maintaining cell osmotic balance 
in plants (Shtereva et al. 2015), the accumulation of which 
enhances salt resistance (Kishor et al. 2005). In the present 
study, a rise in salinity level led to a greater proline con-
tent in the leaves of S. khuzistanica, which is in agreement 
with those of Mehdizadeh et al. (2020) on summer savory 
and Huang et al. (2019) on sweet corn. Generally, proline 
concentration elevates through biosynthesis of protein, or 
its hydrolysis and oxidative degradation to protect against 
salinity. It serves as an osmotic protectant, ROS scavenger, 
and protein stabilizer, and plants can increase the accumu-
lation of the material to deal with osmotic stress (Trovato 
et al. 2008). Based on the results of the previous studies, bio-
char differently influences the amount of proline in various 
plants. Biochar decreases proline content in bean (Farhangi-
Abriz & Torabian 2017) and corn seedlings (Lashari et al. 
2014), which is inconsistent with the results of the present 
study. However, some researchers found a greater proline 
concentration in summer savory after the treatment (Meh-
dizadeh et al. 2020), which is in line with the results of the 
present study.
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5  Conclusion

The results of the present study revealed that salt stress 
reduced the growth of S. khuzistanica, and biochar amend-
ment could moderate the adverse effects of salinity. Biochar 
amendment may effectively reduce salinity stress on plants 
by increasing the soil cation exchange capacity, total poros-
ity, soluble and exchangeable  K+, and fertilities, decreasing 
soil electrical conductivity, soluble  Na+, and  Cl− contents, 
and water evaporation, reducing the shoot  Na+ accumula-
tion, and relative electrical leakage; increasing the shoot 
 K+ accumulation, improving leaf water status, increasing 
chlorophyll content, and increasing N use efficiency. The 
current study suggests that biochar advances salinity toler-
ance and may be considered a potential regulator of agricul-
tural production under salt stress. This makes a significant 
contribution to the production of S. khuzistanica in salty 
and low-yielding lands. Thus, we conclude that further work 
on specific interactions between biochar type and rates, and 
cultivation measures is needed and quite promising.
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