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Abstract
This experiment aimed to look at active and passive soil organic carbon percentages during composting different agricultural 
wastes at different temperatures. It is essential to understand how various agricultural wastes composting oxidase the carbon 
(C) during decomposition at various temperatures. The highest C content in the crop residce was recorded in the gliricidia 
(42.1) and the lowest in the cotton stalk (36.2), while the highest temperature (41.35 °C) recorded during the decomposition 
in the (T4) 40% wheat (Triticum aestivum) straw (WS) + 40% cotton (Gossypium hirsutum) stalk (SCS) + gliricidia (Gliri-
cidia sepium) leaf (GL) at 70 days and the lowest temperature (20.25 °C) in the T1 100% WS at 119 days. The experimental 
pits comprising six treatments were laid out in a completely randomized design with four replications. Treatments were 
as follows: (T1) 100% WS; (T2) 100% SCS; (T3) 50% WS + 50% SCS; (T4) 40% WS + 40% SCS + GL; (T5) 30% WS + 30% 
SCS + 20% GL + 20% sorghum (Sorghum bicolour) stubbles (SS); and (T6) 25% WS + 25% SCS + 25% GL + 25% SS. This 
study showed that with an increase in the decomposition period, the C pools significantly had higher levels of very labile 
content (18.64 g  kg–1) and labile content (5.65 g  kg–1). Less labile content (0.45 g  kg–1) was recorded in T6, whereas the 
highest non-labile content (37.98%) was recorded in T1. These C pools reached their maximum concentrations at the last 
phase of T6 decomposition. This work therefore provides a roadmap for further research into the science of soil organic 
carbon fractions (active and passive) during composting at various temperatures. The experiment’s hypothesis may offer 
a guidance on strategies and techniques for appropriate decomposition methodology of agricultural waste, as well as the 
function of enriched materials. It will be useful for researchers, producers, and planners to know the organic C fractions in 
composts of agricultural wastes at different temperatures and stages.
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1 Introduction

Crop residues have expanded in volume quickly as global 
cereal grain output has increased. Crop waste is now directly 
burned, turned into soil, or removed from the fields for use 
as fuel, feed, charcoal, and building materials. Crop waste 
is frequently used for various purposes, including thatch-
ing, composting, animal feed, cooking fuel, and other things 
(Prasad et al. 2012 and 2020). However, a significant amount 
of agricultural residue is left in the fields unutilized, and 
getting rid of it is a major problem (Naresh et al. 2017). Hav-
ing a high nutrient potential, India alone produces 500–550 
million tons of crop residues annually (Jain et al. 2014). To 

carry out well-timed field tasks and sow future harvests, a 
substantial amount of crop residue is burned in the field (Jat 
et al. 2021).

In current practice, the short period (10–20 days) between 
sowing the subsequent crop and harvesting the one before it in 
today’s automated and intensive cropping systems is a major 
contributor to on-farm crop waste burning (Jain et al. 2014). 
A significant amount of agricultural waste can be quickly 
and easily disposed of by burning it in place (Naresh et al. 
2017). In addition to the greenhouse gases in the atmosphere 
(GHGs), it also produces aerosols, soot particles, C monoox-
ide (CO), C dioxide  (CO2), nitrous oxide  (N2O), ammonia 
(NH3), Sulphur dioxide  (SO2), volatile organic compounds 
(VOCs), and other harmful components and gases (Nagar 
et al. 2020). Similarly, ongoing crop residue burning increases 
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the millions tons of net nutrient losses from the soil in various 
ways, raising the input cost for crop production, necessitat-
ing millions of dollars in investments, and accelerating soil 
degradation (Meena and Kumar 2022). Some efficient and 
sustainable techniques to reduce crop residue burning and 
recycle nutrients into the soil include residue mulching, in situ 
incorporation, composting, biochar formation, mechanized 
methods, and several others (Porichha et al. 2021). However, 
the usefulness of these technologies depends on how crop 
residues are applied and how quickly they degrade, as well 
as on the type of soil, climate, crops, cropping system, and 
tillage practices. Crop residues can be economically viable, 
agronomically productive, and socially acceptable if managed 
adequately. Soil health and environmental security depend 
on identifying and creating location-specific interventions for 
recommended technologies to be widely used (Banerjee et al. 
2020, 2021; Meena et al. 2020b).

The biological decomposition of organic materials under 
regulated conditions is a natural process known as compost-
ing (Misra et al. 2003). Composting is a good way to max-
imise the use of crop residues while offering a wide range 
of environmental and economic benefits (Mor et al. 2016; 
Bindu and Manan 2018). Farmyard manure (FYM), which is 
made from composted crop residues, increases soil moisture, 
nutrient content, microbial activity, and productivity (Lohan 
et al. 2018). However, crop residue composition, C/N ratio, 
pH, the amount of moisture, the temperature, and aeration 
may all affect the composting process (Bhuvaneshwari et al. 
2019). Soil organic C (SOC) is one of the most commonly 
used soil quality indicators. Improving physical, chemical, 
and biological qualities affects fertility and production in ter-
restrial eco-systems. It is also useful for anticipating climate 
change and its effects (Kirschbaum 2000; Sahoo et al. 2019).

Net global  CO2 emissions increased to 31 billion tons 
by 2010, and it is anticipated to reach a record-breaking 
43.1 billion tons in 2022. In addition to accelerating climate 
change (Kaushal et al. 2021), this rising  CO2 concentration 
in the atmosphere also poses a severe environmental danger 
in the form of land degradation. A staggering 24% of the 
world’s  CO2 emissions come from agriculture, including 
intensive crops, forestry, land-use changes, and poor farm 
management (IPCC 2014). Therefore, it is crucial to find 
ways to reduce C emissions and store them in the soil (San-
derman and Baldock 2010). Organic matter (OM) in the 
agroecosystem is being depleted due to current agricultural 
methods (Lal et al. 1998). Because it increases the cation 
exchange capacity of the soil and supplies nutrients and a 
habitat for the microbial community, soil organic matter 
(SOM) is a crucial component of soil fertility and biology 
(Balota et al. 2014). More than half of the C in sandy soils 
is lost from the SOM due to the abuse of natural ecosystems 
for agricultural purposes (Lal 2004).

Materials with labile or rapidly degrading half-lives 
ranging from a few days to a year, made up of the active 
C pool. The majority of bacteria’s readily available food 
and the majority of nitrogen (N) that is rapidly mineral-
ized are present in the active pool, according to Benbi 
and Richter (2002). Labile-C is primarily in charge of 
mineralization activities that supply nutrients to plants 
and provide energy and C to soil microbes (Meena et al. 
2020a). Furthermore, soil microbial biomass (SMB) is a 
biogeochemical and biological process indicator and an 
active pool of soil OM dynamics (Lundquist et al. 1999). 
Non-labile C pools play an important role in soil function 
and health and come in various chemical compositions 
and breakdown stages. Humic compounds account for 
60–80% of the total organic carbon (TOC), with humic 
being the most abundant, followed by fulvic acid or humic 
acid (Almeida et al. 2014). Labile organic carbon (LOC) 
fractions in soil are considered sensitive and early indi-
cators of soil quality changes. Because LOC has a sig-
nificantly shorter turnover period and a higher turnover 
rate than more stable organic C in soils, it reacts faster 
to changes in management techniques (Gu et al. 2016). 
Because of their high biological activity, LOC fractions 
play an important role in the C cycle and may be used as 
early and sensitive markers of soil organic carbon (SOC) 
changes (Banger et al. 2010).

C stabilisation is essential for better agricultural man-
agement and SOM storage (Meena et al. 2021). C seques-
tration and stabilization are inextricably linked (Liao et al. 
2020; Kumar et al. 1998). Increased C sequestration stabili-
zation could help reduce the greenhouse effect (Goh 2004). 
The process of C stabilization has not yet been completely 
understood, and it is influenced by various circumstances 
(Meena et al. 2020b). Labile pools improve soil enzymatic 
activity, nutrient dynamics, and crop productivity due to 
changes in total organic C (Sharma et al. 2020). Increase 
critical labile-C, safeguarding labile-C pools at risk of loss, 
and sequestering C are all ways to reduce global warming 
and improve soil quality (Segun et al. 2021). In response 
to changes in SOC supply, microbial biomass C, particle 
OMC, and highly oxidisable SOC are labile SOC fractions 
(Das et al. 2016). The main participant in the soil ecosys-
tem and services is SOM. Crop residue integration can 
improve soil quality by increasing the amount of organic 
C (SOC) in the soil. Most studies focus on determining the 
amount of OM in soil. As a result, it is critical to under-
stand how decomposition agents and temperature affect 
SOC percentages in composts. This research offers guid-
ance on strategies and techniques for appropriate decom-
position of agricultural waste and the function of enriched 
materials. It is critical to understand this to decompose C 
fractions promptly.
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2  Materials and Procedures

2.1  Experimental Site

The experiment was laid out in a completely randomized 
design at the Research Farm of the Department of Soil Sci-
ence and Agricultural Chemistry, Dr P.D.K.V., Akola, MH 
(Fig. 1) (elevation 287 to 316 m above sea level, latitude 20.7° 
N, and longitude 77.07o E), which comes under the western 
plateau and hills region agro-climatic zone. The soil texture 
of the experimental farm was medium black to deep black.
Completely randomized design at the Research Farm of the 
Department of Soil Science and Agricultural Chemistry.

2.2  Climate and Weather

The average maximum and minimum temperatures during this 
study were 43.7 and 10.5 °C, respectively. Between 33 and 88% 
of the relative humidity was present. The monthly variations in 
weather data for 2018 are presented (Supplementary Table S1).

2.3  Treatments

Experimental pits, comprising six treatments, were laid 
out in a completely randomized design with four replica-
tions. Each pit is filled with 100 kg of compostable material 

per the treatment. (T1) 100% wheat (Triticum aestivum) 
straw (WS); (T2) 100% shredded cotton (Gossypium hir-
sutum) stalk (SCS); (T3) 50% WS + 50% SCS; (T4) 40% 
WS + 40% SCS + 20% Gliricidi (Gliricidia sepium) leaf 
(GL); (T5) 30% WS + 30% SCS + 20% GL + 20% sorghum 
(Sorghum bicolour) stubbles (SS); (T6) 25% WS + 25% 
SCS + 25% GL + 25% SS. The rock phosphate at 12%, the 
PDKV decomposer at 1 kg  Mg–1, the element sulphur at 
5% (50 kg  Mg–1), the urea at 1% (10 kg  Mg–1), and cow 
dung slurry at 1% (10 kg   Mg–1) were used to enrich all 
the treatments. The chemical compositions of raw materi-
als (enriched materials and crop residues) are presented in 
Tables 1 and 2.

2.4  Composting Process

Wheat straw, shredded cotton stalk, gliricidia leaf, and sor-
ghum stubble were among the agricultural trash employed in 
composting. The pile’s dimensions were 3.0 m long, 1.5 m 
wide, and 1.0 m high. To achieve the appropriate C:N ratio 
(around 20–30), piles were built by merging agricultural 
detritus. To enrich compost, urea solution (1%), rock phos-
phate (12%), and sulphur (5%), added via gypsum, were 
added to the total weight of agricultural waste, followed by 
phosphorus soluble bacteria (PSB) and Trichoderma viride 
(1 kg  Mg–1). When the temperature within the pile decreased 
for three days in a row, they were rotated. The moisture 

Fig. 1  Experimental location
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content was initially fixed at between 60 and 70% (w/w), 
and it was kept within the range by watering during turning 
operations at seven-day intervals. These management actions 
were carried out during the bio-oxidative phase of degrada-
tion, which lasted up to 90 days. The experiment was done in 
the shade to avoid excessive rain and sun exposure, with the 
piles covered with polythene. After 90 days of decomposi-
tion, treatment-specific piles were gathered in one location 
and left to cure for another 30 days, for 120 days. Tempera-
tures inside the heaps were recorded regularly. Temperature 
changes during the decomposition of enriched compost are 
presented in Table 3.

2.5  Sampling Strategy

Samples were collected from each replication. To create 
composite samples, sub-samples taken from inside each pile 
were thoroughly mixed and homogenised, dried in an oven 
at 70 °C, powdered, and then sieved through 2 mm sieves 
before being used for chemical analysis. The composting 
process was sampled at different stages (15, 30, 60, 90, and 
120 days after decomposition), depending on the thermal 
conditions inside the piles for C fraction analysis. At each 
sampling time, a sample of about 500 g was taken and mixed 
adequately for analysis.

2.6  C Fraction Analysis

Using 36 N  H2SO4, the modified Walkley and Black method 
(Walkley and Black 1934) was used to determine the organic 
C pools, indicating that the recovery factor 1.298 represents 
the total SOC pool (Table 4). This fraction was divided into 
four pools: very labile (pool I:  CVL), labile (pool II:  CL), less 
labile (pool III:  CLL), and non-labile (pool IV:  CNL). The 
active pool of organic C in soils is made up of Pools I and 
II [active pool = ∑ (pool I + pool II)], whereas the passive c 
is made up of pools III and IV combined [Passive pool = ∑ 
(pool III + pool IV)]. Three acid-aqueous solutions were 
used in ratios of 0.5:1, 1:1, and 2:1 using 5, 10, and 20 mL 
of concentrated (36 N)  H2SO4 (corresponding to 12.0, 18.0, 
and 24.0 N of  H2SO4, respectively) (Chan et al. 2001). The 

Table 1  Chemical composition of rock phosphate

Chemical composition of rock phosphate Content

Total P(%) 20.00
Water soluble P (%) 0.0030
Citrate soluble P(%) 1.100
Potassium (K%) 0.130
Calcium (Ca%) 9.00
Magnesium (Mg%) 3.480
Sulphur (S%) 0.400
Iron (Fe mg  kg–1) 5870
Manganese (Mn mg  kg–1) 904.0
Zinc(Zn mg  kg–1) 213.0
Copper (Cu mg  kg–1) 40.0

Table 2  Chemical composition of crop residues and gliricidia leaves

Crop residues Chemical composition C:N

C (%) N (%) P (%) K (%) S (%) Zn (mg  kg–1) Fe (mg  kg–1) Mn (mg  kg–1) Cu (mg  kg–1)

Sorghum stubbles 37.7 0.47 0.21 1.13 0.12 41 131 67 12.02 80.2
Wheat straw 40.1 0.51 0.18 0.89 0.14 45 124 56 9.55 78.6
Cotton stalk 36.2 0.48 0.16 0.68 0.09 37 119 61 13.11 75.4
Gliricidia leaves 42.2 2.87 0.33 1.24 0.17 62 161 89 13.25 14.9

Table 3  Temperature changes during the decomposition of enriched compost

D, days

Treatment Temperature change (°C)

D0 D7 D14 D21 D28 D35 D42 D49 D56 D63 D70 D77 D84 D91 D98 D105 D112 D19

T1 34.25 37.36 35.38 35.63 35.50 31.60 35.00 35.00 35.00 35.35 38.90 37.85 40.03 42.08 36.50 31.73 27.08 20.25
T2 33.48 39.70 35.60 35.58 35.15 36.33 39.20 37.78 37.78 37.85 37.83 36.38 42.00 37.58 38.30 32.23 28.38 25.93
T3 34.73 41.58 36.45 36.00 35.88 35.35 36.45 36.68 36.68 35.40 37.45 37.95 39.93 40.30 37.55 33.10 29.30 25.58
T4 34.93 42.35 36.03 38.00 36.98 36.95 39.98 35.05 35.05 34.98 41.35 39.80 38.63 40.53 38.33 32.10 27.78 25.85
T5 34.50 40.90 35.43 35.98 36.98 34.80 36.48 37.15 37.15 37.23 36.80 39.20 39.18 41.55 36.75 33.13 27.90 27.78
T6 35.30 41.00 36.18 36.48 36.23 34.08 36.88 35.65 35.65 35.88 35.65 38.55 40.63 39.48 39.40 33.88 28.48 26.60
SE(m) ± 0.45 0.28 0.33 0.24 0.24 0.28 0.33 0.39 0.39 0.30 0.58 0.51 0.46 0.46 0.49 0.21 0.26 2.48
CD at 5% NS 0.83 NS 0.71 0.71 0.83 0.99 1.17 1.16 0.89 1.73 1.54 1.39 1.38 1.47 0.65 0.79 NS
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total SOC could be divided into four pools thanks to the 
amount of C discovered in this manner.

2.7  Statistical Anaysis

The data were examined using the “analysis of variance” 
(ANOVA) standard procedure (Gomez and Gomez 1983).

3  Results

3.1  Very Labile C Pools

The very labile C concentration in compost prepared 
from various agricultural wastes ranged from 6.01 to 
9.95, 6.47 to 10, 8.45 to 11.63, 10.42 to 14.88, and 
13.01 to 18.64 g  kg–1 after 15, 30, 60, 90, and 120 days 

of decomposition, respectively, as shown in Fig.  2. 
T6, which is composed of 25% WS + 25% SCS + 25% 
GL + 25% SS, had the highest very labile C content 
(18.64 g  kg–1) and was found to be at par with T5, which 
is composed of 30% WS + 30% SCS + 20% GL + 20% SS, 
followed by T4, which is composed of 40% WS + 40% 
SCS + 20% GL and 50% WS + 50% SCS, and T1, which 
is composed of 100% WS. T2 had a substantially lower 
value (13.01) during decomposition and is composed 
of 100% SCS. The combination of gliricidia leaf and 
other crop residues resulted in a higher content of very 
labile C.

3.2  Labile C Pools

The periodical changes in labile C during compost-
ing are presented in Fig. 3. After 15, 30, 60, 90, and 

Table 4  According to their 
decreasing order of oxidizability Organic C oxidizable by 12.0N  H2SO4 Pool I  (CVL very labile)

Difference in Coxidizable by18.0 N and that by 12.0 NH2SO4 Pool II  (CL labile)
Difference in  Ctot oxidizable by 24.0N and that by 18.0 NH2SO4 Pool III  (CLL less labile)
Difference between C and oxidizable by 24.0N  H2SO4 Pool IV  (CNL nonlabile):

Fig. 2  Changes in very labile 
carbon over time as crop 
residues decompose. T1, 100% 
wheat (Triticum aestivum) straw 
(WS); T2, 100% shredded cotton 
(Gossypium hirsutum) stalk 
(SCS); T3, 50% WS + 50% SCS; 
T4, 40% WS + 40% SCS + 20% 
Gliricidi (Gliricidia sepium) 
leaf (GL); T5, 30% WS + 30% 
SCS + 20% GL + 20% sorghum 
(Sorghum bicolour) stub-
bles (SS); T6, 25% WS + 25% 
SCS + 25% GL + 25% SS
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Fig. 3  Changes over time in the 
amount of labile carbon as crop 
residue decomposes. T1, 100% 
wheat (Triticum aestivum) straw 
(WS); T2, 100% shredded cotton 
(Gossypium hirsutum) stalk 
(SCS); T3, 50% WS + 50% SCS; 
T4, 40% WS + 40% SCS + 20% 
Gliricidi (Gliricidia sepium) 
leaf (GL); T5, 30% WS + 30% 
SCS + 20% GL + 20% sorghum 
(Sorghum bicolour) stub-
bles (SS); T6, 25% WS + 25% 
SCS + 25% GL + 25% SS
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120  days of decomposition, the labile C content in 
compost made from various agricultural wastes ranged 
from 0.28 to 0.56, 0.45 to 0.90, 1.04 to 1.49, 1.90 to 
3.40, and 2.51 to 5.65 g  kg–1, respectively. The signifi-
cance was recorded in T6, composed of 25% WS + 25% 
SCS + 25% GL + 25% SS, had the highest labile con-
tent (5.65 g  kg–1) and was found to be on par with T5, 
followed by T4 and T1. During decomposition, a lower 
value (2.51) was recorded in T2, composed of 100% 
SCS.

3.3  Less Labile C Pools

The periodical changes in less labile C during composting 
are presented in Fig. 4. After 15, 30, 60, 90, and 120 days 
of decomposition, the less labile C content in compost 
prepared from various agricultural wastes ranged from 
0.31 to 0.45, 0.58 to 0.85, 0.66 to 0.90, 0.69 to 0.98, and 

1.66 to 2.28 g  kg–1, respectively. T6 had the significantly 
highest less labile content (0.45 g  kg–1). The lower value 
(0.31) was recorded in T2.

3.4  Non‑labile C Pools

After 15, 30, 60, 90, and 120 days of decomposition, 
the non-labile C content in compost prepared from 
various agricultural wastes ranged from 33.68 to 
37.98%, 28.03 to 33.60%, 27.45 to 32.24%, 24.73 to 
28.48% and 22.29 to 25.14%, respectively. The peri-
odical changes in non-labile C during composting at 
the decomposition stages are shown in Fig. 5. After 
15 days of decomposition, the highest (37.98%) and 
lowest (33.68%) non-labile contents were recorded 
in T1 and T6, respectively. At the end of compost-
ing (120 days later), the highest (25.14%) and lowest 
(22.29%) non-labile contents were recorded in T1 and 
T6, respectively.
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Fig. 4  Changes over time in the less labile content as crop residues 
decompose. T1, 100% wheat (Triticum aestivum) straw (WS); T2, 100% 
shredded cotton (Gossypium hirsutum) stalk (SCS); T3, 50% WS + 50% 
SCS; T4, 40% WS + 40% SCS + 20% Gliricidi (Gliricidia sepium) leaf 

(GL); T5, 30% WS + 30% SCS + 20% GL + 20% sorghum (Sorghum 
bicolour) stubbles (SS); T6, 25% WS + 25% SCS + 25% GL + 25% SS

Fig. 5  Changes over time in 
the non-lebile carbon. T1, 100% 
wheat (Triticum aestivum) straw 
(WS); T2, 100% shredded cotton 
(Gossypium hirsutum) stalk 
(SCS); T3, 50% WS + 50% SCS; 
T4, 40% WS + 40% SCS + 20% 
Gliricidi (Gliricidia sepium) 
leaf (GL); T5, 30% WS + 30% 
SCS + 20% GL + 20% sorghum 
(Sorghum bicolour) stub-
bles (SS); T6, 25% WS + 25% 
SCS + 25% GL + 25% SS
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3.5  Crop Residce C Content and Decomposition 
Temperature

The highest C content in the crop residce was recorded in 
the gliricidia (42.1) and lowest in the cotton stalk (36.2). 
While the highest temperature (41.35 °C) recorded dur-
ing the decomposition in the T4 at 70 days, and lowest 
temperature (20.25 °C) in the T1 at 119 days (details are 
presented in Tables 2 and 3).

4  Discussion

Composting has emerged as the preferred method of treating 
organic wastes in order to produce a stable, sterile product 
that can be used as an organic amendment. Some researchers 
reported similar results for composting the various agricul-
tural wastes (Sayara et al. 2020). This study provides the infor-
mation needed to know the organic C fractions in composts 
of agricultural wastes at different temperatures and stages.

The very labile, labile, and less labile C pools were sig-
nificantly highest in T6, which contains rock phosphate, 
PDKV decomposer, element sulphur, urea, and cow dung 
slurry along with 25% wheat straw, 25% shredded cotton 
stalk, 25% gliricidia leaf, and 25% sorghum stubble. The 
combination of gliricidia leaf (a legume crop) and other 
crop residues resulted in a higher content of C pools. 
This might be due to gliricidia leaves containing 2.8–3% 
N which increases microbial biomass during decompo-
sition and increases labile C pools. Thus, the incorpo-
ration of crop residues, especially legume crops, along 
with enriched materials is crucial for preserving SOC and 
microbial biomass and improving the availability of nutri-
ents. Similarly, it was reported that the NPK + farmyeard 
manure (FYM) promoted the formation of a highly labile 
C pool (Das et al. 2016). A 4-year wheat–greengram crop-
ping sequence in the IGP of India resulted in increased 
soil organic C (easily oxidisable and oxidisable forms 
of organic C) and N pools when RP-enriched composts 
and fertilisers were used in conjunction with each other 
(Moharana et al. 2019). Management of residues and fer-
tilisers, an increase in dissolved organic C and microbial 
biomass C, and the distribution of light and heavy com-
ponents of C in soils at deeper layers (Naresh et al. 2018). 
Crop residues and manure treatments produced greater 
SOC content than the NPK treatment (Ding et al. 2012). 
Because applied nutrients have a priming effect on newly 
formed organic materials in the soils, applying fertilizers 
and manure may increase labile C content. These changes 
increase microbial activity, which aids in SOC break-
down by allowing labile C to be excreted quickly (Das 
et al. 2016). Compared to the control, long-term straw 

mulching significantly increased POC, TOC, and active 
C fraction content (Mi et al. 2019; Meena et al. 2022a, 
b). Our findings back up previous reports of higher TOC 
input in treatments containing 100% NPK + FYM. Green-
gram biologically fixing atmospheric  N2 increased total 
N with the application of enriched compost, probably as a 
result by Moharana et al. (2012) and Ghosh et al. (2018).

The highest non-labile C content was reported in T1, 
composed of 100% wheat straw. The higher C:N ratio 
of wheat straw may cause this. It takes a long time to 
decompose the wheat straw residues. The decomposition 
rate is influenced by vegetation, climate, and the micro-
bial community. Plant type is a key factor affecting the 
composition of microbial communities in soil (Garbeva 
et al. 2004). Rice straw and Typha angustifolia have sig-
nificantly different plant litter qualities, and root exu-
dates affect the composition of the bacterial community 
in the soil (Baudoin et al. 2003). Similarly, according to 
some researchers, vegetation had a stronger influence on 
bacterial community structure than soil chemical proper-
ties or climate, with vegetation having a greater overall 
impact (Chim et al. 2008). The rise in recalcitrant C 
in NPK + FYM plots could be explained by resistance 
brought on by the biochemical properties of organic 
chemicals present in OM or plant materials (Pradhan 
and Meena 2023; Meena and Pradhan 2023). Accord-
ing to a study by Belay-Tedla et al. (2009), FYM appli-
cation improved lignin and lignin-like compounds, the 
main components of resistant C pools. The increased 
breakdown of labile compounds and accumulation of 
recalcitrant materials over time in NPK + FYM plots, in 
addition to higher organic inputs, may be the cause of 
the higher amounts of recalcitrant C under NPK + FYM 
than under NPK (Lopez-Capel et al. 2008).

Agricultural wastes are inoculated with phosphorus-
soluble bacteria (PSB) and Trichoderma viride (1  kg 
 ton–1) to speed up decomposition and increase compost 
maturity. Various authors (Baudoin et al. 2003; Das et al. 
2016) have seen comparable results when using various 
temperature and inoculants to hasten the composting pro-
cess or enhance the compost quality based on the C con-
tent in the residence (Tables 2 and 3).

The composting reaction rate, also known as waste mass 
reduction or respiration rate, measures how quickly waste is 
decomposed. Temperatures in the 30–45 °C range were dis-
covered to have the highest composting activity. Tempera-
ture is the most important factor in influencing composting 
reaction rates since it affects microbial metabolic rates and 
population structure. The optimal temperature for micro-
organisms results in faster breakdown and higher labile C 
pools. Similar results have been reported that a higher tem-
perature (35 °C) promotes SOC mineralization (Franzlueb-
bers et al. 2001; Pérez-Lomas et al. 2010). The source of 
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SOC mineralization processes (dehydrogenase activity) may 
be increased biological activity, which is typically connected 
to amendment and high-temperature incubation. Therefore, 
it is recommended to integrate agricultural waste and RP-
enriched compost to increase C quality because this strategy 
would provide a long-term management option for maintain-
ing soil quality and crop performance.

5  Conclusions

Combining agricultural wastes with enrichment material 
helps to enhance the nutrient status of composts, maintain 
total SOC, and increase labile organic C fractions. Accord-
ing to this study, the highest C pools were reported on the 
final stage of decomposition in compost, comprised of 25% 
wheat (Triticum aestivum) straw (WS); + 25% shredded cot-
ton (Gossypium hirsutum) stalk (SCS) + 25% Gliricidi (Gli-
ricidia sepium) leaf (GL) + 25% sorghum (Sorghum bicol-
our) stubbles (SS) (T6). This might be because gliricidia 
leaves contain 2.8¬3% N, which increases microbial biomass 
and the optimal temperature for microorganisms, resulting 
in faster breakdown and higher labile C pools. Compost 
made from 25% WS + 25% SCS + 25% GL + 25% SS (T6) 
degraded during agricultural residue degradation.While T6, 
which is composed of 25% WS + 25% SCS + 25% GL + 25% 
SS, had the highest very labile C content (18.64 g kg–1), 
it was found to be on par with T5, which is composed of 
30% WS + 30% SCS + 20% GL + 20% SS, followed by T4, 
which is composed of 40% WS + 40% SCS + 20% GL and 
50% WS + 50% SCS, and T1, which is composed of 100% 
WS. The findings of this experiment may pass the informa-
tion to the producers, planners, and academics for a better 
understanding of the organic C fractions in various composts 
made from agricultural waste at various temperatures.
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