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Abstract
Soil aggregate stability is considered feasible and important indicator for understanding complex interactions between 
soils’ physico-chemical and biological properties and soil structure. The present study was therefore, conducted to find out 
the land-use change induced alteration in soil organic carbon (C) pool in response to changed restored engineering. The 
present study was conducted to reveal the distribution of water stable aggregates, aggregate stability, aggregate associated 
C of macro-and micro-aggregates, C preservation capacity of aggregate, and the labile and non-labile C fractions of vari-
able oxidizability due to land-use change from the uncultivated soils to under rice-wheat, seed sugarcane, ratoon sugarcane 
and permanent grasslands in north-western India. These results showed that water stable aggregates, macro-and micro-
aggregates, C preservation capacity, aggregate ratio and total organic carbon (TOC) stocks were significantly (p < 0.05) 
higher in permanent grassland and uncultivated soils. Ratoon sugarcane soils had ~ 10.3% higher TOC pool than the seed 
sugarcane. A significant decrease in TOC pool by ~ 11.3–11.9% occurred in soils under seed sugarcane cultivation, com-
pared to others. Soils under seed sugarcane had ~ 11.5% lower C stocks, compared with the rice–wheat soils. As compared 
with the uncultivated soils, highest C loss of 3.3–3.7 Mg C  ha−1 occurred in soils under seed sugarcane, followed by almost 
equal in rice-wheat (1.9–2.0 Mg C  ha−1) and ratoon sugarcane (1.9–2.1 Mg C  ha−1). The greatest C loss in soils under seed 
sugarcane was ascribed to increased tillage intensity. More intensified tillage under seed sugarcane cultivation resulted in 
decreased proportion of macro-aggregates (> 0.25 mm) and greater stabilization of organic C in relatively recalcitrant C pool 
as compared to those under ratoon sugarcane. Active C (Fract. 1 + Fract. 2) pool in surface soil layer under ratoon sugarcane 
was significantly higher by ~ 25.1–64.9%, compared with others. Conversely, the passive C pool (Fract. 3 + Fract. 4) was 
significantly lower in soils under seed sugarcane, while the highest in grassland. The proportion of macro-aggregates in soils 
under different land-use systems exhibited a linear significant relationship with the TOC pool (R2=0.964*; p < 0.05). Soils 
under seed sugarcane have significantly lower C preservation capacity of macro-aggregates by ~ 42.5%, compared with the 
ratoon sugarcane. Rice–wheat ecosystem had significantly higher C preservation capacity of macro-aggregates (> 0.25 mm) 
by ~ 0.70 g C  kg−1 soil (~ 80.5%) than the seed sugarcane. The sensitivity index showed significantly higher sensitivity of 
TOC pool for soils under seed sugarcane (by ~ 8.6–21.8%), followed by ratoon sugarcane (~ 10.3–13.6%) and rice–wheat 
(~ 7.6–11.8%), while the lowest for grassland ecosystems (~ 0.2–0.5%) following the land-use change from uncultivated 
lands. Among the three cropland ecosystems, C preservation capacity of macro-aggregates was significantly higher than the 
sugarcane-based ecosystems. Considering uncultivated lands as reference, the soils under ratoon sugarcane had significantly 
higher C management index (CMI) than the other compared land-use systems. The highest values of the CMI in soils under 
ratoon sugarcane indicate C rehabilitation, while the lower values for seed sugarcane indicate C degradation. We put forward 
general management suggestions for different land-use and focus on better measures for the management of rice-wheat and 
seed sugarcane to reduce C losses by increasing aggregate stability of soils under different land-use systems.

Keywords Land-use systems · Aggregate stability · Sensitivity index · Macro- and micro-aggregates · Active C pool · C 
preservation capacity
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1 Introduction

The atmospheric concentration of carbon dioxide  (CO2) has 
progressively increased from ~ 280 ppmv in the pre-industrial 
period to ~ 408 ppmv today, and is expected to rise by ~ 0.5% 
 year−1 (~ 3.3 Pg C  year−1) (IPCC 2001; Yi et al. 2006). The cul-
tivated lands are considered a major source of  CO2, accounting 
for ~ 1/5th of total  CO2 emissions via soil and root respiration. 
Soils act both as carbon (C) sink and source and thereby contrib-
ute towards global C budgets (Singh and Benbi 2020a). As per 
estimates, cropland ecosystems have lost up to 2/3rd of their ante-
cedent total organic carbon (TOC) pool due to land-use change, 
resulting in a cumulative loss of ~ 30–40 Mg C  ha−1 (Lal 2004; 
Singh et al. 2021a). The deterioration in quality and quantity of 
soil organic matter induced by the adoption of improper crop-
ping systems following land-use change has engrossed world-
wide attention, and prompted severe concerns about agricultural 
production systems and their long-term sustainability (Lal 2004; 
Singh et al. 2021a; Mandal et al. 2022; Bhatt et al. 2022; Avtar-
Singh et al. 2022). Soil organic matter quality under different 
agricultural croplands varied significantly due to change in crop 
production and soil management practices, which eventually 
influence above- and below-ground C input (Singh et al. 2020; 
Singh and Benbi 2022; Avtar-Singh et al. 2022) and its quality 
(Singh and Benbi 2018a; Sharma et al. 2020a, b), soil microbial 
biomass, enzymatic activity (Sharma et al. 2022a, b; Singh et al. 
2023), and the rate of C stabilization (Sainju et al. 2007; Singh 
and Benbi 2020a, b, 2023; Sharma et al. 2020a, b). The cropping 
systems have significant influence on below-ground C cycling 
due to changed crop cover, plant-mediated C input, C quality, 
and substrate availability for micro-organisms (Doran and Zeiss 
2000; Sharma et al. 2022c). Land conversion from the unculti-
vated to cropland ecosystems leads to biodiversity loss and soil 
organic matter depletion (Beheshti et al. 2012), besides a change 
in soil physico-chemical and biological properties (Gregorich 
et al. 1994; Mandal et al. 2022; Sharma et al. 2022c).

Soil management strategies used in various agricultural 
production systems are thought to significantly influence soils’ 
biological activities which affect soil quality (Benbi et al. 2015; 
Bhatt et al. 2022; Singh et al. 2023). Because soil is a living 
and dynamic resource, biologically mediated processes are 
considered essential for its sustainable ecological functioning 
(Benbi et al. 2012). A change in land-use has a direct impact 
on soil nutrient supply and distribution, as well as on biological 
changes occurring in soil rhizosphere (Li et al. 2009; Singh and 
Benbi 2018b). Consequently, a change in land-use and associ-
ated management could have a favorable and/or detrimental 
impact on the microbial ecology of soil rhizosphere (Li et al. 
2009; Mandal et al. 2022). The plant species differ greatly in 
their rooting behavior, more particularly with respect to root 
architecture and geometry which produce variable quantity of 
root exudates and secretions in the rhizosphere and serve as a 

substrate for soil micro-organisms (Benbi et al. 2016; Singh 
and Benbi 2018a). It is generally understood that crops have 
variable nutritional demands, and therefore, crop species differ 
greatly in terms of the quantity and quality of litter produced 
(Notaro et al. 2014; Singh et al. 2021b), which affect the diver-
sity and composition of micro-organisms (Adak and Sachan 
2009). The changes in land-use system cause wide variations in 
above- and below-ground ecosystems, resulting in soil C deple-
tion and biodiversity loss (Doran and Zeiss 2000), and thereby 
present variable impact on soil organic matter pool, quality, and 
enzyme activity (Li et al. 2009; Sharma et al. 2022a, b; Singh 
and Benbi 2021). It has been well established that research on 
the effect of land-use change on TOC dynamics is insufficient 
without understanding their likely impact on soil C pools and 
the biological activity (Singh and Benbi 2018b; Sharma et al. 
2022b). Soil micro-organisms are considered important play-
ers in accelerating soil enzymatic activity, and are therefore 
critically important for ecosystems’ sustainability (Singh and 
Benbi 2018a). Soil microbiological characteristics are thought 
to be very sensitive indicator of soil ecological stress (Chan 
et al. 2001). For that, diversification of land-use systems has 
been a multi-disciplinary approach that includes an intimate 
connection among soil, water, climate, livestock, vegetation, 
and socio-economic elements in developing the most profit-
able, environmentally friendly, and ecologically sustainable 
policies (Sharma et al. 2022b). These aspects entail a compli-
cated interaction between soil management regimes, soil bio-
logical components, and environmental quality; all of which are 
important for agriculture and the environment (Sharma et al. 
2022b; Mandal et al. 2022). However, less is known about the 
impact of land-use change from uncultivated soils to intensively 
cultivated soils in terrestrial ecosystems (Li et al. 2009; Benbi 
et al. 2015).

In north-western India, rice-wheat has been the most pre-
dominant cereal-based cropping system (Bhatt et al. 2019). In 
this region, sugarcane has been the most important commer-
cial crop cultivated widely under diverse crop production and 
soil management strategies, which typically result in differen-
tial C input and stability under the effect of varying moisture 
regimes (Benbi et al. 2015; Singh and Benbi 2020a, b). These 
diverse cropping systems (rice-wheat vis-à-vis sugarcane) are 
cultivated side-by-side in the entire north-western India, and 
are established under contrasting moisture regimes, e.g., rice-
wheat under alternatively aerobic (during wheat growing sea-
son) and anaerobic (during rice growing season), and sugarcane 
exclusively under aerobic environment, and may therefore have 
differential impacts on quality of soil organic matter (Singh 
and Benbi 2021; Avtar-Singh et al. 2023). In rice soils, soil 
organic matter becomes more lignified (Benbi et al. 2012), and 
therefore, C accumulation occurs more in recalcitrant pools 
(Sharma et al. 2020b; Singh and Benbi 2021). Nonetheless, 
sugarcane is established both as freshly sown (seed sugarcane) 
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and ratoon crop (crop which sprouts from stubble), and has 
differential impacts on plant-mediated C input in response to 
contrasting soil and crop production management practices fol-
lowed in both establishment methods. The intensified tillage 
under rice-wheat cropping system is considered important and 
responsible for breakdown of the stable aggregates as macro- 
and micro-aggregates (Singh and Benbi 2021; Sharma et al. 
2022a), and eventual loss of encapsulated C (Six et al. 2000). 
On the other hand, reduced tillage intensity under ratoon crop 
as compared to the seed sugarcane with more intense tillage 
exerts differential impact on stability of water stable aggregates. 
A change in organic C concentration significantly influences 
soil physical properties by increasing soil aggregate stability, 
lowering the soil bulk density, and enhancing strong physico-
chemical bonds among soil particles (Blanco-Canqui and Ben-
jamin 2013; Singh and Benbi 2016). Soil aggregates play an 
important role in the bio-geochemical cycling and help improve 
biodiversity, nutrient cycling, and water availability (Vourlitis 
et al. 2015; Piedallu et al. 2016). The organic C protected in 
aggregate fractions is closely associated with soil C pool (Yu 
et al. 2015), and is presumed to be key for C preservation (Six 
et al. 2004; Kleber et al. 2015), and inherent C storage (Zhang 
et al. 2022).

The studies on C dynamics in soils under sugarcane eco-
systems showed a significant change in formation and disrup-
tion of water stable aggregates in response to tillage intensity 
(Choudhury et al. 2014), but the studies investigated response 
on TOC pools and C preservation capacity of macro- and 
micro-aggregates remains scarce (Benbi et al. 2015; Singh 
and Benbi 2022). Therefore, investigations on change in land-
use necessitate appropriate assessment of soil C dynamics 
in relation to a natural ecosystem to develop a long-term 
management strategy (Lal 2004). The present study there-
fore investigated the effect of different land-use systems, viz. 
rice-wheat, seed sugarcane, ratoon sugarcane, and permanent 
grassland vis-à-vis uncultivated lands on change in TOC pool 
and C preservation capacity of micro- and macro-aggregates. 
We hypothesized that tillage intensity and moisture regimes 
under which these cropland ecosystems are established would 
lead to differential stabilization of soil organic matter in dif-
ferent C pools of varying oxidizability, and encapsulation of 
C within water stable aggregates of different sizes. More spe-
cifically, we aimed at studying C dynamics among different 
C fractions of varying lability/oxidizability and management 
induced changes in C preservation capacity of macro- and 
micro-aggregates in soils under different cropland ecosystems, 
relative to the uncultivated lands. The quantification of TOC 
pool would help estimate loss of C due to land-use change 
and to frame policies for rehabilitation of degraded land-use 
systems with robust soil management interventions to build 
organic matter in soils.

2  Material and Methods

2.1  Description of the Study Area

The study was conducted in the Kapurthala district of Pun-
jab extends between longitudes of 31°22′N and latitude of 
75°23′ E, and lies between the Beas River and the “Kali-
Bein” River, locally known as floodplains or Bet area. The 
total area of the district is ~ 1633 square km of which ~ 909 
square km is in Tehsil Kapurthala, ~ 304 square km in 
Tehsil Phagwara, and ~ 451 square km area in Tehsil Sul-
tanpur Lodhi. The economy of the district has been pre-
dominantly agricultural; wheat, rice, sugarcane, potato, 
and maize are the major crops in the district. The climate 
of the study region is typically sub-tropical steppe, semi-
arid, with discrete rainy and dry seasons (Raj-Kumar et al. 
2008). Mean monthly minimum temperature varied between 
0.8 and 1.0 °C during mid-December to mid-January and 
monthly maximum temperatures of 41.8° and 47.0 °C dur-
ing May–June (https:// weath erspa rk. com/y/ 108387/ Avera 
ge- Weath er- in- Kap% C5% ABrth ala- India- Year- Round). The 
long-term data (1981–2010) revealed average highest tem-
perature of 29.9 °C, average lowest temperature of 16.0 °C, 
average rainfall of ~ 637 mm, and the average relative humid-
ity as ~ 70% in the district (https:// en. wikip edia. org/ wiki /
Kapurthala). Major proportion (~ 80–85%) of total average 
annual rainfall is received in monsoon season extending 
between July and September. The original slope and form 
of the eolian sheets has been highly modified by the agricul-
tural activities of the farmers in the study region.

2.2  Crop Production and Soil Management 
Practices

Out of total of 163,000 ha area, ~ 82.2% has been under culti-
vation, 2000 ha (~ 1.3%) under forest, and remaining ~ 16.5% 
under the non-agricultural use. Cropping intensity of the 
study region is ~ 205% with rice, sugarcane, maize, and 
potato as major field crops, while kinnow, orange, lemon, 
mango, pear, peach, and plum are the main horticultural 
crops. Conventionally, rice is established after puddling 
(wet-tillage) which involves mechanically stirring and 
mixing the surface soil layer with stagnant water converts 
soil into a muddy paste (Singh and Benbi 2016; Singh 
et al. 2018). About 80% of the total rice area in the study 
region has been under puddled transplanted rice, while the 
remaining ~ 20% is under direct seeded rice (DSR) (Bhatt 
and Singh 2022). Rice seedlings are manually transplanted 
after 30–35 days (depending upon variety) and the crop is 
harvested in October. Rice productivity in the region var-
ied between 6.5 and 7.5 Mg  ha−1 (Bhatt and Singh 2022). 

https://weatherspark.com/y/108387/Average-Weather-in-Kap%C5%ABrthala-India-Year-Round
https://weatherspark.com/y/108387/Average-Weather-in-Kap%C5%ABrthala-India-Year-Round
https://en.wikipedia.org/wiki
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Wheat crop is established in the last week of October to 
end of November with seed-cum-fertilizer drill. Wheat crop 
is irrigated based on physical inspection of the crop and 
rainfall. Usually, depending upon weather and soil texture, 
3–5 irrigations are applied by the farmers to wheat. The 
crop is harvested in first fortnight of April at physiologi-
cal maturity. For sugarcane cultivation, early and mid-late 
sugarcane cultivars (CoPb 95, CoPb 96, CoPb 92, CoPb 93, 
CoPb 94, and Co 238) recommended for cultivation in the 
state are preferred by the farmers. Farmers perform cross 
sub-soiling at an interval of 1.0 m once every 3–4 years for 
breaking any underlying hard layer for proper growth of root 
growth. Sugarcane is planted in two different times during 
the years, viz. September–October (for autumn) and during 
February–March (for spring) in 75 cm widely spaced rows 
by maintaining 20–25 cm deep trenches using seed rate of 
7.5–8.8 Mg  ha−1. Depending on the received rainfall, 15–18 
irrigations are provided to the cane crop.

2.3  Collection of Soil Samples and Analyses

The surface (0–15 cm) and sub-surface (15–30 cm) soil samples 
were collected in the months of March–April 2021 after wheat 
harvesting with post hole auger (inner diameter = 7.2 cm). A total 
of 57 locations were selected to represent the entire study region, 
which includes 17 samples from rice–wheat, 16 from seed sug-
arcane, 14 from ratoon sugarcane, and 5 each from permanent 
grasslands and uncultivated lands. At each location, four pseudo-
replicates were created by collecting separate soil samples from at 
least 0.4 ha plot size. Large roots, litter, and stones from collected 
samples were meticulously removed. Soil samples were spread 
out for 48 h in the shade to dry. Intact soil cores of 7.5 cm height 
were used for the estimation of soil bulk density (Blake and Hart-
age 1986). Soil samples were analyzed for pH (1:2; soil:water) 
and electrical conductivity (E.C.1:2, dS  m−1) (Jackson 1967). Soil’s 
textural class was determined by using hydrometer method.

2.4  Total Organic C and Its Fractions of Varying 
Oxidizability

The TOC was determined by reacting with 1N  K2Cr2O7 
solution at 150 °C for 60 min (Snyder and Trofymow 1984). 
Total organic C was apportioned into four fractions of vari-
able lability under a gradient of oxidizing conditions using 
 H2SO4-aqueous solution ratios. These ratios of 0.5:1, 1:1, 
and 2:1 corresponding to 12N, 18N, and 24N  H2SO4, respec-
tively (Chan et al. 2001), and represent Fract. 1, Fract. 2, and 
Fract. 3, respectively (Eqs. 1, 2, and 3). The recalcitrant C 
pool (Fract. 4) was estimated as a difference in TOC pool 
and 24N  H2SO4 (Eq. 4).

(1)
Fract. 1 (very labile C) = Organic C oxidizable under 12N H2SO4

The active C pool was estimated as sum of Fract. 1 + Fract. 
2, while the passive C pool was computed as a sum of Fract. 
3 + Fract. 4 (Eqs. 5 and 6).

2.4.1  Total Organic Carbon Stocks

The TOC stock in surface (0–15 cm) soils layer under different 
land-use systems was estimated by multiplying their respective 
TOC concentration (%) with soil bulk density ( BD; Mg  cm−3) 
and depth (m) of soil sampling (Eq. 7).

2.4.2  Carbon Management Index (CMI)

The CMI was determined using mathematical procedure 
described by Blair et al. (1995). The CMI was estimated 
as a product of C pool index (CPI) and lability index (LI) 
using Eq. 8.

The CPI and LI were estimated using Eqs. 9 and 10, con-
sidering uncultivated lands as reference soil.

2.5  Distribution of Aggregates and C Preservation 
Capacity

 The proportion of macro-aggregates (> 0.25 mm) and 
micro-aggregates (< 0.25 mm) was estimated using empir-
ical relationships established for the regional soils (Singh 
and Benbi 2021). The relationships for the prediction of 
macro- and micro-aggregates in soils were based on soils’ 
fine fraction (i.e., silt + clay content) (see Eqs. 11 and 12).

(2)Fract. 2 (labile C) = 18N − 12N H2SO4 oxidizable C

(3)
Fract. 3 (less labile C) = 24N − 18N H2SO4 oxidizable C

(4)
Fract. 4 (recalcitrant C) = TOC − 24N H2SO4 oxidizable C

(5)Active C pool
(

g kg−1 soil
)

= Fract. 1
(

g kg−1 soil
)

+ Fract. 2
(

g kg−1 soil
)

(6)Passive C pool
(

g kg−1 soil
)

= Fract. 3
(

g kg−1 soil
)

+ Fract. 4
(

g kg−1 soil
)

(7)
Total organic C stocks

(

Mg ha−1
)

= TOC(%)x BD

(

Mg m−3
)

× depth(m) × 100

(8)CMI = CPI × LI × 100

(9)
CPI = TOC(rice − wheat∕seed sugarcane∕ratoon sugarcane∕grassland)

(

g kg−1soil
)

TOC(uncultivated soils)
(

g kg−1 soil
)

(10)LI =
[

Fract.1

TOC
× 3

]

+
[

Fract.2

TOC
× 2

]

+
[

Fract.3

TOC
× 1

]
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The estimation of water stable aggregates was based on 
sum of macro-aggregates and micro-aggregates (Eq. 13).

The aggregate ratio was estimated as a ratio of propor-
tion of macro-and micro-aggregates (Eq. 14).

Aggregate (macro- and micro-aggregate) associated C 
was estimated using Eqs. 15 and 16.

(11)Macro − aggregates (%) = 3.27 + 1.81(silt + clay;%) − 0.018(silt + clay;%)2

(12)
Micro − aggregates (%) = 61.54 − 1.69(silt + clay;%) + 0.021(silt + clay;%)2

(13)

Water stable aggreagtes(%) = Macro − aggregates(> 0.25mm;%)

+ micro − aggregates(< 0.25mm;%)

(14)

Aggregateratio =
Macro − aggregates(> 0.25mm;%)

Micro − aggregates(< 0.25mm;%)

(15)
Macro − aggregate associated C

(

g kg−1 aggregates
)

= 5.51 − 0.33

(macro − aggregates;%) + 0.006

(macro − aggregates;%)2

(16)
Micro − aggregate associated C

(

g kg−1 aggregates
)

= 3.92 − 0.14

(micro − aggregates;%) + 0.001

(micro − aggregates;%)2

The estimation of C preservation capacity of macro-
aggregates was based on empirical relationship established 
for the regional soils by Singh and Benbi (2021) based 
on relative proportion of macro-aggregates using Eq. 17.

2.6  Soil Enzyme Activity Analysis

For soil enzymes activity analysis, macro- and micro-aggre-
gates (after removing crop residues) were stored at 4 °C until 
used for assaying of dehydrogenase (DHA) and alkaline phos-
phatase (Alk-P) activities. The dehydrogenase activity was 
estimated by reducing 2, 3, 5-triphenylterazolium chloride 
(Casida et al. 1964). The Alk-P activity was assayed on the 
basis of p-nitrophenol (pNP) release after cleavage of enzyme-
specific synthetic substrates (Tabatabai and Bremner 1969).

2.7  Sensitivity Index

The sensitivity index (or the percent change in TOC pool) was 
determined as a ratio of difference in TOC pool in different 
cropland ecosystems (viz. rice-wheat, seed sugarcane, ratoon 
sugarcane, and grassland) and a reference soil (i.e., unculti-
vated land) to that of the reference soil (Eq. 18) (Singh and 
Benbi 2018a).

(17)
C preservation capacity

(

g kg−1 soil
)

= 5.02 − 0.30

(macro − aggregates;%) + 0.005

(macro − aggregates;%)2

(18)
Sensitivity index(%) =

[TOCrice−wheat∕ratoon sugarcane∕seed sugarcane

(

g kg−1
)

− TOCuncultivated land

(

g kg−1
)

] × 100

TOCuncultivated land

(

g kg−1
)

2.8  Statistical Analysis

Data were statistically analyzed using analysis of variance 
(ANOVA) technique in randomized block design (RBD) with 
unequal number of samples using SPSS software for Windows 
21.0 (SPSS Inc., Chicago, USA). Soil sampling sites were treated 
as replicates (random effects) and land-use systems as treatments 
(fixed effects). Means for treatment effects were separated based on 
Duncan’s Multiple Range Test (DMRT) post hoc test at p < 0.05.

3  Results

3.1  Basic Soil Properties

Soil pH was significantly (p < 0.05) lower in rice-wheat, 
and the highest in soils under ratoon sugarcane (Table 1). 

Conversely, the E.C. was significantly lower in surface 
(0–15 cm) and sub-surface (15–30 cm) soils under ratoon 
sugarcane, compared with the other land-use systems. These 
results revealed significantly highest E.C. of the surface layer 
of rice-wheat soils, which was higher by ~ 10.7–34.8% than 
the sugarcane soils. The sand proportion varied between 60.1 
and 73.8% in surface layer and 62.7 and 75.0% in sub-surface, 
and was significantly higher for soils under seed sugarcane. 
The clay content varied between 10.0 and 13.2% in surface 
layer and between 9.4 and 13.5% in sub-surface soil layer.

3.2  Total Organic C Pool and Its Fractions of Varying 
Oxidizability

TOC pool in the surface soil layer was significantly lower 
under seed sugarcane, while the highest in uncultivated 
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soils (Table 2). As compared with the seed sugarcane, 
soils under ratoon sugarcane had ~ 10.3% higher TOC 
pool. Sugarcane cultivation resulted in a significant 
decrease in TOC pool by ~ 11.9 and 11.3%, respectively, 
in surface and sub-surface soils layers. The TOC pool in 
soils under rice–wheat and ratoon sugarcane did not dif-
fer significantly. The Fract. 1 and Fract. 2 were signifi-
cantly lower in soils under permanent grasslands, while 
the highest in ratoon sugarcane. However, Fract. 3 was 
significantly lower under sugarcane, and highest in per-
manent grassland. Fract. 1 comprised ~ 5.8–10.3% of TOC 
in the surface, while between 4.7 and 9.4% in the sub-
surface soil layer (Table 2). Likewise, Fract. 2 comprised 
between 7.9 and 14.7% of TOC in surface, and between 
6.8 and 13.1% in the sub-surface soil layer. As a propor-
tion of TOC pool, Fract. 1 and Fract. 2 were significantly 
lower under permanent grasslands, while the higher in 
ratoon sugarcane. However, Fract. 3 comprised the larg-
est fraction of TOC pool, ~ 19.6–34.4% of TOC in surface 
and ~ 17.4–30.9% in sub-surface soil layer. The rice–wheat 
soils had ~ 38.5 and 26.7% higher Fract. 3 in surface and 
sub-surface soil layers, respectively, compared with seed 
sugarcane. The ratoon sugarcane had ~ 24.8 and 20.1% 
higher Fract. 3 in surface and sub-surface soil layers, 
respectively, over seed sugarcane. Grasslands had ~ 15.8% 
higher Fract. 3 in surface, and ~ 8.4% in sub-surface layer, 
compared to uncultivated lands. Fract. 4 was the largest 
fraction, comprised ~ 51.9 and 58.1% of TOC pool in sur-
face, and between ~ 57.6 and 61.2% in sub-surface soil 
layer (Table 2).

3.3  Soil Bulk Density and TOC Stocks

Soil bulk density was significantly lower for soils under rice-
wheat and seed sugarcane, while higher for other land-use sys-
tems, which themselves did not differ significantly (Table 2). 
Soils under seed sugarcane had ~ 11.5% lower C stocks (data 
pooled for soil depths), compared with the rice-wheat soils. 
However, C stocks in soils under rice-wheat and ratoon sug-
arcane did not differ significantly. As compared with seed 
sugarcane, ratoon sugarcane had ~ 11.9 and 13.3% higher C 
stocks in the surface and sub-surface soil layers, respectively. 
These results revealed significant loss of C stocks following 
land-use change from uncultivated land. The highest C loss 
(of 3.3–3.7 Mg C  ha−1) occurred under seed sugarcane, fol-
lowed by rice-wheat (1.9–2.0 Mg C  ha−1) and ratoon sugar-
cane (1.9–2.1 Mg C  ha−1) (Fig. 1). The minimum C loss up to 
0.3 Mg C  ha−1 occurred in soils under grassland ecosystem, 
compared with uncultivated soils. The C loss under rice-wheat 
and ratoon sugarcane ecosystems following land-use change 
from uncultivated soils was statistically at par.

3.4  Soil Enzymatic Activity

The enzymatic activity of dehydrogenase, alkaline phos-
phatase, and asparaginase was significantly higher in soils 
under grasslands (Table 2). The uncultivated lands had simi-
lar enzymatic activity to that of the soils under ratoon sugar-
cane. Seed sugarcane soils had significantly lower enzymatic 
activity, compared with rice-wheat soils. Ratoon sugarcane 
help enhanced soil enzymatic activity to a significant extent, 

Table 1  Basic properties of the surface (0–15 cm) and sub-surface (15–30 cm) soil layers under different land-use systems in the north-western 
India

† Values indicate standard error from mean
Mean values followed by different letter are significantly different at p < 0.05 by Duncan’s Multiple Range Test (DMRT)

Soil property Land-use system

Rice–wheat (n = 17) Seed sugarcane (n = 16) Ratoon sugarcane 
(n = 14)

Grassland (n = 5) Uncultivated 
land (n = 5)

Surface soil layer (0–15 cm)
   pH1:2 7.95 ± 0.17c† 8.23 ± 0.16bc 8.30 ± 0.18a 8.20 ± 0.17b 8.17 ± 0.21b
  E.C.1:2 (dS  m−1) 0.31 ± 0.07a 0.28 ± 0.05b 0.23 ± 0.06d 0.28 ± 0.04b 0.26 ± 0.05c
  Sand (%) 65.2 ± 1.4b 73.8 ± 2.0a 68.9 ± 1.6b 60.8 ± 1.9b 60.1 ± 2.2c
  Silt (%) 23.2 ± 0.9b 16.2 ± 1.2d 18.3 ± 1.2c 26.0 ± 1.6a 26.9 ± 1.3a
  Clay (%) 11.6 ± 1.1c 10.0 ± 0.8d 12.6 ± 1.0b 13.2 ± 0.8a 13.0 ± 1.1a

Sub-surface soil layer (15–30 cm)
   pH1:2 7.93 ± 0.15c† 8.21 ± 0.14bc 8.28 ± 0.16a 8.18 ± 0.15b 8.15 ± 0.19b
  E.C.1:2 (dS  m−1) 0.31 ± 0.07a 0.27 ± 0.04b 0.22 ± 0.05c 0.25 ± 0.05b 0.25 ± 0.04b
  Sand (%) 66.8 ± 1.4c 75.0 ± 2.0a 71.2 ± 1.6b 62.7 ± 1.9d 64.2 ± 2.2c
  Silt (%) 22.9 ± 0.9c 15.6 ± 1.2e 16.4 ± 1.2d 23.8 ± 1.6b 24.6 ± 1.3a
  Clay (%) 10.3 ± 1.1b 9.4 ± 0.8c 12.4 ± 1.0b 13.5 ± 0.8a 11.2 ± 1.0b
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as compared to the seed sugarcane. Regardless of the land-
use system, enzymatic activity was higher in the surface 
layer, compared with that in the sub-surface soil layer.

3.5  Soil Organic Matter Quality and C Management 
Index

The active C pool (Fract. 1 + Fract. 2) was significantly 
lower in grasslands, compared with other investigated 
land-use systems (Table 3). The active C pool in surface 

soil layer under ratoon sugarcane was significantly higher 
by ~ 25.1–64.9%, compared with others. In the sub-surface 
soil layer, active C pool was significantly lower in grass-
lands and highest in ratoon sugarcane. The passive C pool 
(Fract. 3 + Fract. 4) was significantly lower in soils under 
seed sugarcane, highest in grasslands. The lability index 
was significantly lower for rice-wheat soils, compared with 
soils under sugarcane cultivation. The comparison between 
rice-wheat and grasslands/uncultivated lands revealed non-
significant difference in lability index among themselves. 

Table 2  Total soil organic C (TOC) stocks, TOC pool, its fractions 
of variable oxidizability, viz. very labile C (Fract. 1), labile C (Fract. 
2), less labile C (Fract. 3), and recalcitrant C (Fract. 4), and enzyme 

activity in the surface (0–15 cm) and sub-surface (15–30 cm) soil lay-
ers under different land-use systems in north-western India

† Values indicate standard error from mean
‡ Values in the parentheses indicate percent of TOC pool
Mean values followed by different letter are significantly different at p < 0.05 by Duncan’s Multiple Range Test (DMRT)

Soil property Land-use system

Rice–wheat (n = 17) Seed sugarcane (n = 16) Ratoon sugarcane 
(n = 14)

Grassland (n = 5) Uncultivated land (n = 5)

Surface (0–15 cm) soil layer
  TOC pool (g  kg−1) 6.30 ± 0.09b† 5.55 ± 0.08c 6.12 ± 0.09b 6.83 ± 0.10a 6.82 ± 0.09a
  Fract. 1 (g  kg−1) 0.47 ± 0.04b (7.4c)‡ 0.48 ± 0.05b (8.6b) 0.64 ± 0.06a (10.3a) 0.40 ± 0.06c (5.8e) 0.42 ± 0.05c (6.2d)
  Fract. 2 (g  kg−1) 0.71 ± 0.05b (11.2c) 0.76 ± 0.04b (13.7b) 0.91 ± 0.05a (14.7a) 0.54 ± 0.07c (7.9e) 0.71 ± 0.04b (10.4d)
  Fract. 3 (g  kg−1) 1.51 ± 0.8c (23.9c) 1.09 ± 0.7e (19.6e) 1.36 ± 0.8d (21.9d) 2.35 ± 1.3a (34.4a) 2.03 ± 0.7b (29.8b)
  Fract. 4 (g  kg−1) 3.62 ± 0.9a (57.5b) 3.22 ± 0.8c (58.1a) 3.30 ± 1.3c (53.1c) 3.54 ± 1.8b (51.9d) 3.66 ± 2.8a (53.6c)
  Bulk density (Mg 

 m−3)
1.60 ± 0.11b 1.60 ± 0.09b 1.61 ± 0.32b 1.66 ± 0.32a 1.69 ± 0.21a

  TOC stock (Mg 
 ha−1)

15.2 ± 0.74b 13.4 ± 0.68c 15.0 ± 0.57b 16.8 ± 0.61a 17.1 ± 0.42a

  Dehydrogenase (μg 
TPF  g−1  h−1)

48.6 ± 3.8d 40.6 ± 3.8e 55.6 ± 6.1c 58.6 ± 5.9a 56.6 ± 4.9b

  Alkaline phos-
phatase (µg p − NP 
 g−1  h−1)

38.7 ± 3.6c 34.3 ± 4.2d 45.7 ± 5.7b 47.7 ± 4.8a 44.3 ± 5.8b

  Asparaginase (μg 
 g−1  h−1)

37.4 ± 3.8c 32.2 ± 3.1d 48.3 ± 5.2b 54.8 ± 6.1a 49.7 ± 6.2b

Sub-surface (15–30 cm) soil layer
  TOC pool (g  kg−1) 4.85 ± 0.08b 4.30 ± 0.04c 4.75 ± 0.08b 5.47 ± 0.08a 5.50 ± 0.07a
  Fract. 1 (g  kg−1) 0.30 ± 0.03c (6.9c) 0.34 ± 0.04b (7.9b) 0.45 ± 0.05a (9.4a) 0.26 ± 0.03d (4.7d) 0.28 ± 0.02 cd (5.1d)
  Fract. 2 (g  kg−1) 0.44 ± 0.05d (10.1c) 0.53 ± 0.05b (12.4b) 0.62 ± 0.06a (13.1a) 0.37 ± 0.02e (6.8e) 0.49 ± 0.04c (8.9d)
  Fract. 3 (g  kg−1) 0.95 ± 0.4c (21.8c) 0.75 ± 0.8d (17.4e) 0.90 ± 0.7c (18.9d) 1.69 ± 0.7a (30.9a) 1.56 ± 0.7b (28.4b)
  Fract. 4 (g  kg−1) 2.66 ± 1.2c (61.2b) 2.68 ± 1.2c (62.3a) 2.78 ± 2.1b (58.6c) 3.15 ± 1.8a (57.6d) 3.17 ± 1.3a (57.6d)
  Bulk density (Mg 

 m−3)
1.62 ± 0.29b 1.62 ± 0.21b 1.63 ± 0.21b 1.69 ± 0.32a 1.70 ± 0.17a

  TOC stock (Mg 
 ha−1)

11.8 ± 0.71b 10.5 ± 0.45c 11.9 ± 0.69b 13.8 ± 0.11a 13.8 ± 0.10a

  Dehydrogenase (μg 
TPF  g−1  h−1)

36.5 ± 2.9c 31.7 ± 2.7d 42.3 ± 3.6b 43.9 ± 3.1a 41.3 ± 3.3b

  Alkaline phos-
phatase (µg p − NP 
 g−1  h−1)

29.0 ± 3.2c 26.8 ± 2.1d 33.4 ± 2.8b 37.3 ± 2.7a 32.3 ± 2.5b

  Asparaginase (μg 
 g−1  h−1)

28.1 ± 1.9c 25.1 ± 1.9d 36.7 ± 2.3b 40.6 ± 3.6a 36.3 ± 3.6b
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The CPI was significantly lower under seed sugarcane, 
highest in grasslands, while rice-wheat/ratoon sugarcane 
in between. The CMI was significantly higher under ratoon 
sugarcane by ~ 26.9 and 22.9%, respectively, in surface and 
sub-surface layers, compared with seed sugarcane. These 
results reaffirm significantly higher concentration of pas-
sive C pool in soils under ratoon sugarcane, compared 
with the soils under seed sugarcane. The sensitivity index 

estimated for TOC pool showed significantly higher C 
sensitivity under seed sugarcane (8.6–21.8%), followed by 
ratoon sugarcane (10.3–13.6%), rice-wheat (7.6–11.8%), 
while the lowest for grassland ecosystems (0.2–0.5%) fol-
lowing land-use change from uncultivated lands (Fig. 2). 
The compassion of rice-wheat and ratoon sugarcane 
showed significantly higher sensitivity index for soils under 
ratoon sugarcane.

Fig. 1  Loss in total soil organic 
C (TOC) stocks after land-use 
change in surface (0–15 cm) 
and sub-surface (15–30 cm) soil 
layers under different land-
use systems in north-western 
India. Bars indicate standard 
error from mean. Mean values 
followed by different letter are 
significantly different at p < 0.05 
by Duncan’s Multiple Range 
Test (DMRT)
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Table 3  Active C pool, passive C pool, lability index (LI), carbon pool index (CPI), and carbon management index (CMI) in surface (0–15 cm) 
and sub-surface (15–30 cm) soil layers under different land-use systems in north-western India

† Values indicate standard error from mean
Mean values followed by different letter are significantly different at p < 0.05 by Duncan’s Multiple Range Test (DMRT)

Soil property Land-use system

Rice–wheat (n = 17) Seed sugarcane (n = 16) Ratoon sugar-
cane (n = 14)

Grassland (n = 5) Unculti-
vated land 
(n = 5)

Surface (0–15 cm) soil layer
  Active C pool (g  kg−1) 1.17 ± 0.02c† 1.24 ± 0.03b 1.55 ± 0.05a 0.94 ± 0.06d 1.13 ± 0.05c
  Passive C pool (g  kg−1) 5.13 ± 0.42c 4.31 ± 0.37e 4.66 ± 0.39d 5.89 ± 0.44a 5.69 ± 0.43b
  Lability index (LI) 0.69 ± 0.04c 0.73 ± 0.04b 0.83 ± 0.08a 0.68 ± 0.05c 0.69 ± 0.07c
  C pool index (CPI) 0.92 ± 0.05b 0.81 ± 0.08c 0.90 ± 0.07b 1.00 ± 0.07a –
  C management index (CMI) 63.3 ± 0.54c 59.2 ± 0.51d 74.8 ± 0.68a 67.7 ± 0.74b –

Sub-surface (15–30 cm) soil layer
  Active C pool (g  kg−1) 0.74 ± 0.06c 0.87 ± 0.07b 1.07 ± 0.04a 0.63 ± 0.05d 0.77 ± 0.04c
  Passive C pool (g  kg−1) 3.61 ± 0.21c 3.43 ± 0.27d 3.68 ± 0.34c 4.84 ± 0.39a 4.73 ± 0.41b
  LI 0.56 ± 0.04d 0.66 ± 0.04b 0.73 ± 0.05a 0.59 ± 0.06 cd 0.62 ± 0.04b
  CPI 0.88 ± 0.06b 0.78 ± 0.06c 0.86 ± 0.07b 0.99 ± 0.07a –
  CMI 49.6 ± 0.39d 51.5 ± 0.47c 63.3 ± 0.46a 58.3 ± 0.52b –
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3.6  Distribution of Water Stable Aggregates, 
Aggregate Associated C

The total water stable aggregates varied between 70.0 and 
74.4% in surface layer, while between 69.7 and 73.5% in 
sub-surface soil layer under different land-use systems 
(Table 4). Results revealed significantly lower proportion 
of total water stable aggregates under seed sugarcane, com-
pared with other investigated land-use systems. Rice-wheat 
system had significantly higher proportion of water stable 
aggregates, compared with sugarcane ecosystems. Although 
the grasslands and uncultivated lands had highest propor-
tion of total water stable aggregates, but these two land-
use systems themselves did not differ significantly. Of the 
total water stable aggregates, macro-aggregates (> 0.25 mm) 
had the largest proportion (38.3–46.8% in surface and 
37.3–45.7% in sub-surface layer), while the proportion of 
micro-aggregates (< 0.25 mm) varied between 27.5 and 
31.7% in surface and between 27.7 and 32.4% in sub-surface 
layer. The proportion of macro-aggregates was significantly 
higher in undisturbed ecosystems (grasslands and unculti-
vated lands), followed by rice-wheat system, while the low-
est under seed sugarcane. The soils under ratoon sugarcane 
had ~ 9.7 and 8.6% higher macro-aggregates, respectively, 
in surface and sub-surface layer than seed sugarcane. Con-
versely, the proportion of micro-aggregates was significantly 
lower in soils under undisturbed ecosystems (grasslands and 
uncultivated lands), while the highest in ratoon sugarcane 
(Table 4). Aggregate ratio was significantly lower for soils 

under seed sugarcane, and highest for uncultivated lands. 
The rice-wheat soils had ~ 30.6 and 32.2% higher aggregate 
ratio, compared with seed sugarcane. The proportion of 
macro-aggregates under different land-use systems exhib-
ited a linear significant relationship with TOC pool (Fig. 3). 
The relationship between the two variables (R2 = 0.964*; 
p < 0.05) could best be described by linear function (macro-
aggregates (%) = 4.72 (TOC, g  kg−1) + 48.6.

Aggregate associated C differs significantly under differ-
ent land-use systems (Table 4). The macro-aggregates asso-
ciated C varied between 1.68 and 3.22 g  kg−1 aggregates in 
surface layer, while between 1.55 and 2.97 g  kg−1 aggre-
gates in surface soil layer under different land-use systems. 
Regardless of soil depth, the macro-aggregates associated 
C (MacA-C) was significantly higher for soils under undis-
turbed ecosystems (grasslands and uncultivated lands), while 
the soils under seed sugarcane had the lowest MacA-C. As 
compared with seed sugarcane, ratoon sugarcane system 
had higher C concentration by 0.56 g C  kg−1 aggregates 
(~ 33.3%) and 0.43 0.56 g C  kg−1 aggregates (27.7%) in sur-
face and sub-surface soil layers, respectively. The compas-
sion of cropland ecosystems, viz. rice-wheat vis-à-vis seed 
sugarcane, revealed significantly higher MacA-C by ~ 60.7 
and 61.9%, respectively, for surface and sub-surface soil lay-
ers. The micro-aggregate associated C (MicA-C) exhibited a 
similar trend for surface and sub-surface soils under differ-
ent land-use systems. As compared with MacA-C, MicA-C 
was lower by ~ 3.3–3.9 times for surface, and 3.3–3.7 times 
for sub-surface soil layer under different land-use systems.

3.7  Carbon Preservation Capacity

The C preservation capacity of macro-aggregates (> 0.25 mm) 
varied between 0.87 and 1.94 g  kg−1 soils for surface layer 
and between 0.52 and 0.54 g  kg−1 soil for sub-surface layer 
under different land-use systems (Table 4). A significantly 
lower C preservation capacity of macro-aggregates for surface 
soil layer under seed sugarcane (by ~ 0.37 g  kg−1; 42.5%) was 
observed, compared with the ratoon sugarcane. Rice–wheat 
ecosystem had significantly higher C preservation capacity 
of macro-aggregates by ~ 0.70 g  kg−1 soil (80.5%) than the 
seed sugarcane. The surface layer of undisturbed ecosystems 
(grasslands/uncultivated land) had significantly higher C 
preservation capacity of macro-aggregates, compared with 
the cropland ecosystems.

3.8  Relationship Between Different C Fractions 
and Soil Properties

Passive C pool showed highly significant linear positive 
relationship (Pearson’s correlation coefficient, “r”) with 
macro-aggregate associated C (r = 0.807**), silt + clay 
(r = 0.816**), Fract. 3 (r = 0.969**), Fract. 4 (r = 0.939**), 
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Fig. 2  Sensitivity index (%) of total organic C (TOC) pool in soils 
under different land-use systems. Bars indicate standard error from 
mean. Mean values followed by different letter are significantly differ-
ent at p < 0.05 by Duncan’s Multiple Range Test (DMRT)
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and silt (r = 0.760**), but negative relationship with sand 
(r =  − 0.760*) (Table  5). Macro-aggregate associated 
C exhibited a linear positive relationship with TOC pool 
(r = 0.712*), Fract. 3 (r = 0.874**), silt (r = 0.974**), and 
clay (r = 0.714*). The TOC pool showed a linear increase 
with increase in silt and clay, but decrease with increase in 
sand content in soil. Fract. 3 and Fract. 4 exhibited a negative 

linear significant relationship with sand (r =  − 0.885** 
and − 0.640*, respectively). Single linkage correlation 
between different C fractions and soil mineral matrix showed 
close association between Fract. 3, Fract. 4, and TOC pool 
in soils under land-use systems (Fig. 4). The finer fraction 
(silt + clay) showed close linkage with passive C pool which 
is closely associated with MacA-C.
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R² = 0.9638
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Fig. 3  Relationship between total organic C (g  kg1) and proportion of macro-aggregates (> 0.25 mm; %) in soils under different land-use systems 
in north-western India. Bars indicate standard error from mean. Data pooled for different soil depths

Table 5  Pearson’s correlation coefficient between different variables for soils under different land-use systems in north-western India. Data 
pooled for different land-use systems

* Significant at p < 0.05 and **significant at p < 0.01

Active C Passive C MacA-C Silt + clay TOC Fract. 1 Fract. 2 Fract. 3 Fract. 4 Sand Silt Clay

Passive C 0.163
MacA-C  − 0.276 0.807**
Silt + clay  − 0.269 0.816** 0.994**
TOC 0.394 0.958** 0.712* 0.721*
Fract. 1 0.985** 0.141  − 0.278  − 0.272 0.371
Fract. 2 0.992** 0.179  − 0.266  − 0.259 0.406 0.956**
Fract. 3  − 0.025 0.969** 0.874** 0.884** 0.885**  − 0.029  − 0.021
Fract. 4 0.407 0.939** 0.631 0.638* 0.958** 0.362 0.437 0.824**
Sand 0.261  − 0.818**  − 0.999**  − 0.997**  − 0.725* 0.263 0.251  − 0.885**  − 0.640*
Silt  − 0.355 0.760* 0.974** 0.973** 0.663*  − 0.379  − 0.328 0.827** 0.588  − 0.971**
Clay 0.085 0.691* 0.714* 0.720* 0.635* 0.146 0.041 0.735* 0.558  − 0.724* 0.539
B
D

 − 0.405 0.205 0.448 0.454 0.022  − 0.410  − 0.401 0.331 0.008  − 0.452 0.349 0.601
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4  Discussion

Total organic C has been the largest C pool in terrestrial 
ecosystems, the size of which depends upon the quality and 
quantity of plant-mediated C inputs and losses from soils as 
respiration, and the mean residence time of C pool (Li et al. 
2009; Singh and Benbi 2018a, 2021). These results may be 
explained through several factors, viz. (i) high input of organic 
matter to the rice–wheat system relative to sugarcane soil from 
the above- and below-ground plant biomass, (ii) relatively low 
C mineralization rate in grasslands and soils under sugarcane 
ratoon, (iii) the larger proportion of macro-aggregates in the 
grasslands than in the other land-use systems, and (iv) the 
preferential stabilization of soil organic matter in macro-
aggregates as opposed to smaller size classes (Howlett et al. 
2011; Mosquera-Losada et al. 2015). A significant change in 
TOC pool takes several years after a land-use change (Gre-
gorich et al. 1994; Sharma et al. 2020b). Land-use systems 
vary widely for soil organic matter stabilization (Singh and 
Benbi 2018b, 2021), depending upon crop production and 
soil management practices (Benbi et al. 2015; Sharma et al. 
2021; Singh and Benbi 2021). The contrasting soil moisture 
regimes under which different cropping systems are estab-
lished (Olk et al. 1996), tillage intensity (Roger-Estrade et al. 
2010; Sharma et al. 2022a,b), nutrient management practices 
(Singh and Benbi 2018a; Sharma et al. 2020a), type of vegeta-
tion, and their root geometry and architecture (Mandal et al. 
2022; Singh and Benbi 2022) greatly influence plant-mediated 
C input and are considered responsible for differential stabi-
lization of soil organic matter (Ghosh et al. 2012; Singh and 
Benbi 2021). In submerged soils, there occurs a large accu-
mulation of lignin-derived substances (Ye and Wen 1991). 

The rice-wheat soils are characterized by alteration in soil 
moisture regime from aerobic during wheat growing season 
and anaerobic environment during rice, which lead to incor-
poration of phenolic moieties into young soil organic matter 
fractions (Olk et al. 1996), and impart significant recalcitrance 
to soil organic matter (Benbi et al. 2016; Singh and Benbi 
2021). The higher TOC pool in soils under rice-wheat crop-
ping as compared to sugarcane-based ecosystem was ascribed 
to prevailing submerged conditions during rice cultivation, 
which lead to greater accumulation of C in recalcitrant pool. 
The TOC storage in the grassland and ratoon sugarcane would 
have probably been higher than in the rice-wheat cropping if 
intensive agriculture had been carried out, because intensive 
agriculture usually afford considerable soil degradation and C 
depletion (Plaza-Bonilla et al. 2015). Among the sugarcane-
based ecosystem (seed and ratoon crop), higher organic C 
pool in soils under ratoon sugarcane was ascribed to reduced 
tillage intensity, compared with that under every year’s freshly 
planted seed sugarcane crop. Intense tillage causes disruption 
of soil structure and aggregates, thereby exposing the encap-
sulated organic matter to oxidative micro-organisms (Six 
et al. 2000; Benbi et al. 2016). Tillage accentuates break-up 
of macro-aggregates (> 0.25 mm) and leads to the formation 
of micro-aggregates (< 0.25 mm) (Tisdall and Oades 1982; 
Six et al. 2000; Benbi et al. 2016). Tillage causes loss of 
aggregate associated organic C which remains protected from 
mineralization due to less physical and microbial degradation 
(Somasundaram et al. 2009; Sharma et al. 2022b).

Land-use change from relatively undisturbed ecosys-
tems (e.g., uncultivated/grasslands in the present study) to 
those under intense tillage is considered important to dis-
cern changes in C pool and its fractions due to altered soil 

Fig. 4  Single linkage between 
different C pools and soil vari-
ables. Data pooled for different 
land-use systems
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organic matter quality (Li et al. 2009; Mandal et al. 2008; 
Beheshti et al. 2012). These results revealed significantly 
lower TOC stocks in soils under seed sugarcane, compared 
with rice-wheat and ratoon sugarcane. As compared with 
sugarcane-based ecosystem, rice-wheat cropping maintained 
relatively higher C stocks, which could be ascribed to higher 
plant-mediated C input into the soil (Singh and Benbi 2022). 
In a rice-wheat cropping, total C input through root + shoot 
biomass and rhizodeposition in different nutrient man-
agement treatments varied between 1458 and 3298 kg C 
 ha−1   year−1 (Singh and Benbi 2022). Nonetheless, soils 
under rice-wheat cropping remain flooded for 3–4 months 
during rice period which retard the rate of C oxidation and 
decrease the rate of soil organic matter decomposition by 
soil microbes (Sharma et al. 2020a). In general, a high pro-
portion of soil macro-aggregates were associated with a low 
soil  BD because macro-aggregates are plant residues that 
retain an identifiable cell structure (Kogel-Knabner et al. 
2008). Therefore, the  BD tends to decrease as soil organic 
matter levels increase (Sakin 2012). Nonetheless, the higher 
percentage of macro-aggregates under grassland and ratoon 
sugarcane compared to that of the other land-use systems 
could also be explained by the downward displacement of 
the finest particles by the roots, which increase the forma-
tion of bio-pores in the soil surface layers, thereby favoring 
the transport of small particles towards deeper soil layers 
(Ferreiro-Domínguez et al. 2016).

Soil organic C can regulate the properties of soil and 
improve soil stability. Organic C accumulation and trans-
formation can directly or indirectly affect biochemical 
processes, absorption, and release of water and nutrients 
(Štursová and Baldrian 2011), and C content in soil is 
closely associated with soil quality and agricultural pro-
ductivity (Shi et al. 2014). Due to differences in organic 
substrate availability in soils, the concentration of C 
pools differed dramatically in cultivated and uncultivated 
soils under different land uses. The active C pool (Fract. 
1 + Fract. 2) constitutes the labile C pool, and is composed 
of organic C that decomposes quickly in plant materials by 
microbes (Singh and Benbi 2018a). These labile C com-
ponents have poor stability which makes them highly oxi-
dizable and causes fast mineralization in the soil (Mandal 
et al. 2008). Conversely, the stable C pool (Fract. 3 + Fract. 
4) has been the most resistant fraction to microbial destruc-
tion (Singh and Benbi 2018a). The recalcitrant C (Fract. 
4) comprised the greatest proportion in both the disturbed 
vis-à-vis undisturbed ecosystems under different land uses 
(Benbi et al. 2012, 2015). Diversity in plant species, soil 
moisture, and root biomass and intensity of soil distur-
bance and organic C inputs are considered important con-
tributors of TOC quantity and quality, where such variation 
shapes the soil structure (Tirgarsoltani et al. 2014). Blair 
et al. (1995) proposed CMI an index of organic matter 

degradation and/or rehabilitation. It has been hypothesized 
as integrated measure of C stability which describes the 
soil organic matter quality and creates the groundwork for 
increased production in different land-use systems (Blair 
et al. 1995; Tirol-Padre and Ladha 2004). The CMI is a 
comprehensive measure of C quantity and quality (Blair 
et al. 1995), which is considered highly sensitive indi-
cator to discern changes in response to improvement in 
soil organic matter quality (Tirol-Padre and Ladha 2004), 
and accumulation of lignin-derived substances (Olk et al. 
1996; Singh and Benbi 2018a). Considering the unculti-
vated soils as baseline reference, CMI was higher for soils 
under ratoon sugarcane followed by permanent grasslands 
and rice-wheat system. It could be ascribed not only to 
increased soil organic matter as a result of increased annual 
C addition through above- and below-ground biomass 
(Singh and Benbi 2020a), but also because of formation of 
a stable C pool with less decomposition under anaerobic 
conditions (Tirol-Padre and Ladha 2004). Additionally, 
CPI was highest in grasslands followed by rice-wheat soils 
and ratoon sugarcane and the lowest under seed sugarcane. 
The changes in C lability and build-up of lignin-derived 
compounds in rice soils suggest improved soil organic mat-
ter quality (Tirol-Padre and Ladha 2004; Singh and Benbi 
2021). Rice-wheat systems produce less oxidative environ-
ment and better physical protection for soil organic matter 
(Singh and Benbi 2020a, b; Blair et al. 1995).

Land-use change greatly influences the C sequestration 
rates (Deng et al. 2014). Grassland had the highest C stor-
age, TOC sequestration rate, and sequestration potential, 
followed by ratoon sugarcane, while rice-wheat and seed 
sugarcane had the lowest. It could be been ascribed to the 
fact that (1) due to high ecological functions of grassland 
ecosystem, the absorption of C is increased (Lange et al. 
2015) while (2) the formation of water stable aggregates 
which protects TOC pool was greater in grassland ecosys-
tems (Six et al. 2004; Singh and Benbi 2018b).

Land-use and associated management practices have 
profound effects on the characteristics of soil aggregates 
(Six et al. 2004; Benbi et al. 2016; Zhao et al. 2017). Aggre-
gate stability can promptly respond to land-use change (Liu 
and Han 2020). Organic matter is the core of the formation 
of 100–200 μm agglomerates; the surfaces of which can 
adsorb soil cosmids and cement soil micro-aggregates into 
large agglomerates (Jastrow 1996). Plant residue mediated 
C returned to grasslands and ratoon sugarcane can increase 
the stability of soil aggregates by supplementing them with 
fresh organic matter, increasing the proportion of humus 
and the aggregate structure of soil and increasing the activ-
ity of soil micro-organisms (Blanco-Canqui and Lal 2009). 
Returning residue can also reduce the impact of slap and 
leaching of rain on the soil, reduce the energy of rain falling 
to the ground (Fang et al. 2018), and reduce damage to the 
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soil aggregate structure in grassland and ratoon sugarcane 
crop (Blanco and Lal 2008).

The proportion of macro-aggregates was higher in undis-
turbed ecosystems, compared with the disturbed cropland 
ecosystems. Ploughing brings the returning straw in close 
contact with the soil, which results in faster straw decompo-
sition and faster accumulation of soil organic C. But, if the 
intensity of tillage is too large, it will destroy the original 
soil structure and increase the effects of drying-rewetting on 
the soil, intensifying the destruction of large C-rich aggre-
gates in the soil, affecting the formation and stability of 
large aggregates. Intensified tillage causes the breakage of 
aggregates and thereby reduces the physical protection of 
organic C within the aggregates, and forming many small 
aggregates containing organic C and free organic matter. 
However, the small aggregates have a limited ability to 
retain soil organic C (Benbi et al. 2016), and the stabil-
ity of free organic matter is poor, which accelerates the 
mineralization of soil organic matter and increases the loss 
of soil organic C (Six et al. 2004; Yang et al. 2003; Mikha 
and Rice 2004). However, no tillage, reduced tillage, and 
other conservation tillage methods cause less disturbance 
to the soil, reduce extent of destruction of soil aggregates, 
slow the turnover of macro-aggregates, keep soil aggre-
gates separated between areas of biological accumulation 
and mineralization, reduce the C mineralization rate in soil 
aggregates, prolong the storage period of organic C in the 
aggregates, slow the circulation rate in soil, and thereby 
increase the soil organic C content (Dalal and Chan 2001; 
Barto et al. 2010).

These results revealed that C preservation capacity and 
aggregate ratio was highest for uncultivated and grass-
lands. It might be due to the breakage of macro-aggre-
gates in micro-aggregates to oxidizing the hidden C by 
microbes as  CO2 in soils under cropland ecosystems (e.g., 
rice-wheat/sugarcane). Pan et  al. (2007) reported that 
the accumulation of soil organic C increases as propor-
tion of macro-aggregates (> 0.25 mm) increases, while 
decreases with increase in proportion of micro-aggregates 
(< 0.25 mm). In rice-wheat cropping system and sugar-
cane-based cropland ecosystems, there is not enough time 
between the formation and disruption of macro-aggregates 
to form significant numbers of new micro-aggregates 
within macro-aggregates. Therefore, less new crop C gets 
incorporated into micro-aggregates in rice-wheat cropping 
and seed sugarcane, compared with the ratoon sugarcane 
and grasslands. The increased TOC content in aggregates 
under grasslands was ascribed to the higher organic C 
input originating from biomass as plant litter and root 
exudates (Wang et  al. 2014). Grassy vegetation cover 
in grasslands also contributes towards the formation of 

macro-aggregates by increasing aggregating agents such 
as root exudates, hyphae, and polysaccharides (Six et al. 
2004; Wang et al. 2018). At the same time, enhanced soil 
aggregate stability under grass cover could reduce soil 
aggregate breakdown (Singh and Benbi 2018b). Therefore, 
there would be less C loss under enhanced soil aggregate 
stability during erosive rainfall (Shi et al. 2017).

Accumulation of C pool in soils has great influence on 
soil enzymatic activity responsible for cycling of C, N, and P. 
Soil enzymatic activity and functioning is essential not only 
to soil health and fertility (Brady and Weil 2016), but also to 
C sequestration and global C cycling (Chen et al. 2020). Soil 
enzymes are biological machines, which play a major role 
in the bio-geochemical processes and are linked to “plant-
soil enzymes-soil nutrients” of the soil system (Lino et al. 
2015; Naylor et al. 2020). Soil micro-organisms can regulate 
microbial nutrient use efficiency by secretion of extracellu-
lar enzymes (Mosca et al. 2007) to catalyze the enzymatic 
depolymerization of complex C compounds to produce solu-
ble, low molecular weight compounds which can be readily 
assimilated in a soil-plant system (Sinsabaugh 2010; Chen 
et al. 2017). As a key regulator of litter decomposition, soil 
enzyme activities may have a significant influence on C frac-
tions. The hydrolytic and oxidative enzymes may make dif-
ferent contributions to the formation of C fractions (Li et al. 
2016). The organic C affects the microbial biomass and activ-
ity by providing habitat (i.e., stable aggregates) and substrate, 
while in turn microbial processes determine C turnover. At the 
same time, vegetation restoration protects enzyme substrates 
by improving soil structure, and promotes the contact of soil 
enzymes resulting in increased soil enzymatic activity (Grig-
era et al. 2006).

The correlation analysis revealed that the majority of 
C pools were significantly inter-related. As a result, the 
labile and stable C pools were sensitive indicators of TOC 
change (Singh and Benbi 2018a). Because of their sensi-
tivity towards land-use change, environmental conditions, 
and consistent reaction to TOC change, these C pools are 
frequently employed as effective markers for soil quality 
assessment (Melero et al. 2009). Labile C fractions are a 
source of energy and have an impact on different soil prop-
erties and C stocks. As a result, a substantial link between 
labile C fractions was predicted. Passive C significantly 
affected the TOC and recalcitrant C fractions. Besides, a 
positive effect relationship between C concentration and 
the silt + clay fraction was also observed. Several studies 
carried out under different climatic conditions have also 
shown that grasslands and forest ecosystems contribute to 
increasing the C associated with both soil micro-aggre-
gates and silt + clay fraction (Singh and Benbi 2021). The 
significant correlation between TOC and silt suggests an 
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increasing effect of protection mechanisms for TOC in 
soil with increasing fine fraction content (Six et al. 2000, 
2002; Galantini et al. 2004; Singh and Benbi 2021). The 
C associated with the micro-aggregates and the silt + clay 
fraction represents very stable (recalcitrant) C that remains 
in the soil over long periods, something necessary to help 
mitigate the effects of climate change. Similarly, Bronick 
and Lal (2005) reported that TOC was positively related to 
soil C in macro-aggregates. Bashir et al. (2016) also found 
that TOC in macro-aggregates and micro-aggregates was 
significantly increased compared with that in other frac-
tions under organic manure application.

5  Conclusion

Land-use change significantly impacts the C storage within 
an ecosystem because of large influence on aggregate sta-
bility. We compared the land-use change from uncultivated 
lands to grasslands, rice-wheat, and sugarcane ecosystems 
to study their effects on total organic C and its fractions of 
variable oxidizability due to change in soil management 
and crop production regimes. The response of land-use 
change was assessed via change in total organic C pools, 
aggregate proportion, and their C preservation capacity 
in soils under different land-use systems in north-western 
India. The intensively cultivated ecosystems, e.g., rice-
wheat and seed sugarcane, have significantly higher deple-
tion of organic C in aggregate size fractions, decreased 
aggregate stability, and soil enzymatic activities. A rela-
tively lower C storage in the soils under rice-wheat and 
seed sugarcane was ascribed to intensified tillage. A lin-
ear significant relationship between soil mineral matrix 
(silt + clay) with total organic C (r = 0.721*), less labile 
C (Fract. 3; r = 0.884**), and recalcitrant C (Fract. 4; 
r = 0.638*) for soils under land-use systems indicates over-
whelming significance of soils’ fine fraction in enhancing 
C sequestration in soils. These results revealed higher C 
preservation capacity of macro-aggregates for soils ratoon 
sugarcane, as compared with other cropland ecosystems, 
e.g., rice-wheat/seed sugarcane. Nonetheless, ratoon sug-
arcane had significantly higher C management index than 
the other compared land-use systems, indicating greater C 
rehabilitation due to reduced tillage intensity. Conversely, 
the lower values of C management index for soils under 
seed sugarcane indicate C degradation in response to more 
intensified tillage. Therefore, the adoption of permanent 
grassland and ratoon sugarcane soils promotes greater 
incorporation of C in the soils, resulting in better soil struc-
turing which consequently contributes to C preservation 
capacity, lower soil density, higher biological processes, 
and C stabilization.
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