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Abstract
Cassava (Manihot esculenta Crantz), a ”miracle of the tropics,” is a critical component of the approaches to alleviate poverty, 
hunger, and malnutrition and increase livelihood security. Its high inherent photosynthetic efficiency and ability to sustain 
growth in challenging environments make it a potential food and nutrition security crop. However, water remains the most 
limiting factor for future cassava production, particularly under anticipated climatic variability. Though cassava is popular-
ized as a drought-tolerant crop, seasonal or intermittent water stress episodes affect cassava productivity by influencing plant 
growth, storage root yield, and quality. Successful cassava production in drought-prone areas relies on the development of 
drought-tolerant cultivars along with tailored agronomic practices. We reviewed multi-faceted responses from morphological 
level to tissue/cell level biochemical changes, root development responses, and storage root quality alterations occurring under 
drought and potential targets for the future breeding program. This knowledge will pave the way for developing breeding 
strategies and implementable agronomic methods.

Keywords  Drought tolerance · Drought adaptive responses · Food security · Manihot esculenta Crantz · Storage root 
quality
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K+	� Potassium ion
kg	� Kilogram
LAI	� Leaf area index
m	� Meter
MAP	� Months after planting
NSC	� Nonstructural carbohydrates
OA	� Osmotic adjustment
PAR	� Photosynthetically active radiation
PCD	� Program cell death
PEPC	� Phosphoenolpyruvate carboxylase
PSII	� Photosystem II
qP	� Photochemical quenching coefficient
ROS	� Reactive oxygen species
RSA	� Root system architecture
RuBisCO	� Ribulose-1,5-bisphosphate 

carboxylase-oxygenase
s	� Second
SOD	� Superoxide dismutase
t	� Ton
UN	� United Nations
US$	� United States dollars
WDS	� Water-deficit stress
WP	� Water potential
WUE	� Water use efficiency
ΦPSII	� Effective quantum yield
ICAR​	� Indian Council of Agricultural Research

1  Introduction

Environmental changes associated with global warming 
are potential threats to global food demand (FAO 2017) 
as the world population is projected to increase by 9–12.3 
billion from 2050 to 2100 (Gerland et al. 2014; Frona 
et al. 2019). Furthermore, the increased drought and heat-
wave frequency (Naumann et al. 2018) will likely aggra-
vate the anticipated limited land and water resource avail-
ability (Arora 2019). Moreover, the projected decline in 
productivity of major food crops will have severe implica-
tions for rural and semi-urban global populations in devel-
oping countries (Leng and Hall 2019; FAO 2020, 2021). 
Cassava, a staple for one billion people worldwide (Lebot 
2020), thrives in challenging environments where other 
major food crops struggled, making it an ideal climate-
resilient crop (Pushpalatha and Byju 2020). Cassava is gen-
erally grown by marginal and smallholder farmers, but its 
perception as a “poor man’s food” (FAO 2014) and “food-
feed-fuel” crop (Howeler et al. 2013) has recently changed 
to a “future smart/climate-resilient crop” (Rosenthal and 
Ort 2012; Mukherjee et al. 2019; Pushpalatha and Byju 
2020), “crop of industrial significance,” and “twenty-first 
century crop” (Howeler et al. 2013). It has immediate ben-
efits against hunger, poverty, and malnutrition (Anikwe 

and Ikenganyia 2018; FAO 2018; Amelework et al. 2021) 
due to its higher energy production efficiency than maize 
and wheat (Howeler et al. 2013; Nayar 2014). The recent 
production statistics by FAOSTAT (2022) indicates that its 
production has increased significantly since 1961, and the 
global cassava market will reach up to US$66.84 billion by 
2026, exhibiting a compound annual growth rate (CAGR) 
of 6.50% (GlobeNewswire 2021), showcasing its economic 
robustness, and importance. Apart from the cassava’s stor-
age root, leaves are also consumed as a valuable protein 
source (Latif and Muller 2015), and extractable starch 
from storage roots forms the basis for numerous essential 
industrial products (Ravi et al. 2021; More et al. 2021).

The average productivity of cassava is still far lower 
than its potential yield suggesting broad scope for genetic 
improvement and the development of agronomic practices 
to narrow yield gaps. Drought alone can lead to a nota-
ble reduction in storage root yield, though the quantum of 
reduction depends on genotype and the severity and tim-
ing of drought during the growing season (Fig. 1). Water 
deficit during early growth (1–3 MAP, months after plant-
ing) causes more yield losses as this period coincides with 
the critical yield attributes viz. root system development, 
canopy establishment, storage root initiation, multiplica-
tion, bulking, and starch accumulation (El-Sharkawy 2007; 
Duque and Setter 2019). The crop simulation model pre-
dicted the region-specific drought-induced yield reduction 
of cassava storage root ranging from − 3.7 to 17.5% across 
Africa (Jarvis et al. 2012), − 17.24 to − 21.26% in Thai-
land (Pipitpukdee et al. 2020) and − 10 to 12% in India 
(Pushpalatha et al. 2021) under various future climatic 
scenarios.

Additionally, drought alters storage roots’ physical and 
chemical properties hampering the remuneration poten-
tial for marginal cassava growers, end-product utiliza-
tion, and consumption pattern (Santisopasri et al. 2001; 
Nhassico et al. 2008; Gleadow et al. 2016; Jyothi and 
Sajeev 2021). Understanding stage-specific crop responses 
and the underlying physiological process is a prerequisite 
to reducing the negative impacts of drought on cassava 
productivity (Zhu et al. 2020). There is a plethora of stud-
ies on drought stress in cereal (rice, wheat and maize), 
vegetables, fruits and other crops (Havrlentova et al. 2021; 
Giordano et al. 2021; Dietz et al. 2021). However, cassava 
remained neglected, and information on drought responses 
is limited. In the present review, we have revisited the det-
rimental effect of drought stress on the quality aspect of 
cassava and its impact on growth and yield. Moreover, this 
will help develop knowledge and understanding of cas-
sava drought tolerance, which would help in the develop-
ment of suitable traits tailored to region-specific cultivars 
and appropriate management practices to ameliorate the 
adverse effects of drought.
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2 � Cassava Water Relations Under Drought

Leaf water potential and relative water content are water 
stress indicators reflecting plant water availability (Alves 
and Setter 2004) as CO2 enters the leaf via stomata, the 
same channel as transpiration. Water availability con-
trols the trade-off between CO2 absorption and water loss 
(Bhattacharya 2019).

The total water, free water, and the ratio of free water and 
bound water levels reduced in cassava leaves, while the bound 
water content increased with the intensification of drought 
(Shan et al. 2018). Reduced osmotic potential by osmotic 
adjustment under water stress facilitates turgor maintenance, 
stomatal regulation, CO2assimilation, and increased tolerance 
to dehydration (Alves and Setter 2004; Helal et al. 2013). 
Osmotic adjustment regulates turgidity so that plants can sus-
tain low soil water potentials and create sufficiently low tissue 
water potential for continued soil water extraction. Under water 
stress, mature and expanding cassava leaves decreased osmotic 
potential to a relatively limited extent or had relatively modest 
osmotic potential, whereas immature leaves osmotically adjust 
to a greater extent than mature leaves (Ike and Thurtell 1981; 
Alves and Setter 2004). The majority (nearly 60%) of osmotic 
adjustment (OA) occurs as a result of the accumulation of 
K+salts in mature and expanding leaves, which is positively 
correlated with the extent of OA, while organic solutes such 
as sugars accounted for 25% of OA and their concentrations 

decreased as water stress progressed (Alves and Setter 2004; 
Okogbenin et al. 2013). Osmotic adjustment helps to increase 
water use efficiency and the water resupply system from stem 
to leaves during drought (Itani et al. 1999). However, OA alone 
is insufficient to provide drought tolerance and higher yields 
(Helal et al. 2013).

Water use efficiency [WUE; agronomic (yield produced 
per unit of water applied) or physiological, i.e., instantaneous 
WUE (A/E) and intrinsic WUE (A/gs)] is important for ana-
lyzing plant growth under water-deficit conditions (Hatfield 
and Dold 2019). In cassava, the WUE is highly dependent on 
water supply, stomatal conductance, photosynthetic efficiency, 
transpirational losses, growth stage, and atmospheric condition 
(El-Sharkawy 2006). Interestingly, cassava crop growth rate 
and short-term WUE are similar to C4 crops, which are consid-
erably higher than other C3crops (El-Sharkawy 2004, 2006). 
However, optimizing WUE under water-limited environments 
would also enhance cassava’s productivity in challenging envi-
ronments (Wongnoi et al. 2020).

3 � Growth and Morphological Responses

3.1 � Leaf and Shoot Growth Dynamics

Cassava leaves can take 10–12 days for emergence to full 
expansion (Cock 1984), with a leaf life of up to 30–180 

Fig. 1   Quantum of yield loss in cassava subjected to early, mid, or terminal season drought stress
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days, depending on the cultivar, water availability, shade 
level, temperature, and growing conditions (Phosaengsri 
et al. 2019). Maximum leaf formation is completed within 
the first 90 DAP, followed by steady canopy development 
throughout the growing period (Alves and Setter 2004). Cas-
sava canopy area increases significantly from 3 to 5 MAP, 
followed by a progressive decline in total canopy area during 
8–9 MAP due to leaf loss (El‐Sharkawy and De Tafur 2007). 
The canopy development phase (3–5 MAP) is critical as 
storage root initiation, and bulking co-occurs, significantly 
affecting the storage root yield (Ceballos et al. 2012). Accu-
mulation of optimum canopy with desirable leaf growth dur-
ing the storage root bulking phase is critical to achieving 
higher productivity irrespective of the water status of the 
location (Phosaengsri et al. 2019). Prolonged water dep-
rivation harmed leaf development, leaf cell division, leaf 
angle, leaf expansion, leaf retention capacity, and leaf area 
index (LAI), and leaf abscission was accelerated (de Oliviera 
et al. 2017; More et al. 2020) (Fig.2). According to Connor 
and Cock (1981), leaf expansion/leaf size was more sensi-
tive to water deficit than the leaf production rate. Thus, leaf 
area is the key determinant factor for canopy development 
and productivity under water stress, not the leaf loss. Water 
stress within 2–3 MAP produced half the leaf area of non-
stressed plants (Turyagyenda et al. 2013a, b) and caused 
84.27% mortality (Turyagyenda et al. 2013a). Furthermore, 
diminished leaf area was associated with ethylene accumula-
tion (Ogaddee and Girdthai 2019), which might be related 
to accelerated leaf senescence and ROS generation (Liao 

et al. 2016). Reduced leaf area is the first line of defense, 
which reduces the transpirational loss but substantially 
affects the photosynthetic efficiency (Pacheco et al. 2019), 
with improved water use efficiency (Vandegeer et al. 2013).

Plant height, stem diameter, and shoot biomass were 
decreased significantly, varying with the different genotypes, 
in response to water stress (Aina et al. 2007; Okogbenin 
et al. 2013; Shan et al. 2018), owing to the downregula-
tion of proteins and photosynthetic activity resulting into 
impaired cell development and division (Shan et al. 2018) 
and overall plant vigor. Tissue turgidity is maintained to a 
minimum to prevent cell death by limiting cell growth (Cal-
atayud et al. 2000). Inhibited apical meristem cell develop-
ment and elongation, loss of turgor, significant leaf fall and 
senescence, and altered biomass partitioning contributed 
to decreased shoot growth (Helal et al. 2013; Shan et al. 
2018; More et al. 2020). This information on leaf and stem 
is essential to understand response mechanism that cassava 
showcases under drought.

3.2 � Root Growth and Development

The formation of roots is critical for the growth and productiv-
ity of cassava shoots (Duque and Villordon 2019). Investigat-
ing root development kinetics in resource-constrained produc-
tion environments may provide additional insight into cassava 
crops’ drought-tolerance mechanisms (Adu et al. 2018). How-
ever, relatively few studies have identified the role of root 
growth and development in root and tuber crops, including 

Fig. 2   Cassava plants under 
drought show reduced canopy 
development. The most notable 
change in the leaf trait is the 
reduction in leaf area in stressed 
plants as compared to the leaf 
area of well-irrigated plants 
(A). In order to regulate the 
use of limited available water, 
cassava leaves are known to 
employ heliotropic effect to 
reduce the harmful effect of 
radiation caused by drought-
induced high-temperature stress 
(B). While leaves continue to 
develop, they are smaller and 
grow more slowly, and the older 
leaves are lost (C). Cassava 
demonstrated remarkable post 
drought recovery. The newly 
developed leaves from the 
previously stressed plants had 
similar leaf area and photo-
synthetic efficiency as that of 
well-irrigated plants (D)
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cassava, compared to aboveground morphophysiological 
traits (Adu et al. 2018; Duque and Villordon 2019), particu-
larly under conditions of water stress (Adu et al. 2020). Root 
emergence occurs 1 to 2 weeks after planting, followed by 
significant fibrous and lateral root development (Izumi et al. 
1999). Early water stress coincides with the period of highest 
relative growth rate of root system during the first 30 DAP, 
which subsequently decreases to a nearly constant rate after 
30–60 DAP (Adu et al. 2018) and becomes more detrimental 
to crop yield. The fibrous root system grows up to 1.4–2 m 
in depth to increase access to deeper water (de Tafur et al. 
1997), or even up to 2.4–2.6 m Ekanayake et al. 1994, 1996) 
depending upon the timing of the water stress, and soil tex-
ture also significantly affected due to water stress (Adu et al. 
2018). Aina et al. (2007) reported that drought reduced root 
growth more than shoot growth in cassava, depending on the 
timing and severity of the drought. Strikingly, reduced lateral 
and total root numbers; root length and diameter; adventitious 
root number and length; basal root branching density; lower 
and upper nodal root numbers; first, second, and third lateral 
root numbers; and root dry weight as a result of water stress 
cause sizeable reduction in storage root yield (Pardales and 
Yamauchi 2003; Helal et al. 2013; de Oliveira et al. 2015; 
Kengkanna et al. 2019; Adu 2020). Developing a cassava root 
phenotyping protocol and platform and identifying phenotypic 
variation in root systems is essential for developing highly 
drought-tolerant cassava genotypes. Recently developed 
root shovelomics-based phenotyping techniques combining 
manual and semi-automatic DIRT measurements (Kengkanna 
et al. 2019) or easy and low-cost three-dimensional cassava 
root crowns phenotyping platform (Sunvittayakul et al. 2022) 
could be proven extremely useful for root architectural trait 
phenotyping in cassava under various growing conditions. 
Moreover, a substantial amount of germplasm maintained 
at the International Center for Tropical Agriculture (CIAT), 
Colombia, Central Tuber Crops Research Institute (CTCRI), 
India, and other premier research institutes could be assessed 
in collaborative breeding program for identification of root-
related traits for drought-tolerance.

4 � Physiological‑Biochemical Responses

4.1 � Photosynthesis

Cassava is a biologically efficient crop with a higher leaf 
photosynthetic rate, as high as 40–50 μmol CO2 m−2 
s−1under favorable environments (El-Sharkawy 2007). In 
a series of experiments, aboveground dry weight and stor-
age root yield were positively correlated with the single-
leaf photosynthesis or mean seasonal upper canopy pho-
tosynthesis (El-Sharkawy et al. 1990; El-Sharkawy 2006). 
However, this correlation depends on optimum PAR, plant 

age, leaf position, LAI, leaf duration, leaf anatomy, and 
the environment under which the leaves were formed (El-
Sharkawy 2014; De Souza and Long 2018).

Inhibited CO2assimilation rate under water stress was 
primarily attributed to reduced leaf area, reduced stomatal 
conductance (Adjebeng-Danquah et al. 2016; Morgante 
et al. 2020), and reduced photosynthesis-related proteins 
(Chang et al. 2019; Wang et al. 2021a, b). The sensitiv-
ity of cassava’s stomata to varying water regimes and 
atmospheric humidity has been reviewed in detail (El-
Sharkawy 2007). The presence of higher stomatal density 
on the abaxial side than on the adaxial side of the leaf also 
reduced gaseous exchange under water stress conditions 
due to leaf bending/rolling (El-Sharkawy and Cock 1987). 
Asymmetric stomatal density reduced gas exchange which 
optimized water use but impaired carbon gain. This is fur-
ther affected due to restricted flow of water from leaf veins 
to guard cells (Ooba and Takahashi 2003). Hydro active 
stomatal closure (referred to as stomatal closure due to 
localized dehydration of guard cells and accessory cells as 
per the relative change in air humidity) was induced by the 
upregulation of ABA-dependent (ABA-D) and ABA-inde-
pendent genes associated with decreased stomatal activity 
(El-Sharkawy 2006; Orek et al. 2020; Fu et al. 2016; Li 
et al. 2017a, b). Carbon isotope ratios (Δ13C), a key param-
eter to assess water use efficiency in relation to stomatal 
activity and gaseous exchange capacity remained more 
negative under water stress (Adjebeng-Danquah et al. 2016; 
More et al. 2019a, b2019, 2022). Drought-sensitive cul-
tivars had lower photosynthetic quantum efficiency (Fv/
Fm) than drought-tolerant cultivars (Zhao et al. 2015). 
The quantum yield of the light-adapted leaf (F′v/F′m), 
effective quantum yield (ΦPSII), photochemical quench-
ing coefficient (qP), and ETR were decreased significantly 
under water stress. Efficiency of photosystem II and elec-
tron transport rate was reduced significantly as a result 
of water stress (Pereira et al. 2018), however, contrary to 
these findings, Shan et al. (2018) reported increased PS II 
and PS I subunits to modulate the photosystem repair and 
electron transfer to maintain photosynthetic efficiency to 
reduce the negative effect of water deficiency (Shan et al. 
2018). These changes are ascribed to damage to the chlo-
rophyll membrane, chlorophyll degradation, and associated 
photoinhibition (Morgante et al. 2020); downregulation of 
PSII synthesis; decreased oxygen-evolving complex pro-
tein production; and structural changes in oxygen-evolving 
complex proteins (Dalal and Tripathy 2018). Additionally, 
photosynthetic activity was harmed by ROS generation, 
decreased RuBisCO activity, and damage to multiple cel-
lular components (Zhu et al. 2020), as well as downregu-
lation of sedoheptulose-1,7-bisphosphatase (SBPase) and 
fructose-bisphosphate aldolase (both of which are required 
for the supply of RuBP to Rubisco) (Shan et al. 2018).
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Reduced stomatal activity and carbon assimilation and 
the reduction in leaf area were the strategic responses to 
optimize the water use efficiency (Duque and Setter 2013; 
Zhao et al. 2015; Adjebeng-Danquah et al. 2016). Conse-
quently, high water use efficiency will not always result in 
high yield, as it may be the result of reduced water consump-
tion due to leaf abscission and consequently less CO2fixation 
(Blum 2009). A delicate balance between transpiration and 
CO2diffusion is crucial for optimizing water use efficiency 
and productivity under drought conditions in cassava. 
Evapotranspiration increases with a simultaneously higher 
stomatal conductance (Oguntunde 2005; El-Sharkawy 
2012; Shan et al. 2018; Morgante et al. 2020). Transpira-
tion also declined abruptly in conjunction with leaf ABA 
accumulation and severe leaf abscission (Duque and Setter 
2013). Genotypic variation for gaseous exchange under var-
ied ecosystems exists (Shan et al. 2018; More et al. 2020), 
which could be useful in fine-tuning the dual function of the 
stomatal aperture. More research is warranted to decipher 
biochemical and molecular characteristics of cassava pho-
tosynthesis in relation to storage root yield.

4.2 � Assimilate Partitioning

Storage root yield of cassava is a function of source-sink 
interactions and the photosynthetic efficiency (Orek et al. 
2020). It is severely impeded by water stress episodes (El-
Sharkawy 2014) (Fig.3). Partitioning index (PI), a ratio of 
storage root yield to total biomass (aboveground biomass + 
storage root weight + fibrous root weight) determined at 4-6 
MAP (Duque and Setter 2019), is an indicator of biomass 
accumulation efficiency of storage roots. Duque (2012) had 

established profuse relationship especially under water stress 
among PI and HI, for 45 diverse cassava genotypes. PI at 7 
MAP and HI at 12 MAP (at harvesting) were significantly 
and positively correlated for drought-tolerant genotypes 
(Olasanmi 2010). Duque and Setter (2019) also suggested 
that root yield is the function of PI, based on observed 
correlation patterns. Water stress occurred during the 3–4 
MAP period, significantly decreased PI, biomass, and yield. 
Assessment of PI at an early stage could have additional 
benefits as an indicator of higher storage root yield. Signifi-
cantly less attention has been given to this particular trait 
in cassava, and further studies are sought to determine the 
pattern and quantum to which cassava alters carbohydrate 
accumulation and pattern of its diversion among different 
organs to sustain its partitioning capacity to sustain yield.

4.3 � Biochemical Changes

Drought episodes triggered the biosynthesis of protective 
biochemicals and secondary metabolites in cassava to coun-
teract the water-deficit stress (Nuwamanya et al. 2014). Most 
changes were associated with the increases in the synthesis 
of defensive proteins (e.g., lectins and protease inhibitors) 
and other biomolecules like phenolics, proline, and tannins 
(Isah 2019). Cassava leaves accumulated significantly higher 
quantities of trehalose and proline during early drought 
stress (Ren et al. 2017). Sugar content in stems and imma-
ture/mature leaves decreased as water stress progressed 
(Duque and Setter 2013; Koundinya et al. 2018). Duque and 
Setter (2013) reported that while evaluating the composi-
tion of nonstructural carbohydrates in cassava organs under 
water stress, sugar was the primary form of nonstructural 

Fig. 3   Tuberization at 5 and 10 
months (harvesting) after plant-
ing in a variety H 165 subjected 
to drought from 61 to150 days 
after planting
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carbohydrate in the leaf blade and leaf petiole, while starch 
comprised approximately one-third. Contrastingly, stem and 
storage roots contained relatively high starch content. The 
stem’s starch reserves were remobilized in numerous organs 
to maintain development via storable carbohydrates depleted 
during periods of water stress due to reduced canopy photo-
synthesis and the generation of secondary metabolites and 
defense proteins (Duque and Setter 2013). However, they 
remained unaffected in tolerant and susceptible genotypes 
under water stress (Duque and Setter 2019). The accumula-
tion of total reducing sugars (glucose) was negatively corre-
lated with starch yield and positively correlated with protein 
and phenolic contents (Nuwamanya et al. 2014). Reverse 
translocation of sugars from storage roots occurred to cater 
for leaf and stem growth. Bound reducing sugars increased 
more than free reducing sugars with increasing water stress, 
suggesting possible losses in storage starch. Understanding 
biochemical responses is essential for a holistic perception 
of drought resistance mechanism that cassava adopts under 
drought

Reactive oxygen species (ROS) are generated during 
water-deficit stress, causing oxidative damage. ROSs are 
responsible for the negative impact on physiological pro-
cesses leading to programmed cell death (PCD). Under 
oxidative stress, relative leaf electrical conductivity and 
malondialdehyde and hydrogen peroxide contents signifi-
cantly increased with increasing drought stress (Petrov et al. 
2015). Enzymatic (superoxide dismutase, ascorbate peroxi-
dase, peroxidase, glutathione reductase, catalase) and non-
enzymatic (ascorbic acid, glutathione, total phenolics, and 
total flavonoids) antioxidant mechanisms form to counteract 
the oxidative damage occurring under water stress (Zhu et al. 
2020). Almost all antioxidants enhanced manifold under 
water stress, depending on the genotype. Some cultivars 
accumulated more ascorbic acid, glutathione, and super-
oxide dismutase triggered by the upregulation of Mn-SOD 
and CAT genes, while others synthesized more glutathione 
reductase and total phenols due to the upregulation of the 
GR gene (Zhu et al. 2020). Furthermore, drought abruptly 
affected the thylakoid membrane and grana stacking, and 
grana lamellae structure significantly affecting biochemi-
cal and physiological processes, whereas no change was 
observed in the thylakoid granum structure (Chang et al. 
2019). Hence, it is needed to explore the role of chloroplast 
in drought resistance and adaptation in cassava.

Cassava’s complex multi-level drought responses involve 
employment of the antioxidant system (Yan et al. 2021). 
Proteomic analysis is a useful technique to reveal the role 
of genes associated with a specific protein involved with 
drought responses and adaptation mechanisms (Aslam et al. 
2017). However, information regarding this aspect in cas-
sava is very limited (Yan et al. 2021). In a Kyoto Encyclo-
pedia of Genes and Genomes (KEGG)-based proteomics 

analysis in cassava, Wang et al. (2021a, b) reported distinct 
drought response and adaptation mechanisms in leaf vas-
culature and leaf mesophyll, respectively. Genes associated 
with amino acid biosynthesis (e.g., alanine, aspartic acid, 
and glutamic acid), pyruvate metabolism, and starch and 
sucrose metabolism were upregulated in leaf mesophyll, 
while genes associated with carbon metabolism, plant hor-
mone signal transduction, pyrophosphatase activity, and 
oxidative phosphorylation were upregulated in leaf vascu-
lature. In addition, the increased arginine biosynthesis in leaf 
mesophyll tissue was associated with enhanced adaptation to 
water deficiency. Shan et al. (2018), under long-term drought 
conditions, reported upregulation of 262 proteins potentially 
involved in carbohydrate energy metabolism, heat shock 
proteins, protein homeostasis, transcription, cell structure, 
cell membrane transport, signal transduction, and stress 
responses. Numerous reports depict the role of 90 kDa heat 
shock protein (HSP90, highly conserved molecular chap-
erone) as an aid in coping with multiple biotic and abiotic 
stresses in plants and animals. However, its role in cassava 
regarding drought resistance is not yet studied in detail (Wei 
et al. 2020). MeHSP90 proteins were identified as a critical 
factor for enhanced stress resistance. Out of 10 identified 
MeHSP90s, the MeHSP90.9 was abundantly induced as 
a result of drought stress. Apart from these, two potential 
HSP90 client proteins, viz., MeWRKY20, and MeCatalase1 
interacted significantly with MeHSP90.9 to foster stress 
resistance. MeHSP90.9 proteins regulated the accumula-
tion of ABA hormone through targeting the ABA biosyn-
thesis gene MeNCED5 whereas along with MeCatalase1, 
it regulated the catalase activity and H2O2accumulation to 
facilitate cassava plants to cope up with drought. Li et al. 
(2021) characterized the functions of drought-responsive 
genes such asSQUAMOSA promoter binding protein-like 
9 (SPL9) and MeSPL9. MeSPL9 and rMeSPL9-SRDXcon-
ferred drought tolerance with enhanced accumulation of 
proline, anthocyanin, jasmonic acid (JA), and soluble sug-
ars. Chang et al. (2019) elucidated photosynthesis-related 
proteins’ downregulation, significantly affecting photosyn-
thesis efficiency. However, the cassava plant could cope 
with the drought situation with the upregulation of carbon 
and nitrogen metabolism–associated proteins. In the very 
first report of integration of transcriptomic and proteomic 
analysis in cassava, Ding et al. (2019) reported 237 and 307 
differentially expressed proteins (DEPs), in cassava leaf 
and root, enabling heat shock protein, secondary metabo-
lism biosynthesis, and hormone biosynthesis to sustain 
under water-deficient environments.MeMYB1, MeMYB2, 
MeMYB4, and MeMYB9transcription factors belonging to 
the myeloblastosis (MYB) superfamily were involved in 
stress response mechanisms in cassava (Ruan et al. 2017). 
RNAi-driven repression ofMeMYB2resulted in drought 
and cold tolerance in transgenic cassava (Ruan et al. 2017). 
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Wang et al. (2021a, b) reported that the MYB family pro-
teinMeMYB26, a typical transcription factor with two MYB 
DNA-binding and transcriptional activation domains, was 
exclusively involved in water stress signal transduction in the 
root portion of cassava and crucial for plant stress resistance, 
growth, and biomass development. MeMYB transcription 
factors were differentially expressed in leaves upon exposure 
to cold and drought stress and thus could be important for 
signal transduction of abiotic stress responses (Ruan et al. 
2017; Wang et al. 2021a, b). However, more experiments are 
needed to re-confirm these findings.

ABA, a stress hormone, plays a vital role in controlling 
the leaf development rate to reduce water losses. ABA accu-
mulation is a part of the regulatory system to cope with 
water deficit (Alves and Setter 2000). ABA restricted sto-
matal activity, cell growth cycle and division, shoot and root 
growth, and leaf area growth to manage limited water avail-
ability under water stress (Alves and Setter 2004; Duque 
and Setter 2013; Felemban et al. 2019). Under water stress, 
young and mature leaves accumulate ABA. Strikingly, 
young leaves doubled the ABA content on a leaf area basis 
and always had higher ABA concentrations than mature 
leaves (Alves and Setter 2004; Duque and Setter 2013) 
because of their lesser metabolic breakdown capacity and 
translocation of ABA from mature leaves (Alves and Set-
ter 2004). In addition to ABA, ethylene accumulation also 
increased due to drought stress, leading to the senescence of 
older leaves (Liao et al. 2016; Ogaddee and Girdthai 2019). 
Over a period of time, ABA has been referred to as principal 
drought-responsive hormone, but there are several drought-
responsive hormones, namely, ethylene, jasmonic acid, and 
salicylic acid whose role under drought in cassava remained 
neglected.

5 � Molecular Responses

Deciphering the molecular drought responses is the essen-
tial component for designing a breeding program to develop 
drought-tolerant crop species. Drought response in cas-
sava involves the complex multi-faceted mechanisms with 
upregulation or downregulation of multiple genes and pro-
teins (Muiruri et al. 2021). Upregulation of ABA-D genes 
and the downregulation of a large number of genes were 
observed during post-stress withdrawal. ABA-D genes 
regulate stress-related responses by mediating stomatal 
activity and ABA accumulation in cassava leaves (Orek 
et al. 2020). In addition to this, water stress induced ABA 
biosynthesis genes (NCED and ABA1) and ABA signal-
ing elements (PP2C, SnRK2, and ABF) in vascular cells of 
cassava leaves. Gene expression pattern analysis revealed 
that the leaf vascular bundle responded more actively than 
mesophyll cells (Wang et al. 2021a, b). Ruan et al. (2018) 

identified 18 cassava-specific CC-type GRXs across the 
cassava genome, of whichMeGRXC3, C4, C7, C14, C15, 
and C18were involved in ABA signaling. Recently, Ruan 
et al. (2022) revealed that overexpression ofMeGRXC3, a 
cassava-specific CC-type glutaredoxin essential for redox 
homeostasis and ROS signaling, induced stress‑related 
transcription factor genes in Arabidopsis. Ren et al. (2017) 
employed bioinformatics approaches to identify and charac-
terize candidateManihot esculenta ethylene receptor genes 
and transcription factor genes. The highest and the lowest 
expression of these genes was in the leaf and tuberous roots, 
respectively, subjected to drought stress through the ethylene 
signaling pathway.

Shang et al. (2021) elucidated the tissue-specific SOD, 
CAT​, and APX gene expression consequent to osmotic 
stress, postharvest physiological deterioration (PPD) of stor-
age roots, ABA, and Xanthomonas axonopodis infection. 
Seven SODs, 6 CATs, and 6 APX genes were identified in 
this research, of which SODsshowed high expression lev-
els. Long non-coding RNAs (lncRNAs), important drought 
response regulators, were reported in autotetraploid cassava 
which conferred drought tolerance by increasing the sto-
matal density (Li et al. 2017b; Xiao et al. 2019). Li et al. 
(2017b) identified 318 long non-coding RNAs associated 
with biosynthesis of secondary metabolite, transduction 
of hormone signals, and sucrose metabolism in cassava. 
Yu et al. (2016) isolated stress-inducible homologous cas-
sava plasma membrane gene,MePMP3-2, for the first time 
from cassava. The expression of this gene was upregulated 
under NaCl and PEG-mediated water stress suggesting its 
role in triggering stress responses. According to Yan et al. 
(2021), transcription factorMeRAV5 interacts physically 
with MePOD (peroxidase) and MeCAD15(lignin-related 
cinnamyl alcohol dehydrogenase 15), to govern hydrogen 
peroxide and lignin accumulation, respectively, to enhance 
drought resistance. Astonishingly, this pathway was ABA 
independent as it had no significant effect on ABA content 
of the leaves. Recently, genetic mechanism and genomics 
research focusing on drought tolerance is reviewed in detail 
by Muiruri et al. (2021).

5.1 � GWAS Approaches for Identifying Breeding 
Targets

Cassava hybridization is challenging due to its long-life 
cycle (Bull et al. 2017), asynchronized flowering and ste-
rility or non-flowering (Pineda et al. 2020), and polygenic 
nature of abiotic stress tolerance (Koundinya and More 
2021). Marker-assisted selection (MAS) and quantita-
tive trait loci (QTL) have been used to analyze genetic 
linkage maps of cassava for drought tolerance (Setter and 
Fregene 2007; Turyagyenda et al. 2013a, b). For exam-
ple, the KASPar SNP genetic map was used to explore 
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productivity-associated traits in cassava exposed to moderate 
drought stress in Africa using 505 polymorphic SNP mark-
ers distributed across 21 linkage groups, with 27 QTL identi-
fied for 11 productivity traits from 267 F1progeny (Ewa et al. 
2021). The QTLsc3loc84.0, c6loc0.0, and c7loc13.0 were 
associated with stable productivity under moderate stress. 
However, according to Jannink et al. (2010), MAS may 
not improve polygenic traits as it ignores genes with minor 
effects when selecting quantitative traits such as drought 
tolerance. Genome-wide association studies (GWAS) can 
better analyze genomic regions associated with water deficit 
using genome-wide marker data. In a GWAS, Feng et al. 
(2019) observed that the abscisic acid (ABA)-responsive 
element (ABRE)-binding factors (ABFs) gene regulated the 
expression of target genes under drought stress by binding to 
ABRE (abscisic-acid-response element). Manihot esculenta 
ABFs (MeABFs) regulated the expression of Manihot escu-
lenta betaine aldehyde dehydrogenase (MeBADHs) genes 
by binding the MeBADH1 promoter to modulate the accu-
mulation of glycine betaine (GB) in cassava leaves to cope 
against drought stress. dos Santos Silva et al. (2021) identi-
fied 62 single nucleotide polymorphisms (SNPs) across 18 
cassava chromosomes associated with drought-responsive-
tolerance protein synthesis, including APETALA 2 domain 
(AP2), photosystem II oxygen-evolving enhancer protein, 
PR5-like receptor kinase-related, beta-fructofuranosidase/
saccharase, leucine zipper, and bZIP transcription factors. 
Furthermore, numerous transcription factors associated with 
abiotic stresses identified in cassava, such as filamentous 
temperature-sensitive protein Z (Tubulin/FtsZ) and Mani-
hot esculenta Crantz, 23 tubulin genes (MeTubulins) having 
important roles in IAA and GA3stress-induced responses 
(Li et al. 2021). GWAS is one of the feasible approaches for 
rapid identification of new/target genes and demands devel-
opment of high-throughput phenotyping tool for GWAS in 
cassava to identify novel genes conferring drought tolerance.

5.2 � Key genes for Transgenic Approaches

Molecular characterization of drought-responsive and toler-
ant genes is needed to improve drought tolerance in cassava. 
Researchers are keen to develop transgenic cassava plants with 
greater drought tolerance. Possible targets include the genes 
underlying the major QTL discussed previously, but other 
genes can also be considered. Cassava clone TMS 60444 was 
transformed with isopentenyl transferase (ipt) gene conferring 
drought tolerance via enhanced cytokinin production under 
drought (Zhang et al. 2010). Turyagenda et al. (2013) iden-
tified potential drought-tolerant candidate genes to develop 
transgenic cassava regulating oxidative stress by moderating 
reactive oxygen species (MeMSD and MeALDH) and osmotic 
adjustment (MeZFP and MeRD28). Application of PEG 
and ABA treatments significantly induced the expression of 

MeDREB1A, responsible for enhanced abiotic stress tolerance 
in transgenic Arabidopsisand cassava plants (An et al. 2017). 
Expression of theaquaporin (AQP) gene conferring drought 
tolerance has been characterized in cassava (Putpeerawit et al. 
2017; Wahyuni et al. 2020). Wahyuni et al. (2020) observed 
differential expression of theAQP gene in three cassava varie-
ties subjected to drought stress. Genome-wide analysis of the 
aquaporin gene family in cassava revealed the availability of 
many aquaporin isoforms. Expression analysis of the MeAQPs 
gene family under water stress confirmed the upregulation of 
MePIP2-1 and MePIP2-10. AQPgene enhanced drought tol-
erance through AQ PIP2-mediated greater water permeabili-
ties in cellular membranes, influencing water efflux in guard 
cells to regulate stomatal activities (Putpeerawit et al. 2017). 
A recent study identified a novel gene,lncRNA, DROUGHT-
INDUCED INTERGENIC lncRNA (DIR), enhancing proline 
accumulation and drought tolerance in transgenic cassava 
(Dong et al. 2022). In another study,MeHSP90.9 promoted 
the transcriptional activation of MeWRKY20 associated with 
ABA biosynthesis and the activation of MeCatalase1, confer-
ring drought tolerance in cassava (Wei et al. 2020). Accord-
ing to Xu et al. (2013), transgenic cassava cultivars with 
increased expression of cytosolicMeCu/ZnSoD and peroxiso-
mal MeCat1had greater drought tolerance than non-transgenic 
plants due to increased water content, proline content, super-
oxide dismutase, and catalase. Ethylene response factor family 
genes are involved in abiotic stress tolerance, inducing ethyl-
ene-mediated responses, and have been identified and charac-
terized in cassava (Fan et al. 2016). Drought-stressed cassava 
had upregulated expression of TCP transcription factors (Lei 
et al. 2017), mitogen-activated protein kinase kinase kinases 
(MAPKKKs) genes (Ye et al. 2017), and the late embryogen-
esis abundant protein family (Wu et al. 2018), instrumental 
in stress responses through the ABA signaling pathway. In 
addition, calcium (Ca2+) sensors such as calmodulins (CaMs), 
calmodulin-like proteins (CMLs), and calcineurin B-like pro-
teins (CBLs) are crucial for calcium-based abiotic stress sens-
ing (Wei et al. 2018), and KT/HAK/KUP family genes crucial 
for potassium ion (K+) transport during stress (Ou et al. 2018) 
have been identified in cassava and could be used in breed-
ing programs. Furthermore, Li et al. (2022) recently reviewed 
drought- and cold-responsive and tolerance genes in cassava. 
A summary of selected genomic studies on drought tolerance 
in cassava is presented in Table1.

6 � Storage Root Quality

6.1 � Physicochemical Properties

Cassava storage roots are a huge reservoir of starchy car-
bohydrates. In its original or modified form, starch is used 
in various industries due to its functional and chemical 
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properties (Jyothi and Sajeev 2021). Starch accumulation 
in storage root initiates 4–6 weeks after planting (Cock 
1984; El-Sharkawy 2004) and continues even when the 
root growth rate has declined until the harvest (Sriroth et al. 
2001). Though the accumulation capacity of roots depends 
on the inherent varietal behavior, the reduced starch yield 
and quality are the likely consequence of water stress (Con-
nor et al. 1981; Santisopasri et al. 2001). After prolonged 
water stress, water availability restores plant growth and 
starch synthesis (regardless of the stage of water stress, 
i.e., early/mid or terminal stress), but the effect on starch 
quality is compromised and cannot compare to the starch 
quality of plants supplemented with sufficient irrigation 
(Santisopasri et al. 2001; Sriroth et al. 2001). Starch physi-
ochemical properties viz., hydration, gelatinization, and 
peak viscosity, were altered significantly under different 
water regimes (Teerawanichpan et al. 2008). Starch gran-
ules extracted from roots during early growth under normal 
moisture conditions had greater swelling capacity than those 
extracted from plants under moisture stress, which might 
be due to the moisture deficit significantly decreasing the 
granule size (Teerawanichpan et al. 2008) and influenced the 
paste viscosity with increased water absorption. Water stress 
had minimal influence on amylose: amylopectin contents 
(Defloor et al. 1998; Janket et al. 2020), though starch con-
tent (%) remained significantly lower in the plants exposed 
to water stress (Santisopasri et al. 2001). This reduction 
may help support aboveground growth by remobilization of 
starch under limited photosynthesis during water stress (Set-
ter and Fregene 2007). Cassava starch grown under initial 
moisture stress has a considerably higher pasting tempera-
ture than cassava starch cultivated under no first moisture 
stress. In comparison, the peak viscosity of cassava starch 
extracted under early water stress was substantially lower 
than that extracted under normal conditions (Santisopasri 
et al. 2001). Water availability significantly changes the 
chloroplast structures. Chloroplasts from droughted plants 
were round in shape and further swollen with the progres-
sive stress accumulating higher quantities of starch granules. 
On the other hand, chloroplast determined from the control 
plants was typically fusiform. Formation of higher number 
of starch granules might help plant to generate extra energy 
to combat drought (Chang et al. 2019).

The effect of drought on the physiochemical properties 
of cassava starch is inevitable (Santisopasri et al. 2001). 
Industrial application of cassava starch is predominantly 
reliant upon quality (Odeku 2013). As the economy of 
many countries (West and Central Africa, China, Thailand, 
Brazil, and India) revolves around cassava starch, unde-
sired changes in yield and quality will lead to reduction in 
farm income. Therefore, additional research is needed to 
determine the effect of water availability on the functional, 
physiochemical, and structural features of starch.

6.2 � Anti‑nutritional Factors

Cassava is one of over 2000 plant species, including fruits 
and vegetables, which contain cyanogenic glycosides (CG) 
that release cyanide upon hydrolysis as a defense mechanism 
against herbivores (Møller 2010). It interacts with stress hor-
mones and initiates actions, allowing plants to become used 
to biotic and abiotic challenges (Siegien and Bogatek 2006). 
Moreover, CG served as a storage house for nitrogen, which 
could be used in nitrogen assimilation under moisture stress 
to support the nitrogen-demanding sites to sustain growth 
(Mtunguja et al. 2016). Growing conditions, location, vari-
etal differences, edaphic stresses, nutrient supply, and water 
availability are the crucial determinants of hydrogen cyanide 
(HCN) production in cassava leaves and storage roots (Burns 
et al. 2012; Imakumbili et al. 2019). Under water stress, 
HCN accumulation in leaves increased by 1.8–2.7 times 
as compared to leaves under no stress (Imakumbili 2019; 
Hular-Bograd et al. 2011) and increased with drought inten-
sity (Santisopasri et al. 2001). The HCN content in dried 
storage roots of droughted plants was twofold higher than 
in control plants (Vandegeer et al. 2013). Higher HCN con-
tents in roots could be due to the mobilization of resources, 
including HCN, from growing young leaves and tuberous 
roots (Vandegeer et al. 2013). According to the hypothesis 
of Vedengeer et al. (2013), if HCN is constitutive in nature, 
then accumulation of HCN as a result of water-stress will 
persist even after availability of sufficient water. Contrary 
to this hypothesis, if accumulating HCN is labile in nature, 
then glucosides synthesized under drought will be of same 
quantity as that of non-droughted plants (Møller 2010; Van-
degeer et al. 2013). Quantification of HCN accumulation in 
leaves and storage roots under drought is extremely impor-
tant and cannot be neglected while developing drought-tol-
erant cassava variety. The morphological, physiological, and 
molecular responses of cassava subjected to drought stress 
and their effects are summarized in Figs. 4 and 5.

7 � Water Stress Adaptation Strategies

Cassava exhibited several strategies ranging from mor-
phophysiological-biochemical responses to changes at the 
molecular level to mitigate drought-related consequences 
(Table 2). These strategies enable the plant to escape the 
drought by modifying life cycle/phenology or by regulat-
ing physiological functions. Strategies like stomata closure, 
shedding leaves, and regulating root system architecture 
(Muiruri et al. 2021) facilitate the reduction in photosyn-
thetic leaf area, transpiration losses, and optimize water 
use (Okogbenin et al. 2013; Wongnoi et al. 2020). These 
changes correspond with impaired mesophyll conductance 
significantly hampering photosynthetic efficiency to manage 
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drought episodes (El-Sharkawy 2004). The leaves became 
smaller with the progression of drought coupled with leaf 
rolling and change in leaf angle to prevent light intercep-
tion and photooxidative damage (Calatayud et al. 2000). 
Along with leaves, stem length and thickness are greatly 
reduced to balance canopy growth and storage root develop-
ment under drought. Balanced above-belowground growth 
under drought is achieved by modulating utilization of starch 

reserves. Non-structural carbohydrate reserves from leaves 
and stem are likely to be diverted to support the storage root 
growth under drought. It can be a potential strategy against 
drought stress (Duque and Setter 2013).

The employment of antioxidant system induces drought 
tolerance in cassava by scavenging harmful ROS generated 
under drought condition (Xu et al. 2013; Xu et al. 2013; Liao 
et al. 2016). Drought-tolerant cultivars tend to have a lower 

Fig. 4   Morphological and 
physiological responses of cas-
sava subjected to drought stress 
and their effect on storage root 
and processing quality

Fig. 5   Physiological and biochemical responses of cassava subjected to drought
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oxidative response than drought-susceptible cultivars (Zhu 
et al. 2020). According to Nuwamanya et al. (2014), cul-
tivars with enhanced nitrogen metabolism enabled higher 
photosynthetic efficiency under water tress. Substantial 
quantities of osmolytes and biochemical factors are accu-
mulated to maintain the physiology of plants. Proline and 
glycine-betaine accumulation has been found in plants after 
stress episodes (Ren et al. 2017; Wang et al. 2021a, b). Glu-
tathione and ascorbic acid accumulation act as a protect-
ant against water-stress–induced oxidative stress. Cultivars 
with higher mineral, osmoprotectant, osmolyte, and ascor-
bic acid contents had a higher degree of drought tolerance 

(Okogbenin et al. 2013; Zhu et al. 2020). Higher quantities 
of superoxide dismutase, peroxidase, catalase, ascorbate per-
oxidase, glutathione reductase, and ascorbic acid are part of 
the plant-defensive system (Zhu et al. 2020). At the molec-
ular-genomic level, the genes, transcriptome, and enzymes 
expressed in cassava under drought conditions have been 
extensively studied and are covered in the preceding section. 
According to Zhao et al. (2015), boosting sucrose synthase 
substrate and aquaporin proteins is another technique for 
minimizing damage and enhancing protein stability, anti-
oxidant activity, and secondary metabolism during times of 
water stress condition.

Table 2   An overview of multi-level drought adaptation strategies of cassava

Sl. no. Traits Adaptation strategy Reference

1. Leaf • Change in leaf angle
• Leaf wilting/drooping
• Leaf shedding
• Higher leaf retention
• Higher leaf life
• Carbohydrate reserve in leaves during drought

Calatayud et al. (2000), Lenis et al. (2006), El-
Sharkawy (2004), De Souza et al. (2017), Shan et al. 
(2018), More et al. (2020)

2. Stem • Higher pith density
• Higher pith biomass
• Higher carbohydrate reserve during drought

-
-
Duque and Setter (2013)

3. Canopy • High vigor index
• Branching type canopy
• Higher leaf area index

El-Sharkawy (2012), El-Sharkawy (2016), More et al. 
(2020)

4. Photosynthetic efficiency • Higher net photosynthetic rate
• Stomatal closure
• Increased PEPC activity
• Higher carotenoid synthesis

El-Sharkawy (2004), El-Sharkawy (2007), El-
Sharkawy (2012), El-Sharkawy (2016), Pereira et al. 
(2018), Shan et al. (2018)

5. Biochemical • Osmotic adjustment
• Up-regulation of chlorophyll a/b binding proteins
• Regulation of nitrogen metabolism
• Employment of antioxidant system
• Increment in PS-I and PS-II subunits (CP43 and R 

subunits)
• Increased peptidyl-prolyl cis-trans isomerase 

activity
• Enhanced arginine biosynthesis and 20S-19S 

proteasome
• Up-regulation of drought-related proteins

Helal et al. (2013), Nuwamanya et al. (2014), 
Shan et al. (2018), Zhu et al. (2020), Wang et al. 
(2021a, b), Li et al. (2021)

6. Molecular • Regulation of OPEN STOMATA 1 (OST1), protein 
phosphatase 2C and outer membrane tryptophan-
rich sensory protein (TSPO)

• Heat shock proteins
• Enhanced Arginine biosynthesis
• Enhanced FtsZ2-1 and MeSPL9 genes expression

Utsumi et al. (2019), Wang et al. (2021a, b), Li et al. 
(2021)

7. Hormonal regulation • Accumulation of ABA and ethylene Duque and Setter (2013), Liao et al. (2016), Ogaddee 
and Girdthai (2019)

8. Belowground
Portion

• Higher root numbers
• Higher axle length
• Higher lateral root growth
• Narrow root angle
• Early bulking
• Higher HI and sink strength
• Resource remobilization particularly starch
• Extensive root system

Izumi et al. (1999), Jarvis et al. (2012), Rogers and 
Benfey (2015), Turyagyenda et al. (2013a), Adu 
et al. (2020)
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Plants under drought stress develop long deep roots as an 
escape mechanism to evade water stress (Okogbenin et al. 
2013). A steeper root angle is associated with drought toler-
ance in various agronomic crops, including wheat (Comas 
et al. 2013), maize (Lynch 2013), and rice (Saengwilai et al. 
2018). However, in cassava, wide root angle may not help 
in drought tolerance possibly due to the very shallow root 
system and complex storage root arrangements (Kengkanna 
et al. 2019). Accumulation of ABA and ethylene further 
increased the sustainability of plants under drought (Alves 
and Setter 2000; Duque and Setter 2013; Liao et al. 2016; 
Ogaddee and Girdthai 2019). Non-photochemical dissipa-
tion of energy mediated by enhanced carotenoid synthesis 
and enhanced PS-I and PS-II subunits (CP43 and R subunits) 
can be used as a protective mechanism against photooxida-
tion in cassava (Pereira et al. 2018; Shan et al. 2018). Under-
standing the precise molecular, biochemical, and physio-
logical level mechanism of drought tolerance is pivotal for 
enhancing storage root yield as the predicted climate change 
is likely to aggravate the drought intensity.

8 � Key Traits for Enduring Drought Tolerance 
in Cassava

Selection based on highly heritable morphological, molec-
ular, and physiological traits contributes directly to storage 
root yield under drought stress. Rapid storage root develop-
ment followed by early bulking has been identified as one 
of the most important traits to enhance drought tolerance. 
This trait can be an effective drought avoidance strategy 
during early water stress period or intermittent water stress 
episode. Early bulking variety could have the upper hand 
over mid or late bulking varieties as late or mid bulking 
variety may not accumulate desired quantities of biomass 
under water limiting condition. Moreover, late bulking 
varieties might increase the cropping period beyond har-
vesting (12 months after planting in general) with serious 
implications in terms of storage root quality. Breeding cas-
sava cultivars with highly regulated root system architec-
ture with higher lateral branching density could result into 
drought tolerant cultivar. Additional traits like higher root 
length and number, dry biomass, higher axle length, and 
density of upper nodal roots can further intensify drought 
tolerance. Screening cassava genotypes for photosynthetic 
efficiency is easy and widely followed. Maintenance of rea-
sonable photosynthetic rate under drought is essential to 
sustain higher productivity. It is suggested to breed varie-
ties with a lower stomatal density on the abaxial surface 
of hypostomatous leaves in wet/humid zones or in ecosys-
tems with short intermittent water drought episodes. On 

the other hand, selecting cultivars with a higher stomatal 
density on the abaxial surface of hypostomatous leaves 
would optimize water use efficiency and sustain productiv-
ity under prolonged drought period in subhumid/semi-arid 
ecosystems.

Selecting/development of medium or short canopy geno-
types (one with developing extra branches late) with opti-
mum LAI, HI, and PI is one of the strategies for developing 
drought-tolerant variety as storage root weight is positively 
correlated with leaf number, and cultivars that retained 
many leaves were high yielders. Increased leaf life under 
water stress is an important drought-tolerant trait. An evalu-
ation of modern cassava cultivars based on leaf life, leaf 
turnover rate, leaf retention or recovery index interception 
efficiency of photosynthetically active radiation (PAR), and 
efficiency of conversion of that intercepted PAR have major 
opportunities for genetic improvement in water-deficient 
environments as it will help in sustaining optimum LAI 
throughout the growing season under stress. Furthermore, 
integrating anatomical plastic traits viz. increased epidermis 
thickness and blade adaxial face, increased palisade and 
spongy parenchyma thickness, and decreased xylem vul-
nerability would give additional benefit to drought-tolerant 
cultivars.

In the view of reduced photosynthesis under drought, 
the storage root bulking process becomes increasingly reli-
ant of carbohydrate reserve in stem and leaves. Therefore, 
improving drought tolerance may involve selection of vari-
eties based on regulation of carbohydrate reserves and its 
judicious use during drought episodes for canopy and stor-
age root development. Additionally, increased pith density 
and pith biomass could serve as potential drought toler-
ance traits to develop drought-tolerant cultivars. The num-
ber of storage roots and storage root biomass are potential 
indicators of drought tolerance in cassava and should be 
incorporated into breeding programs. Cassava’s capac-
ity to cope against drought is associated with accumula-
tion of osmolytes to regulate osmotic adjustment. These 
traits have not been explored in detail in cassava. Yu et al. 
(2016) developed transgenic rice plants with constitutively 
expressing cassava plasma membrane–specificMePMP3-2 
gene, conferring drought tolerance by upregulating stress-
related genes OsProT and OsP5CS, enhanced proline con-
tent and lowered malondialdehyde (MDA) content. There 
is great scope for developing drought-tolerant transgenic 
cassava with increased MePMP3-2 gene expression. 
Integrating multiple traits into a comprehensive breed-
ing program using advanced genomic and phenotyping 
tools could accelerate the development of high-yielding 
drought-tolerant cassava varieties with increased genetic 
gain.
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9 � Conclusion

Drought limited cassava plant’s productivity, by reducing leaf 
area, photosynthetic efficiency, biochemical parameters and 
quality. Phenotypic plastic responses instrumental in enhanc-
ing drought tolerance of cassava include abscission of old 
leaves, continued but limited photosynthetic area, highly regu-
lated stomatal activity and starch reserve utilization, increased 
proline content, and modified sink-source relations. Screening 
and phenotyping drought adaptation traits during early stage 
would expedite the development of drought-tolerant varieties. 
While new omics-driven high-throughput techniques can be 
used to identify new genes linked with drought resistance, the 
immediate goal is to confirm the QTL and genes that have 
already been identified and include them in the breeding pro-
gram. Starch exhibited vast portfolio of changes in its yield, 
quality, hydration, and functional properties. However, this 
aspect demands urgent intervention as very little informa-
tion is available on changes in the physical, mechanical, and 
processing qualities of cassava starch under drought stress. In 
addition, these parameters should be integrated into breeding 
program to ensure nutritional benefits and its suitability for 
industrial application in the future. Furthermore, developing 
high-yielding drought-tolerant cassava cultivars with high 
starch content and low cyanogenic glucoside potential will be 
challenging for breeders as consumption of high HCN is asso-
ciated with several diseases and disorders in humans. There 
remains a paucity of information on rhizospheric changes, viz., 
nutrient imbalance, microbial populations, and diversity asso-
ciated with drought and their implications for the aboveground 
growth of cassava. Integrating multi-level adaptive traits and 
eco-physiological approaches will be essential to sustain the 
productivity and quality of cassava under drought stress.
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