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Abstract
Mechanisms of soil organic carbon (SOC)stabilization has received much focus recently due to its relevance incontrolling the 
global carbon (C) cycle. Clay minerals are knownto stabilize SOC through mechanisms such as, ligand exchange, polyvalent 
cationbridging, electrostatic attraction, H-bonding, and van der Waals forces. Most studies focused on clayorganic interac-
tions derived from geological deposits. However, the effect ofpedogenic clay on SOC stability is still lacking especially 
in tropicalconditions like India. Therefore,the impact of clay with different mineralogy such as smectite, 2:1interstratified 
minerals, illite, kaolinite on soil C mineralization, and labileC fractions in four distinct soils under natural conditions was 
evaluated. The results indicated that the cumulative Cmineralization (CO2-Ccum) was the highest in Mollisol (0.97 gC kg-1) 
and Vertisol (0.96g C kg-1), which was dominatedby kaolinite+illite+chlorite–interstratified minerals and smectite/2:1 
interstratifiedminerals, respectively followed by Alfisol and Inceptisol, which was dominatedby kaolinite and illite. The 
percentage of SOC loss showed opposite trend wherethe highest SOC loss was accounted in Inceptisol (10.1%) and Alfisol 
(9.02%) whereasMollisol and Vertisol lost lowest amount of SOC. Labile C fractions anddehydrogenase activity were sig-
nificantly higher in Mollisol and Vertisol over Alfisoland Inceptisol. Specific surface area (SSA) (r = 0.65, P ≤ 0.05) and 
cationexchange capacity (CEC) (r = 0.62, P ≤ 0.05) positively correlated with Cmineralization and labile C fractions and 
negatively correlated with percentageSOC loss. Principal component analysis confirmed that varying mineralogy signifi-
cantlyinfluenced the sequestration of labile C in soil under natural conditions. This study highlighted the positive influence 
of 2:1expanding/limited expanding clay mineralogy in sequestering and stabilizinglabile C in soil. 
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Abbreviations
C	� Carbon
OC	� Organic carbon
SOC	� Soil organic carbon
OM	� Organic matter
Pg	� Peta gram
DOC	� Dissolved organic carbon
SSA	� Specific surface area
CEC	� Cation exchange capacity
MBC	� Microbial biomass carbon
DHA	� Dehydrogenase activity
XRD	� X-ray diffraction
WBC	� Walkley black carbon

APD	� Automated powder diffractometer
POM	� Particulate organic matter
COM	� Complex organic matter
PCA	� Principal component analysis
HIV	� Hydroxy interlayered vermiculite
CO2-Ccum	� Cumulative carbon mineralization
EGME	� Ethylene glycol monoethyl ether

1  Introduction

In terrestrial ecosystem, protection of soil organic carbon 
(SOC) plays a central role in carbon (C) sequestration. 
Understanding the process of SOC turnover can provide 
insights on how to tackle global warming in this changing 
climate. The underlying mechanisms governing the stor-
age and protection of SOC in soil are influenced by natural 

 *	 Abinash Das 
	 abinash.iari@gmail.com

Extended author information available on the last page of the article

/ Published online: 21 December 2022

Journal of Soil Science and Plant Nutrition (2023) 23:1003–1018

http://crossmark.crossref.org/dialog/?doi=10.1007/s42729-022-01099-x&domain=pdf
http://orcid.org/0000-0001-8633-7963


1 3

as well as management-induced changes (Dhaliwal et al. 
2020; Piazza et al. 2020). In terrestrial system, the soil 
stores around 1550 Pg of C which is roughly two times its 
concentration in atmosphere i.e., 780 Pg (Lal 2008), 80% 
of which is actively involved in global C cycle (Singh et al. 
2017). The organic C (OC) present in soil ranges from eas-
ily decomposable simple carbohydrates to complex aro-
matic hydrocarbons. Based on their mean residence period 
and turnover rates, the soil C could be defined as labile and 
recalcitrant. Mineralization of stored SOC with time is a 
function of prevailing climate (Tisdall 1996), soil tempera-
ture and moisture (Singh et al. 2017), soil texture (Baldock 
2007), organic residue (Roychand and Marschner 2013), 
composition and strength of organo-mineral associations 
(Sarkar et al. 2018; Singh et al. 2016), and land use patterns 
(Hassink 1994). Among these factors, the organo-mineral 
associations are thought to be the strongest and most sig-
nificant (Singh et al. 2018).

SOC loss via heterotrophic respiration is one of the major 
contributors for increasing the atmospheric CO2 concentra-
tion (Lal 2008). Even though mineralization is necessary for 
nutrient cycling in soil, which provides nutrition to crops, 
uncontrolled mineralization is causing global temperature 
to rise at an alarming rate. Much research has previously 
focused on how environmental factors, such as temperature 
and moisture affect heterotrophic soil respiration (Dan et al. 
2016; Suseela et al. 2012; Larionova et al. 2017) but mineral 
composition also plays an important role in soil C stabiliza-
tion. It is assumed that coarse textured soil may have high 
susceptibility to soil C respiration than their fine textured 
counterpart (Conant et al. 2008; Lal 2007; Nguyen and 
Marschner 2014). Clay minerals in soils offer an essential 
restriction to OC mineralization based on their composi-
tion, content (Feng et al. 2005; Kahle et al. 2003), and other 
surface properties (Singh et al. 2018). With difference in 
clay mineralogy the labile C fractions like dissolved organic 
carbon (DOC) showed different tenacity and binding (Singh 
et al. 2016). Clay minerals having higher specific surface 
areas (SSA) and cation exchange capacities (CEC) and iron/
aluminium (Fe/Al) oxides are reported to protect C in soil 
by reducing C mineralization (Singh et al. 2018). Soils with 
a similar texture but a higher concentration of smectitic and 
allophanic clays retained more C than soils with kaolinite 
or vermiculite minerals (Saggar et al. 1996, 1999). The 
fundamental difference in mineralogical composition may 
influence how these minerals behave in different natural 
environment in terms of soil C retention. Smectite minerals 
are expanding in nature having 2:1 layer structure, a higher 
CEC, SSA, and permanent negative charge whereas kao-
linitic clays are non-expanding having 1:1 layer structure 
with lower CEC, SSA, and pH-dependant charge. In terms 
of surface properties, illitic clays are intermediate between 

smectite and kaolinite with non/limited expansion capa-
bilities. Apart from these, the presence of sesquioxides in 
soil clay fractions has a significant impact on clay surface 
properties due to their higher SSA (Saidy et al. 2013; Singh 
et al. 2018). Mechanism through which minerals interact 
with organic matter (OM) can also be different. Ligand 
exchange and cation bridging can result in strong bonding 
between clay minerals and OC moieties whereas hydrogen 
bonding, van der Waals forces and proton interactions could 
also establish some weak interactions (Rashad et al. 2010; 
Singh et al. 2018).

Despite many previous studies focused on how clay 
organic interaction influences the retention of OC in soils, 
they were based on refined clay minerals from geological 
deposits (Feng et al. 2005; Rashad et al. 2010; Saidy et al. 
2013). Pedogenic clays, on the other hand, behave quite 
differently. Clay behavior may differ dynamically under 
the influence of natural environment as opposed to a con-
trolled scenario. They undergo intense weathering process, 
changing their particle size. Having OM or sesquioxides 
coatings may influence their surface properties like SSA 
and CEC drastically (Churchman and Lowe 2012). The 
presence of cations in natural and processed clay environ-
ments may differ significantly which might influence their 
interactions. Large areas of land in India are covered under 
the soil orders namely Vertisol, Mollisol, Inceptisol and 
Alfisol. Under tropical conditions, these soils undergo con-
tinuous hydrothermal changes resulting in widely differ-
ent clay mineralogy and varying cementing agent contents 
such as OM and sesquioxides which ultimately affect the 
SOC retention and mineralization (Chatterjee et al. 2013). 
As SOC is approximately three times that of atmospheric 
and terrestrial pools (Schmidt et al. 2011), even minor 
changes in soil C stock will result in a significant change 
in atmospheric C concentration. Temperature and climate 
affect SOC mineralization on macro scale; however, on 
microscale, the influence of mineralogy cannot be over-
looked. Barré et al. (2014) previously reviewed the impact 
of phyllosilicates on SOC stabilization, but there is little 
information about the stabilization potential of other min-
erals. Furthermore, intensive crop management gradually 
alters clay characteristics, affecting soil C storage capacity 
(Das et al. 2019a, b), so assessing clays of natural origin 
can help us evaluate them from a common reference. Keep-
ing this in view, this study was conducted to know the 
effect of varying clay mineralogy on SOC dynamics in four 
different natural soils with the understanding that natu-
ral pedogenic clays will behave differently than processed 
clays. It was conceived with the following objectives (i) 
to examine SOC mineralization as influenced by mineral-
ogy, (ii) to compare the effects of different clay mineral-
ogy on labile C fractions, and (iii) to establish relationship 
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between SOC mineralization and labile C fractions with 
different surface properties of clays like SSA, CEC, and 
clay content.

2 � Materials and Methods

2.1 � Soil Collection, Processing, and Determination 
of Initial Properties

Soil samples were collected from four different regions, 
each representing a different soil order according to the US 
soil taxonomy (Fig. 1). The soils collected from Jabalpur, 
Madhya Pradesh were formed under dry and sub-humid 
climate, belonged to Typic Haplusterts with clay texture 
and neutral reaction. This region experiences annual rain-
fall of 1386 mm with an average temperature of 25°C 
(Koppen climate classification, Csa) (Peel et al. 2007). 
Second soil sample was collected from Pantnagar, Uttara-
khand, that belonged to Aquic Hapludoll with silty loam 
texture having neutral reaction. Climatically, the area is 
sub-humid subtropical with hot humid summers and severe 
cold winters with an average annual rainfall measuring 
around 1383 mm and relative humidity of 90–95% dur-
ing the rainy season (Koppen climate classification, Cfa) 

(Peel et al. 2007). Soils of New Delhi belonged to Typic 
Ustocherpt with sandy loam texture having neutral reac-
tion, with average annual temperature of 29°C and rainfall 
of 790 mm. New Delhi has a semi-arid subtropical climate 
with hot dry summers and cool winters (Koppen climate 
classification, BSh) (Peel et al. 2007). Ranchi (Jharkhand) 
soils formed under sub-humid climate with severe hot, dry 
summer, and cool winter, belonged to Typic Haplustalf 
with clay loam texture and acidic reaction. It experiences 
average annual temperature of 24°C with average rainfall 
of 1450 mm (Koppen climate classification, Cwa) (Peel 
et al. 2007). In each location, soil samples were collected 
to a depth of 0−20 cm from five randomly selected spots 
under natural vegetation in 2018. One part of the freshly 
collected sample were pooled together and kept in in a 
refrigerator at 4°C for analysis of microbial biomass car-
bon (MBC), dehydrogenase activity (DHA), and C min-
eralization study whereas the other part was air dried, 
ground, mixed thoroughly, and passed through 2mm sieve 
to obtain a homogeneous composite sample through quar-
tering process for analysis of initial soil parameters, soil C, 
and its fractions. The texture analysis was done by modi-
fied dispersion and sedimentation method (Kettler et al. 
2001). Chemical attributes of soil, viz., pH and electrical 
conductivity (Page et al. 1982), easily oxidizable organic 

Fig. 1   Location map of soil sample collection from four different places across India
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C (WBC) (Walkley and Black 1934), available nitrogen 
(Subbiah and Asija 1956), available phosphorus (Bray and 
Kurtz 1945; Olsen et al. 1954), and available potassium 
(Page et al. 1982) were determined (Table 1).

2.2 � Clay Mineralogy and Surface Properties of Clays

As described in previous section, in each location soil sam-
ples from five randomly selected spots were pooled together, 
air dried and thoroughly mixed to study clay mineralogy. 
The clay sized particles (< 2 μm) of soil were separated 
by the procedure outlined by Jackson (1985). Extracted 
clays underwent four treatments, viz., (a) Mg-saturation 
and air drying, (b) Mg-saturation and glycerol solvation, 
(c) K-saturation and air drying, and (d) K-saturation fol-
lowed by heating at 550 °C and arranged basally for X-ray 
diffraction (XRD) analysis. The XRD plots of the basally 
oriented samples were obtained in a Phillips X-ray diffrac-
tometer (PW 1710 diffractometer control, PW 1729 X-ray 
generator) with automated powder diffractometer (APD) 
software using Ni-filtered Cu-Kα radiation (λ, 0.154184 nm) 
at a scanning speed of 1.5°2θ min−1. Semi-quantification of 
the clay minerals was done from the diffractograms of Mg-
saturated and glycerol-solvated samples by the “peak area 
measurement” options of the APD software as per Gjems 
(1967) and Datta et al. (2015) (Fig. 2). Clay minerals were 
identified and categorized based on the observations of ear-
lier researchers (Barré et al. 2008; Datta et al. 2015; Das 
et al. 2019a, b, 2022; Moore and Reynolds 1989). Peaks 
with C-axis spacing of ~1.8 nm correspond to smectite, one 
or more peaks observed adjacent to smectite peaks which 
might signify the presence of smectite interstratified with 
vermiculite, hydroxyl interlayer minerals (HIM), and other 
2:1 minerals (Das et al. 2019a, b, 2022) was broadly catego-
rized as 2:1 interstratified minerals. The presence of chlo-
rite in Mollisol, Inceptisol, and Vertisol was confirmed after 
heating the K saturated clays at 550 °C where only the peak 
with c-axis spacing ~1.4 nm was reinforced and categorized 

as chlorite and chlorite-interstratified minerals. Peaks with 
C-axis spacing of ~1.01 and ~0.72 nm correspond to illite 
and kaolinite, respectively. Some broad peaks adjacent to 
illite were considered as illite-interstratified minerals. SSA 
of clays isolated from soils were determined by ethylene 
glycol monoethyl ether (EGME) method (Carter et al. 1965) 
and CEC of isolated clays were determined by N-ammonium 
acetate (pH 7) method outlined by Jackson (1985).

2.3 � Carbon Mineralization Study

Carbon mineralization in the form of soil respiration was 
measured periodically by alkali trap method (Anderson 
1982). Fresh soils were preincubated at 25°C for 24 h prior 

Table 1   Details of initial soil 
parameters

Properties Vertisol, Jabalpur Mollisol, Pantnagar Inceptisol, Delhi Alfisol, Ranchi

Sand (%) 5.8 17.5 57.5 40
Silt (%) 35.8 61.1 23.5 32.4
Clay (%) 58.4 21.4 19 27.6
Texture Clay Silty loam Sandy loam Clay loam
pH 7.85 7.84 8.32 5.74
EC (dS m−1) 0.17 0.29 0.23 0.16
Organic C (g kg−1) 6.68 9.52 4.42 5.24
Available N (kg ha−1) 179 180 119 141
Available P (kg ha−1) 18.7 95.8 15.8 14.2
Available K (kg ha−1) 324 165 334 185
Soil classification Typic Haplusterts Aquic Hapludoll Typic Ustochrept Typic Haplustalf

Fig. 2   X-ray diffractograms of Mg-saturated and glycerol-solvated 
clay samples of different soils
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to incubation to acclimatize microbes to laboratory incu-
bation conditions. In brief, 20 g soil was placed in a 500 
mL mason glass jar and incubated at a constant temperature 
(25°C) and water content (60% of water holding capacity). C 
mineralization was measured using a set of 12 tightly capped 
mason jars containing four different soils with three replica-
tions. The moisture content of the soil in the jars was kept 
constant by measuring weight loss periodically and adding 
deionized water as needed. To trap CO2, 5 mL of 1 N sodium 
hydroxide (NaOH) solution were kept inside small vials (10 
mL, with no lids) within the jar. The CO2 trapped NaOH 
solutions were taken out of the jar at each sampling day 
and was back titrated with 0.5 N hydrochloric acid (HCl) 
in presence of barium chloride (BaCl2) using phenolphtha-
lein indicator. After 3, 7, 14, 21, and 28 days of incubation, 
small NaOH vials were removed and replaced with a fresh 
set of NaOH vials, and jars were returned to the incubator. 
The quantity of C mineralized at each sampling day was 
summed over 28-day incubation period to express as cumu-
lative CO2-C mineralization (CO2-Ccum).

C mineralization was computed by the following formula:
CO2- C mineralized (mg g−1 soil) = (B−S)×N×6

W
where B is 

the volume of HCl used in blank sample (mL), S is the vol-
ume of HCl used in soil sample (mL), N is the normality of 
HCl, and W is the weight of soil sample (g).

2.4 � Labile Carbon Fractions

2.4.1 � Soil Organic Carbon (SOC)

Total soil carbon (TC) was measured by CHNS analyser 
(Euro Vector make, EuroEA3000 model), while total OC or 
SOC was calculated by subtracting inorganic C (measured 
as per methods outlined by Snyder and Trofymow 1984) 
from TC.

2.4.2 � Microbial Biomass Carbon (MBC)

Soil MBC was estimated by the substrate induced respira-
tion method (Bailey et al. 2007) using a gas chromatograph 
(Make Agilent, Model GC-4890) and the following equation 
of Anderson and Domsch (1978):

where x = microbial biomass C (mg kg-1) and y = rate of 
CO2 evolution (mL CO2 kg-1 soil h-1)

2.4.3 � Dissolved Organic Carbon (DOC)

The DOC was extracted by the methods outlined by Jones 
and Willett (2006). Here, 5g of dry soil was shaken (200 
rpm) in a reciprocal shaker for 1 h with 25 mL ultra-pure 

x = 40.04y + 0.37

water and then centrifuged at 13,000 rpm for 30 min at 4°C. 
The supernatant was passed through a 0.45 µm glass fiber 
filter and the C content in the supernatant was estimated 
following the procedure given by Synder and Trofymow 
(1984).

2.4.4 � Potassium Permanganate Oxidizable Carbon 
(KMnO4‑C)

Active C oxidizable by KMnO4 was determined by modi-
fied Blair method as outlined by Weil et al. (2003). In this 
method, dilute and slightly alkaline KMnO4 reacted with 
the most readily oxidizable forms of soil C, converting Mn 
(VII) to Mn (II), and the absorbance was measured by a 
colorimeter at 550 nm. Oxidizable C was computed using 
following equation:

KMnO4 oxidizable C (mg kg-1) = [0.02mol/L − (a + b 
×absorbance)] × (9000mg C/mol) × (0.02 L solution/0.005 
kg soil).

where 0.02 mol/L is the initial solution concentration, a 
is the intercept and b is the slope of the standard curve, 9000 
is the mg C (0.75 mol) oxidized by 1 mol of MnO4 changing 
from (Mn7+→ Mn2+), 0.02 L is the volume of KMnO4 solu-
tion reacted, and 0.005 is the kg of soil used.

2.4.5 � Particulate Organic Matter Carbon (POM‑C)

The particulate organic matter (POM) was extracted from 
the soil following the procedure outlined by Cambardella 
and Elliott (1992) and C content in POM was determined by 
dry combustion method in a CHNS analyser (Euro Vector 
make, EuroEA3000 model).

2.4.6 � Complex Organic Matter Carbon (COM‑C)

The content of complexed organic matter carbon (COM-C) 
was determined from the difference between the SOC pool 
and the POM-C pool.

2.5 � Statistical Analysis

The data obtained from the above measured parameters 
were statistically analyzed by one-way analysis of variance 
(ANOVA). For statistical significance, the treatment means 
were differentiated following a posthoc Tukey’s test with 
honest significant difference (HSD) at 95% confidence value 
(p< 0.05) using the SPSS (version 16.0) software by taking 
clay mineralogy (soil orders) as a factor. Pearson’s correlation 
among the C fractions and clay parameters were performed 
using the “corr_coef” function and the correlation plot con-
structed using the “corr_plot” function of “metan” package 
(Olivoto and Lúcio 2020) in R studio. Principal component 
analysis (PCA) was done to find out the traits or parameters 
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explaining more variation in the system and the relationship 
of individual parameters with soil orders. PCA was per-
formed in R studio using packages “FactoMineR” (Lê et al. 
2008) and “factoextra” (Kassambara and Mundt 2017). All 
the figures were drawn using Microsoft excel (2016).

3 � Results

3.1 � Mineralogy of Different Soil Samples

The mineralogical composition of different soil samples 
(Table 2) showed that Vertisol contained smectite and 
2:1 interstratified minerals as major minerals constitut-
ing 25.4 and 41.5 percent (%), respectively. Overall, 67% 
of minerals present in Vertisol belonged to smectite/2:1 
interstratified minerals. Kaolinite dominated the mineral-
ogical composition (54.5%) in Mollisol but other miner-
als such as chlorite and chlorite-interstratified mineral, 
illite, illite-interstratified mineral, and smectite were 
also present with 16.1, 20.9, 6.89, and 1.61%, respec-
tively accounting for 45.5% of the total mineralogical 
composition. Inceptisol mineralogical make up showed 
the presence of illite rich interstratified minerals as the 
major fraction followed by kaolinite contributing 58.7 and 
35.2%, respectively. In Alfisol, kaolinite dominated the 
mineralogical make up having 76.9% followed by illite 
having 17.2%, respectively.

3.2 � Effect of Clay Mineralogy on Surface Properties 
of Different Clays Isolated from Soil Samples

SSA and CEC of soil clays showed significant variations among 
different clays (Table 3). Vertisol clays showed the highest SSA 
of 506 (m2 g-1 clay) followed by Mollisol, Inceptisol, and Alfi-
sol clays having 149, 50.9, and 38.2 (m2 g-1 clay), respectively. 
For CEC, a similar trend was followed where clays isolated from 
Vertisol showed significantly high amount of CEC i.e., 81.3 (m 
eq 100 g-1) whereas Alfisol clays showed the lowest CEC of 33 
(m eq 100 g-1). Clay content was found to be highest in Vertisol 
having 58.4% clay followed by Alfisol, Mollisol, and Inceptisol.

3.3 � Effect of Clay Mineralogy on SOC Mineralization

Carbon mineralization was found to be significantly affected 
by clay mineralogy. Respiration rates were invariably higher 
in Mollisol and Vertisol soils throughout the incubation 
period (Fig. 3). After 28 days of incubation, Mollisol and 
Vertisol showed CO2-Ccum of 0.97 and 0.96 g C kg-1, respec-
tively being statistically at par (Fig. 4a). Inceptisol showed 
the lowest CO2-Ccum of 0.84 g C kg-1. The percentage of 
SOC lost as CO2 (%) showed the opposite trend compared to 
the total C mineralization from soils (Fig. 4b). Mollisol and 
Vertisol showed significantly lower percentage loss of C lost 
as CO2 from total SOC compared to other soils. Inceptisol 
showed the highest loss of 10.1% as CO2 from SOC.

3.4 � Effect of Clay Mineralogy on Labile Carbon 
Fractions and Enzymatic Activities

Difference in clay mineralogy significantly affected the 
labile C fractions in soils as well (Table 3). With respect 
to fractions like MBC, DOC, KMnO4-C, and SOC, Mol-
lisol soils showed the highest amount followed by Vertisol, 
whereas Alfisol and Inceptisol showed the lowest amount. 
In WBC, Mollisol showed the highest amount followed by 
Vertisol, Inceptisol, and Alfisol. SOC was partitioned into 
POM-C and COM-C (Fig. 5). POM-C was observed to be 
highest in Mollisol, which was significantly higher than 

Table 2   Mineralogical make up of soil clay fractions (SCFs)

Major minerals Percent distribution (%)

Vertisol Mollisol Inceptisol Alfisol

Smectite 25.4 1.61 1.7 -
2:1 interstratified minerals 41.5 - - -
Chlorite and chlorite-inter-

stratified mineral
- 16.1 2.45 2.1

Illite 12.1 20.9 1.95 17.2
Illite-interstratified mineral - 6.89 58.7 3.8
Kaolinite 21 54.5 35.2 76.9

Table 3   Effect of different soil clay mineralogy (Soil order) on different labile carbon fractions and clay parameters

The values are shown as the mean (n = 3) with standard error of mean given in parenthesis. Similar lowercase letters within each column are not 
significantly different at P < 0.05 according to Tukey’s HSD test

Soil orders MBC DOC KMnO4-C WBC SOC DHA SSA CEC Clay content
(mg Kg−1) (mg Kg−1) (mg Kg−1) (g Kg−1) (g Kg−1) (µg TPF 

g−1 day−1)
(m2 g−1 
clay)

(meq/100 g) (%age)

Vertisol 705(± 11.6) b 106(± 8.72) a 288(± 9.07) b 6.68(± 0.10) b 18.4(± 1.48) a 145(± 8.81) a 506(± 2.16) a 81.3(± 2.40) a 58.4(± 2.46) a
Mollisol 778(± 13) a 112(± 17.1) a 338(± 4.46) a 9.52(± 0.17) a 22.4(± 1.57) a 165(± 6.47) a 149(± 2.90) b 62.7(± 1.54) b 21.4(± 1.15) bc
Inceptisol 623(± 9.73) c 52(± 8.72) b 258(± 11.3) b 4.42(± 0.13) d 8.3(± 0.12) b 104(± 6.78) b 50.9(± 2.74) c 54.1(± 2.14) b 19(± 1.14) c
Alfisol 678(± 4.71) b 34(± 7.21) b 260(± 5.37) b 5.24(± 0.13) c 9.7(± 0.16) b 132(± 9.59) ab 38.2(± 2.48) d 33(± 2.82) c 27.6(± 1.61) b

1008 Journal of Soil Science and Plant Nutrition (2023) 23:1003–1018



1 3

Vertisol, Inceptisol and Alfisol. With respect to COM-C, 
Mollisol and Vertisol were statistically at par, whereas low-
est amount was found in Inceptisol. For evaluation of overall 
enzymatic conditions of soil, DHA was determined. Mollisol 

and Vertisol exhibited the highest DHA whereas Inceptisol 
showed the lowest activity (Table 3).

3.5 � Relationship Between Soil Clay Characteristics 
with SOC Fractions and Mineralization

Correlation studies indicated that all the soil chemical and 
biological properties exhibited a highly positive correla-
tion (p<0.05 and p<0.01) among each other and CO2-Ccum 
(Fig. 6). C mineralization showed strong and significant 
correlation with labile fractions, such as MBC, KMnO4-C, 
POM-C, WBC, DOC, SOC, and COM-C. Irrespective of 
soil clay composition, SOC, POM-C, COM-C, and WBC 
exhibited significant positive linear relations with CO2-Ccum 
(mg CO2-C kg-1 soil), where the R2 values were in order 
of SOC followed by COM-C, WBC, and POM-C (Fig. 7). 
Clay characteristics like SSA, CEC, and clay content showed 
significant correlation among themselves. SSA had signifi-
cant positive correlation with CO2-Ccum, COM-C, and DOC, 
whereas CEC showed significant positive correlation with 
COM-C, CO2-Ccum, DOC, and SOC. Both SSA and CEC 
had significant negative correlation with percent C loss.

3.6 � Principal Component Analysis

Principal component analysis (PCA) in form of two 
dimensional bi-plot (loading and score plots) revealed 
that up to 90.9% of cumulative variability in soil phys-
ico-chemical and clay properties due to difference in 
mineralogy can be explained by two principal compo-
nents (Table 4). As shown in the biplot, the parameters 
clustered distinctly under two dominant principal compo-
nents, PC1 and PC2, which explained 73.4% and 17.5% 
of the total variability with an eigenvalue >1 (Table 4, 
Fig. 8). The factor loading values in component matrix 
(Table 5) showed that PC1 had large positive loadings on 
SOC followed by CO2-Ccum, COM-C, POM-C, and WBC, 

Fig. 3   Respiration rates of four 
different soils with varying 
mineralogy. Error bars indicate 
standard error of mean (n = 3)
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Fig. 4   Cumulative carbon mineralization after 28 days of incubation 
(a) and percentage of SOC loss (b) of different soils varying in clay 
mineralogy. Error bars indicate standard error of mean (n = 3). Verti-
cal bars with similar lowercase letters are not significantly different at 
P < 0.05 according to Tukey’s HSD test
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Fig. 5   Partitioning of SOC into 
particulate organic matter-
carbon (POM-C) and complex 
organic matter-carbon (COM-C) 
of four soils varying in clay 
mineralogy. Error bars indicate 
standard error of mean (n = 3; 
P < 0.05). Vertical bars with 
similar lowercase letters are 
not significantly different at 
P < 0.05 according to Tukey’s 
HSD test

b
a

c c

a

a

b
b

0

5

10

15

20

25

30

Vertisol Mollisol Inceptisol Alfisol

S
o

il
 o

rg
an

ic
 C

 (
g
 k

g
-1

so
il

)

Soil orders

POM-C (g/kg soil)

COM-C (g/kg soil)

a

b
b

a 

Fig. 6   Pearson’s correlation 
matrix showing the relationship 
among different soil parameters. 
ns: Not significant; *, **, and 
*** next to R2 values indicate 
significant at P < 0.05, P < 0.01, 
and P < 0.001, respectively. 
CO2-Ccum: cumulative C miner-
alization; MBC: microbial bio-
mass carbon; DOC: dissolved 
organic carbon; KMnO4-C: per-
manganate oxidizable C; SOC: 
soil organic carbon; POM-C: 
particulate organic matter car-
bon; COM-C: complex organic 
matter carbon; DHA: dehydro-
genase activity; WBC: Walkley 
black carbon; SSA: specific 
surface area; CEC: cation 
exchange capacity, clay content 
(%), C loss (%): carbon lost as 
CO2 from initial SOC
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respectively, and exhibited a highly positive correlation 
with each other. DOC, MBC, KMnO4-C, and DHA had 
also higher loading on PC1. The C loss (%) showed nega-
tive loadings on PC1. Remarkably, clay content, SSA and 
CEC had strong loadings on PC2 as evident in Table 5 
and Fig. 8. In the biplot, Mollisol showed distinct and 
close affinity to all the labile C fractions and micro-
bial properties, whereas Vertisol showed more affinity 
towards surface properties of clays. Alfisol and Inceptisol 
formed a distinct group showing close proximity towards 
C loss (%).

4 � Discussion

In this study, mineralogy of the soil reaffirms the influence 
of parent material, climate and topography. It was evident 
that mineralogy of Vertisol was dominated by smectite, 2:1 
interstratified minerals. Previous studies have highlighted 
that in humid tropics, continuous supply of bases from Ca-
rich zeolites helped in stabilizing these smectite in Indian 
soil (Bhattacharyya et al. 1993). In majority of Indian Verti-
sol found in semi-arid and sub-humid regions, the presence 
of smectite and kaolinite is quite common (Bhattacharyya 
et al. 1993; Pal 2003; Pillai et al. 1996). In Mollisol, chlo-
rite, illite, and illite-interstratified minerals were present 
in significant amount even though highest was kaolinite. 
Usually, 2:1 phyllosilicates are predominantly found in 
Mollisol because of their formation in drier climate com-
pared to Ultisol or Alfisol. However, there is a possibility 
of Mollisol having kaolinitic minerals in tropical climate 
(Allen and Fanning 1983). Previously, kaolinite and illite 
minerals were found in appreciable amount in the soils 
of this area (Samra 1982). Some studies have identified 
kaolinite as dominant mineral followed by interstratified 
mineralogy with traces of chlorite in soils developed on 
granite in Shivalik regions (Surya et al. 2015). In sub-humid 
subtropical climate of this region where summer tempera-
ture crosses > 40 °C having good drainage and higher OM 
accumulation, higher moisture/rock ratio, might lower the 
Si4+ concentration along with other basic cations hasten-
ing chemical weathering process. This process could have 
hastened the formation of the kaolinite directly from the 
silicate minerals (Grim 1968). The presence of chlorite 
also highlighted the intermediate stage of weathering of 

Fig. 7   Relationship of cumula-
tive C mineralized (CO2-Ccum) 
with soil organic carbon (SOC), 
particulate organic matter 
carbon (POM-C), Walkley 
black carbon (WBC), and 
complex organic matter carbon 
(COM-C). *, **, and *** next 
to R2 values indicate signifi-
cant at P < 0.05, P < 0.01, and 
P < 0.001, respectively
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Table 4   Principal components with their corresponding eigenvalues, 
percentage of variance and cumulative percentage of variance for 
each principal component

Principal com-
ponents

Eigenvalues % of Variance Cumulative 
variance (%)

1 9.54 73.4 73.4
2 2.27 17.5 90.9
3 0.63 4.85 95.7
4 0.22 1.69 97.4
5 0.13 1.00 98.4
6 0.10 0.77 99.2
7 0.08 0.60 99.8
8 0.01 0.11 99.9
9 0.01 0.07 100
10 0.01 0.04 100
11 2.936E-05 0.00 100
12 1.227E-16 9.440E-16 100
13  − 8.877E-17  − 6.828E-16 100
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the soil. The role of vegetation on alteration and neo-syn-
thesis of minerals is also important. The presence of high 
OM, wet moisture regime with high leaching rates and high 
above and below ground root biomass with rich biodiver-
sity has a definite role to play in shaping the alteration of 
mica into chlorite and/or kaolinite (Sharma 1982; Singhal 
and Sharma 1983). In Inceptisol, majority of mineral suite 
belonged to illite/illite-interstratified mineral. Inceptisol are 
predominantly found in regions subjected to moderately 
intensive pedogenic processes (Allen and Fanning 1983). 

This mineralogy indicated relative immaturity and presence 
of weatherable minerals (Pal 2017) as the parent materials 
are devoid of products of advanced stages of weathering 
(Allen and Fanning 1983). Some studies have found kao-
linite as dominant mineral in Inceptisol of eastern India 
(Das et al. 2018). However, our finding corroborated with 
previous findings (Das et al. 2018, 2019a, b) where mica 
was found to be the dominant mineral fraction. Kaolinite 
dominated the mineralogical composition of Alfisol. Simi-
lar mineralogical composition was also previously found 
(Das et al. 2019a, b; Pal et al. 2003, 2017). Under the influ-
ence of humid sub-tropical climate, due to availability of 
high temperature and moisture, the parent material might 
have been transformed with time into illite/interstratified 
mica followed by vermiculite, smectite and finally into kao-
linite by chemical weathering (Allen and Fanning 1983). 
Difference in mineralogy influenced the surface properties 
of clays significantly. Smectitic clays having 2:1 expanding 
silicate structure possess permanent negative charge which 
imparts higher SSA and CEC whereas kaolinite clays have 
1:1 non expanding layer structure having small amount of 
pH dependent charge surface possessing low SSA and CEC. 
Illitic clays have limited expanding properties that expresses 
SSA and CEC higher than kaolinite but lower than smec-
tite (Churchman and Lowe 2012). We employed EGME to 
determine the SSA, which has characteristics to penetrate 
internal surfaces of minerals to measure both internal and 

Fig. 8   Two-dimensional biplot of principal component analysis 
(PCA) showing loading and score plot made through first two prin-
cipal components: PC1 and PC2 using soil variables and soil orders 
(having varying mineralogy) for explaining variability in the data-set. 
CO2-Ccum: Cumulative C mineralization; MBC: Microbial biomass 
carbon; DOC: dissolved organic carbon; KMnO4-C: permanganate 

oxidizable C; SOC: soil organic carbon; POM-C: particulate organic 
matter carbon; COM-C: complex organic matter carbon; DHA: dehy-
drogenase activity; WBC: Walkley black carbon; SSA: specific sur-
face area; CEC: cation exchange capacity, clay content (%), C loss 
(%): carbon lost as CO2 from initial SOC

Table 5   Component matrix 
showing factor loading in 
principal component 1 and 2

Factors PC 1 PC 2

CO2-Ccum 0.98 0.05
MBC 0.88  − 0.35
DOC 0.90 0.15
KMnO4 C 0.87  − 0.36
POM-C 0.92  − 0.30
COM-C 0.96 0.05
SOC 0.98  − 0.05
WBC 0.92  − 0.36
SSA 0.61 0.78
CEC 0.67 0.60
Clay content 0.40 0.86
C loss  − 0.99  − 0.03
DHA 0.84  − 0.24
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external surface areas (Ugochukwu 2017). In our study, we 
found Vertisol clays had higher amount of smectite and 2:1 
interstratified minerals, which collectively expressed higher 
amount of SSA and CEC. The surface area, as well as CEC, 
decreased with increase in low activity, non/limited expand-
ing clays like illite and kaolinite. Mollisol having relatively 
good amount of mixture of illite, chlorite and interstrati-
fied minerals showed SSA and CEC higher than Inceptisol 
and Alfisol clays. The trend of SSA and CEC was smec-
titic + 2:1 interstratified minerals > kaolinite + illite + chlo-
rite mixed clay minerals > illite dominating minerals > kao-
linitic clay minerals which is in conformity with several 
previous reports (Saidy et al. 2013; Singh et al. 2016, 2018; 
Ugochukwu 2017).

The effect of mineralogy on SOC mineralization and 
labile C sequestration were significant. It was observed that 
greater percentage of SOC is lost from Inceptisol, which is 
at odds with CO2-Ccum, which were greater in Mollisol and 
Vertisol after 28 days of incubation (Fig. 4). The higher 
amount of C mineralization in Mollisol could be due to 
the higher amount of easily oxidizable C present initially 
in this soil that showed higher accumulation of fresh OM 
contributed to higher mineralization (Haynes 2005). The 
rapid decay of C in Mollisol and Vertisol might be due to 
the higher porosity in these soils because of fine texture, 
which maintained more water (Baldock and Skjemstad 
2000; Chen et al. 2014). Better texture, porosity, higher 
microbial activity along with higher amount of available 
C in soil may have facilitated greater rate of mineraliza-
tion than other soils (Singh et al. 2017; Six et al. 2002). 
However, the trends for C mineralization expressed in 
percentage loss of initial amounts of SOC followed illite 
dominated clays (Inceptisol) > kaolinite dominated clays 
(Alfisol) > smectitic+vermiculite clay minerals (Vertisol) 
> kaolinite+illite mixed clay minerals (Mollisol) although 
Vertisol and Mollisol showed no significant difference. 
Mollisol and Vertisol stabilized more SOC than other 
soils. These results highlighted the effect of mineralogy in 
protecting the C in soil. The effect of surface properties 
of clays was evident from the significant negative correla-
tion among surface properties of clays and C lost as CO2 
(Fig. 6). Higher SSA and CEC in smectite-dominated soil 
resulted in stronger adsorption of OC by ligand exchange 
or cation bridging and protected SOC from mineralization 
(Sarkar et al. 2018; Singh et al. 2016, 2018). In this study, 
Vertisol and Mollisol expressed higher labile C in terms 
of MBC, DOC, KMnO4-C and WBC, respectively, while 
Inceptisol and Alfisol showed the lowest amount (Table 3). 
The association of OM with mineral particles are affected 
by the mineralogy because of the difference in SSA and 
charge characteristics (Feng et al. 2013). Smectitic miner-
als due to their small size and high charge density could 
have helped in binding of OM strongly via mechanisms like 

ligand exchange, cation bridging, hydrophobic interaction, 
or van der Waals forces (Churchman and Lowe 2012; Singh 
et al. 2018). Smectite help in formation of micro-aggre-
gates in fine textured soil where OM may get entrapped 
and remain protected as slowly available C pool for a long 
period whereas soils having 1:1/ non-expanding clays with 
lower SSA and CEC does not offer any protection to SOM 
(Baldock and Skjemstad 2000; Six et  al. 2002). Many 
experiments have shown that “sorption” mechanism sig-
nificantly affects the retention of OM in soil by protecting 
it from biodegradation (Arnarson and Keil 2000; Kalbitz 
et al. 2005; Singh et al. 2016), yet it can release them into 
solution in a systematic manner through particle associated 
OM (Kaiser and Guggenberger 2003). Our findings con-
firmed the effect of clay minerals in enrichment of labile C 
in soils, which are in line with previous findings (Nguyen 
and Marschner 2014; Saidy et al. 2012; Singh et al. 2016). 
Vertisol and Mollisol soils were richer in clay content 
as well as dominant in 2:1 type fine smectititic minerals 
(Gupta et al. 1999) than either Inceptisol and Alfisol which 
are poorer in clay content and dominated by 1:1 type clay 
minerals like illite and kaolinite. This could also play a role 
in SOC stabilization, which in turn enhanced the SOC to 
a greater extent (Nguyen and Marschner 2014). However, 
in temperate climate, Mayes et al. (2012) found that under 
low DOC concentrations, Ultisol and Alfisol exerted high 
adsorption capacity compared to Mollisol and a major role 
was played by textural clay and Fe oxide content. Simi-
larly, a study consisting of 52 temperate mineral soil sam-
ples from podzol, volcanic as well as A and B horizons 
in Canada observed a dominant relationship between non-
crystalline Al and Fe oxides and DOC adsorption rather 
than clay content (Kothawala et al. 2009). These research-
ers noted that the coatings of Fe and Al oxides masked the 
effect of clay content. However, in our case, clay content, 
SSA, and CEC influenced the accumulation and stabiliza-
tion of SOC. Higher WBC in Mollisol than Vertisol could 
be attributed to the difference in average annual tempera-
ture and texture that exist between these two soils which 
might have impacted significantly the differential build-up 
of SOC in these soils (Surya et al. 2015). Due to higher 
availability of labile substrates and higher microbial bio-
mass, the enzyme activity also followed the similar trend. 
The POM-C was higher in Mollisol and Vertisol compared 
to other soils. POM-C are essentially the plant−derived 
remains that are predominant in macro aggregates frac-
tion due to their strong association with mineral particles 
(Six et al. 1998; Wright et al. 1999). In our study, Vertisol 
and Mollisol had fine texture soil along with 2:1 phyllo-
silicate mineralogy, which provided perfect microsites for 
microbial growth. Due to higher microbial secretions along 
with better soil aggregation, OM could have occluded into 
aggregates, which in turn sequestered more POM-C in soil 
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compared to coarse textured soils having 1:1 type of miner-
alogy (Cotrufo et al. 2015; Schmidt et al. 2011; Schweizer 
et al. 2021; Steffens et al. 2017). The results of COM-C also 
highlighted the importance of 2:1 mineralogy of Vertisol in 
preferentially accumulating the OM of complex nature, viz., 
aromatic and phenolic compounds (Leinweber et al. 1999; 
Wattel-Koekkoek et al. 2001).

Correlation study among the labile C fractions and 
surface clay properties highlighted their strong intercon-
nection among each other (Fig. 6). SOC showed a strong 
and significant relationship with CO2-Ccum, MBC, DOC, 
KMnO4-C, POM-C, COM-C, WBC, and DHA suggesting 
that change in SOC storage greatly depends upon these 
pools. Similar results were previously reported (Bon-
giorno et al. 2019; Rudrappa et al. 2006; Souza et al. 
2016). Due to strong correlation, any of the above frac-
tions could be used as potential indicators of SOC build 
up in the studied area. As the interplay of SOC with 
other fraction is very dynamic and responsive, therefore 
a strong positive influence of SOC, POM-C, COM-C, 
and WBC on C mineralization was observed (Fig. 7). 
Strong correlation between CO2-Ccum and DHA showed 
that the microbial populations are actively contributing 
to respiration due to higher substrate availability. The 
higher correlation coefficient between SOC and POM-C 
than SOC and MBC suggested that the newer organic 
materials contributed to the POM largely. SSA and CEC 
showed significant correlation with SOC, CO2-Ccum, and 
DOC highlighting the importance of clay surface char-
acteristics in C accumulation. Higher surface areas and 
CEC helped in accumulating more OC through mecha-
nisms like ligand exchange, cation bridging, and van der 
Waals interaction which has been previously reported 
(Dontsova and Bigham 2005; Saidy et al. 2013). Singh 
et al. (2016) highlighted that SSA was the most crucial 
factor in adsorption and stabilization DOC in clays. In 
addition to correlation studies, PCA analysis revealed 
that Mollisol accumulated higher amount of labile C 
fractions (Fig.  8). The prevalence of temperate sub-
humid climate helped in accumulation of fresh OM in 
terai regions of Pantnagar, which is why the WBC and 
SOC were quite higher in this soil. However, Vertisol had 
a higher affinity for SSA, CEC, and clay content indi-
cating that clay properties significantly influenced SOC 
enrichment in this soil. Interestingly, Inceptisol and Alfi-
sol formed a distinct group showing higher percentage of 
SOC loss. This similarity in behavior of both these soils 
despite their occurrence in two different sets of climatic 
conditions could be attributed to the clay characteristics. 
Both soils contained limited to non-expanding clays such 
as illite and kaolinite, which behaved similarly in terms 
of surface properties. Therefore, they sequestered less 
labile C and a higher percentage of C was lost as CO2.

5 � Conclusions

This study inferred that variation in pedogenic clay had a 
significant effect on stabilization of soil organic carbon. 
Higher cumulative mineralization and labile C fractions 
such as microbial biomass carbon, dissolved organic car-
bon, KMnO4-C, particulate organic matter carbon, com-
plex organic matter carbon along with dehydrogenase 
activity, and lower percentage of soil organic carbon loss 
were found in Mollisol and Vertisol soils than Inceptisol 
and Alfisol. Variation in CO2 evolution through minerali-
zation could be largely explained by soil organic carbon 
and complex organic matter carbon. Hence, under natu-
ral conditions, inclusion of these parameters will better 
reflect the process of soil respiration in future study. This 
study validated the clear influence of 2:1 mineralogy in 
terms of specific surface area and cation exchange capac-
ity on labile C enrichment in Vertisol, whereas the pres-
ence of inherently higher amounts of soil organic carbon 
could be the predominant factor governing higher carbon 
sequestration in Mollisol. Stronger correlation between 
labile C fractions and clay properties revealed that 
greater specific surface area and cation exchange capac-
ity would result in greater C sequestration and stabiliza-
tion in soil. This study found that presence of limited to 
non-expanding clay mineralogy in Inceptisol and Alfisol 
is more important for soil C sequestration and stabili-
zation than climate. This preliminary information will 
help future researchers to consider clay characteristics 
while performing soil carbon studies. As the ability of 
soil to store organic carbon varies according to climate-
soil-management interactions, it will be worthwhile to 
confirm these findings by studying other soils from dif-
ferent agro-climatic regions.
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