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Abstract
Global population is expected to cross 11 billion by the turn of the century, which has put immense pressure on the existing 
agricultural systems worldwide. This is complicated by gradually decreasing productivity and acreage as a result of climate 
change in addition to ever-increasing input costs of resource hungry staple crops like rice, wheat, and maize. Unfortunately, 
the most affected by these events are those who have the least resources at their disposal to mitigate the issue, especially in 
countries of Asia and Sub-Saharan Africa. It is therefore pertinent to explore and adopt alternative and/or complementary 
crops that are easier to cultivate, climate change tolerant, less resource hungry, nutritionally richer for human consumption, 
and agriculturally sustainable. Millets are perfect cereal crops which meet all of these requirements and can realistically 
provide much-needed solutions to current global food and nutritional security challenges. In this review, we provide a bird’s 
eye view of the relevance of millets in global agro-ecosystems in the context of their nutritional and agronomic attributes. 
Furthermore, we share perspectives on the major areas of crop improvement programs worldwide and discuss major chal-
lenges confronting the same. Finally, we discourse on the scope of millets for wider acceptability and highlight major points 
at the interface of genetic intervention–crop management post-harvest practices worth considering to potentially facilitate 
robust millet-based nutritional and food security.
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1  Introduction

Plants constitute a major part of human diet and act as chief 
source of proteins, carbohydrates, vitamins, and minerals 
for much of the developing world. On the other hand, plant 
nutrition is largely governed by the richness of the nourish-
ing soil on which they grow, especially in terms of their 
mineral composition, which in turn impacts the nutritive 
value of edible plant parts. This is facilitated by other factors 
like their acquisition by the roots, type of their distribution 
to different plant tissues, and mobilization of nutrients to 
developing grains post-anthesis (for cereal crops), the effi-
ciency of which is influenced by multiple abiotic and intrin-
sic genetic factors.

Insufficient availability of elemental micronutrients in 
the soil or within the (edible parts of the) plant is now con-
sidered to be the primary contributor towards the “hidden 
hunger” affecting more than 2 billion of global population 
(Ritchie et al. 2018; Graham et al. 2012). Such hunger is 
largely prevalent in populations with cereal-centric diets 
(like rice or wheat), since they are relatively poorly fortified 
with nutritionally important micronutrients (Nakandalage 
and Seneweera 2018; Von Grebmer et al. 2014; White and 
Broadley 2009). Furthermore, agronomically, rice and wheat 
cultivation is one of the largest consumers of NPK fertiliz-
ers among crops globally, thereby presenting a new chal-
lenge for agricultural sustainability, especially when they are 
prime targets of the climate change phenomenon (Ray et al. 
2019) in the present decade. To make matters worse, popula-
tion growth compounded by unplanned urbanization/indus-
trialization policies in the recent decades in many countries 
has rendered the soil toxic resulting in alarming levels of 
cadmium and arsenic in plant foods (Clemens and Ma 2016; 
Zhao et al. 2010; Harvey et al. 2002), further complicating 
the road to complete human nutrition. In view of the same, 
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identification of crops having lower cost of cultivation with 
a higher sustainability quotient and climate change resilience 
is the need of the hour.

Millets are potentially relevant since they have all the 
attributes matching the above requirements. Millets are a 
group of C4 cereal grasses within the grass subfamily pani-
coideae and include finger millet (Eleusine coracana), kodo 
millet (Paspalum scrobiculatum), proso millet (Panicum 
miliaceum), barnyard millet (Echinochloa frumentacea; 
Echinochloa esculenta), and little millet (Panicum sumat-
rense), among others. They are mainly grown in parts of 
Sub-Saharan Africa, Asia, as well as in Argentina and the 
USA (Dwivedi et al. 2012). India is one of the largest pro-
ducers of millets in the world followed by China. In the pre-
sent article, we provide major perspectives on the potential 
role of this crop in addressing nutritional food security as 
well as identify key areas of millet improvement for sustain-
able agriculture.

1.1 � Nutritional Merits of Millets

Nutritionally, millets are equivalent or superior to major 
cereal grains including rice and wheat, especially in terms 
of protein, essential amino acids, vitamins, and mineral 
elements like iron, zinc, phosphorous, potassium, and cal-
cium (Table 1) (Muthamilarasan and Prasad 2021; Hegde 
et al. 2005). Additionally, millet proteins are gluten free 
and possess many bioactive compounds, and they are rich 
in dietary fiber (Kumar et al. 2018), making it an ideal 
health food. While wheat and proso millet have compara-
ble protein content in their seeds, the content of essential 
amino acids like isoleucine, thiamine, and leucine is sig-
nificantly higher in the latter. Similarly, the lipid content 
in millets as a group is comparable to or higher than that 
in wheat and rice (Kumar et al. 2018). Furthermore, unlike 
most conventional food grains (like rice and wheat), mil-
lets have appreciably lower glycemic indices (Shukla and 
Srivastava 2014; Ugare et al. 2014), making it an ideal 
cereal of choice for the diabetic population. Epidemiologi-
cal evidences indicate that millet-consuming populations 
have lower incidence of diabetes (Kim et al. 2011). For 
instance, studies have indicated the effectiveness of mil-
lets in augmenting glycemic control and reducing blood 
glucose (Geetha et al. 2020; Singh et al. 2020) as well as 
minimizing insulin resistance and reducing levels of gly-
cosylated hemoglobin (HbA1c) (Geetha et al. 2020; Sob-
hana et al. 2020; Itagi et al. 2012; Thathola et al. 2011). 
Studies involving arabinose and xylose polysaccharides 
from finger millet have indicated that they can act as active 
prebiotics and have wound-dressing potential (Manisseri 
and Gudipati 2012; Mathanghi and Sudha 2012; Shobana 
and Malleshi 2007). In addition to being slowly digestible 
(and therefore low glycemic), resistant starch facilitates 

production of bioactive metabolites like short-chain fatty 
acids (butyrate), widely known to be preventive against 
colon cancer (Ramesh et al. 2022; Annor et al. 2015; Eng-
lyst et al. 1992). Multiple studies in recent years have com-
prehensively documented the bioavailability and content of 
major macronutrients in millet grains and can be consulted 
for an in-depth account (Dhaka et al. 2021).

Minerals and vitamins constitute the micronutrients and 
play key roles in many physiologically important processes 
in human body like building of bones, formation of blood 
clots, signal transmission between neurons, maintain-
ing heartbeat, acting as coenzymes, and metabolizing and 
synthesizing fats and proteins among many others (Soetan 
et al. 2010). The share of minerals in millet grain (1.7 to 
4.3 g/100 g) is substantially higher than that in staple crops 
like wheat (1.5%) and rice (0.6%) (Kumar et al. 2018). Cal-
cium (Ca) is an important mineral required for bone forma-
tion, growth, and prevention of osteoporosis. Finger millet 
has more than 8 times more Ca than wheat, while barnyard 
and pearl millets are rich sources of bioavailable iron, and 
their intake can help prevent anemia in pregnant women 
(Kumar et al. 2018). Foxtail millet has one of the highest 
zinc contents among crops, in addition to being rich in iron 
(Jaiswal et al. 2019). Millets are also rich sources of many 
beta-carotenes and B vitamins. A comparative account of 
micronutrient content between millet and other staple crops 
will provide a more detailed overview.

Phenolic compounds from millets have anti-mutagenic, 
anti-estrogenic, anti-inflammatory, antioxidant, and antiviral 
effects (Devi et al. 2014). In finger, foxtail, little, and proso 
millets, this is driven by high contents of carotenoid and 
tocopherols (Dykes and Rooney 2006). Phenolics cause par-
tial inhibition of amylase and α-glucosidase which hydrolyze 
complex carbohydrates, thereby reducing the availability of 
postprandial glucose levels in the blood (Ofosu et al. 2020). 
A comprehensive account of phenolic profile of six millet 
types has been enumerated by Kumar et al. (2018). Further-
more, independent studies have confirmed hypolipidemic 
effects of millet seed extracts in rats (Sireesha et al. 2011; 
Lee et al. 2010). Bound polyphenols from the foxtail millet 
bran contain antitumor effect on human colorectal cancer 
HCT-116 cells (Shi et al. 2015). The polyphenol compounds 
were associated with the generation of reactive oxygen spe-
cies (ROS) and activation of caspase-regulated apoptosis in 
the HCT-116 cells. Foxtail millet polyphenols are mainly 
consisting of caffeic acid, p-coumaric acid, ferulic acid, 
chlorogenic acid, syringic acid, and carotenoid (Dhaka et al. 
2021). Comparatively higher antioxidant activity has been 
observed in the flour of germinated foxtail, kodo, and barn-
yard millets than in their raw flours (Sharma et al. 2016).

While millets are considered rich sources of many nutrients, 
they also contain some antinutritive compounds like polyphe-
nols, phytic acid, and tannis which render a bitter taste to the 
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derived food, thereby acting as a major factor affecting the 
larger acceptability of the crop by the farming community and 
consumers alike. These antinutrient contents are reported to 
chelate the essential multivalent cations in the human body after 
their intake (Pramitha et al. 2021). Interestingly, major food 
processing steps like decortication, milling, malting, fermen-
tation, roasting, and grinding help reduce the antinutrient con-
tents and enhance their alimentary properties (Hotz and Gibson 
2007). Reducing the availability of these compounds in the crop 
is therefore a major target for crop improvement strategies.

Agronomically, millets exhibit exceptional tolerance 
to environmental stresses such as minimal soil fertility, 
drought, and higher temperature, making them even more 
suitable for climate-resilient agriculture (Singh et al. 2021). 
The monoculture system of staple crops like rice, wheat, and 
maize utilizes large amount of chemical fertilizers, causing 
deterioration of soil health and environmental pollutions. 
Mainstreaming millet cultivation together with these crops 
may contribute not only to the agriculture security, but also 
to ecosystem stability and enhanced income for farmers with 
smaller agriculture land. In view of the demonstrated nutri-
tional, agronomic, and environmental benefits of millets, we 
provide our perspectives towards major initiatives currently 
underway to further improve the crop in terms of its grain-
specific micro- and macronutrient attributes.

1.2 � Genetic Improvement of Millets

Diversity of germplasm allows for variability which is 
important for sustainable agriculture. A limited and homo-
geneous genetic background of germplasm makes it more 
prone to crop failure from sudden onslaught of new pest and 
disease attacks as well as other vagaries of climate change. 
In this light, a total of 133,849 accessions of small millets 
have been conserved in genebanks, including 30,627 acces-
sions from other species from the same genera (Vetriventhan 
et al. 2020). Furthermore, with greater realization of the 
nutritional and agronomic importance of millets, improving 
the crop in terms of many of its agronomic and nutritional 
attributes through conventional breeding and molecular 
genetic approaches has assumed great importance. Specifi-
cally, improving the yield, biomass, harvest index, tolerance 
to drought, and pathogen/pest attack in addition to improv-
ing the nutritional quotient of grain and fodder are major tar-
gets of crop improvement. In this context, high-throughput 
genomic resources can prove to be very helpful in identify-
ing genomic loci/regions associated with such traits, thereby 
paving the way for their introgression to help develop bet-
ter cultivars through conventional breeding and molecular 
genetic approaches. To this end, excellent core collections 
of genetically diverse foxtail (Upadhyaya et al. 2009), finger 
(Upadhyaya et al. 2011), and pearl millet (Upadhyaya et al. 
2017) accessions have been established.

The pollination behavior of millets is varied and ranges 
from cleistogamy in kodo millet to partial outcrossing in 
small millets. Larger (seed size) millets like pearl millet are 
highly cross-pollinated and largely protogynous and result 
in the plants being highly heterozygous. The main breeding 
approaches are therefore those that target development of 
hybrids, synthetics, and composites. In the last few decades, 
hybrids have been commercially used to achieve consider-
able breakthrough in yield performance for sorghum and 
pearl millet. In both these crops, gene-cytoplasmic sterility-
restorer platforms have provided a new direction to yield 
increase. On the other hand, small millets are largely self-
fertilized, and hence, pure line selection has been the pri-
mary method for trait improvement of landraces. However, 
hybridization presents many advantages to combine desir-
able features and hot water, gametocide, and contact-based 
methods have been recently used with limited success in 
these crops. The discovery of male sterility in foxtail millet 
accessions in China provides new hope for significant trait 
enhancement of this crop (Zhang et al. 2021; Patil 2016). 
Overall, there is a strong need for standardization of hybridi-
zation and cross-pollination methods in small millets. A list 
of major traits targeted for nutritional improvement of sor-
ghum and millets is provided in Table 2.

The iniadi germplasm of pearl millet native to Togo, 
Ghana, Burkina Faso, and Benin regions of west Africa has 
been extensively employed for improvement of the crop 
(Rai et al. 1999). With regard to small millets, especially 
finger millet, Indo-African crosses have been instrumental 
for breakthrough in yield performance in addition to improv-
ing traits related to blast tolerance, early vigor, panicle size, 
branching, finger number, and grain density (Patil 2016). 
Genotypes with higher protein content as well as efficient 
nitrogen responsiveness have also been identified (Bandy-
opadhyay et al. 2022). In kodo millet, three different cul-
tivated complexes are recognized based on differences in 
raceme morphology, and hybridization between cultivated 
varieties and weedy races is common. The crop is known to 
be cleistogamous, but crosses have been largely made using 
few protogynous types. Interestingly, the absence of racial 
differentiation in the crop (despite more than 3000 years of 
known prevalence) is an important and interesting area of 
investigation with potential for some startling discoveries in 
genetics. Sorghum improvement programs have tradition-
ally relied on five basic races (guinea kafir, bicolor, durra, 
caudatum, and their ten derived hybrid races) for identifica-
tion of useful trait-related genes for major crop improvement 
programs globally (Patil 2016).

Conventional breeding approaches like pedigree selection, 
mass selection, pure line selection, and mutation breeding 
more amenable for self-pollinating crops have been applied to 
small millets. Most of the released varieties of small millets are 
derived from local cultivars or landraces, while hybridization 
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and selection (pedigree selection) were used to a lesser extent 
(Santra et al. 2019; Report on Compendium of Released Vari-
eties in Small Millets 2014). Interestingly, mutation breeding 
has shown promise in small millets (self-pollinated crops), 
given the limited success of the hybridization-based approach 
in creating variability. Early maturing and high-yielding 

mutant lines of finger and proso millets have been developed 
along with other useful traits (Bhave et al. 2016; Ambavane 
et al. 2014; Muduli and Misra 2007). Overall, these breed-
ing strategies have been useful in developing cultivars with 
improved yield parameters as well as with durable tolerance 
to biotic and abiotic stresses.

Table 2   Nutritional traits targeted for genetic improvement in Sorghum and millets

Crop Desired trait Number of genotypes/
mapping population

Genotyping platform Approach used References

Seed protein content 635 Ethiopian sorghum 
accessions

Genotyping by 
sequencing

GWAS Nida et al. 2021

Grain quality traits 196 diverse sorghum 
inbred lines

Re-sequencing data GWAS Kimani et al. 2020

Grain carotenoids 403 Sorghum acces-
sions

SNP genotyping GWAS Cruet-Burgos et al. 2020

Grain iron and zinc 
content

F6 RIL population 
derived from cross 
296B × PVK 801

DArTseq markers QTL mapping Kotla et al. 2019

Grain quality traits F4:5 generation of 
BTx642/BTxARG-1 
and BTxARG-1/
P850029 and 390 
diverse grain acces-
sions

Genotyping by 
sequencing

QTL mapping and 
GWAS

Boyles et al. 2017

Protein digestibility trait F2 segregants of 
P721Q × Tx623

Whole-genome 
sequencing

Bulked segregant analy-
sis mapping

Massafaro et al. 2016

Grain polyphenols 381 diverse lines SNP genotyping GWAS Rhodes et al. 2014
Grain quality traits 300 Sorghum acces-

sions
SNP genotyping GWAS Sukumaran et al. 2012

Pearl millet Starch traits 166 accessions 78 K SNP assay GWAS Yadav et al. 2012
Grain iron and zinc 

content
F6 RIL population 

derived from PPMI 
683 × PPMI 627

SSR genotyping QTL mapping Singh et al. 2021

Nutritional traits 197 pearl millet inbred 
lines

76 K SNP assay GWAS Yadav et al. 2012

Grain iron, zinc, and 
protein content

281 advanced inbred 
lines

DArT seq assay GWAS Pujar et al. 2019

Grain iron and zinc 
content

RIL population 
derived from ICMS 
8511-S1-17–2-
1–1-B-P03 × AIMP 
92901-S1-183–2-
2-B-08

DArT and SSR geno-
typing

QTL mapping Kumar et al. 2018

Grain iron and zinc 
content

130 diverse lines SSR genotyping GWAS Anuradha et al. 2017

Finger millet Grain calcium content 202 diverse global 
accessions

Genotyping by 
sequencing

GWAS Sharma et al. 2016

Seed protein content 113 diverse genotypes Genotyping by 
sequencing

GWAS Tiwari et al. 2020

Grain calcium content 238 accessions SSR genotyping GWAS Yadav et al. 2012
Grain nutritional traits 190 genotypes Genotyping by 

sequencing
GWAS Puranik et al. 2020

Foxtail millet Nutritional traits 93 diverse accessions 10 K SNP assay GWAS Jaiswal et al. 2019
Proso millet Seed traits 88 varieties and lan-

draces
RAD sequencing GWAS Boukail et al. 2021
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Genome sequencing approach, on the other hand, provides 
a new knowledge base of coding and regulatory regions of the 
genome, which can be exploited for enhancing major agro-
nomic attributes in crops. In practical terms, this will allow 
development of molecular markers, which in turn will enable 
a deeper and comprehensive understanding of the structure 
and diversity of the genetic variability of the traits in ques-
tion, thereby helping develop molecular tools for genomic-
assisted improvement of the crops. In this respect, genomes 
of finger, foxtail, barnyard, and proso millets have been 
sequenced, including the complete chloroplast genomes in the 
first three of them (Vetriventhan et al. 2020). Furthermore, 
with the advent of genome sequencing platforms, a cheaper 
and effective way of scanning the genetic variability came to 
forefront—genotyping by sequencing (GBS). The technology 
enables high-throughput and cost-effective way of identify-
ing single nucleotide polymorphisms (SNPs) with significant 
implications towards understanding the genetic basis of trait 
variability as well as population structure and diversity and 
has been employed in millets in recent years (Johnson et al. 
2019; Upadhyaya et al. 2016; Wallace et al. 2015). However, 
it is noteworthy that limitations of employing millet genome 
sequence information exist, given higher ploidy levels and 
higher incidence of repetitive DNA in their genome (Vetrive-
nthan et al. 2020). Advances in third-generation sequencing 
technology along with staggering progress in data science and 
analysis platforms observed in the recent years provide us great 
hopes in overcoming this bottleneck in the near future. In a 
nutshell, genomics-based approaches have great potential in 
contributing towards enhancing genetic gains in millets.

Studies have been done in different sorghum accessions to 
improve grain quality traits by combining different genotyping 
platforms such as SNP genotyping, resequencing, genotyping 
by sequencing (GBS), quantitative trait locus (QTL) mapping, 
and genome-wide association study (GWAS) approaches (Dia-
tta-Holgate et al. 2022; Kimani et al. 2020; Boyles et al. 2017; 
Sukumaran et al. 2012). GWAS analysis of 635 Ethiopian 
sorghum accessions suggested genetic variations at the loci-
containing genes such as late embryogenesis abundant (LEA) 
and tannin biosynthesis genes responsible for grain mold resist-
ance in sorghum (Nida et al. 2021). Quantification of grain 
carotenoid content in diverse sorghum genotypes using high-
performance liquid chromatography (HPLC) and GWAS has 
identified the key genes responsible for variation in seed carot-
enoid content (Cruet‐Burgos et al. 2020). Among the genes 
identified in the study, a putative ortholog of maize zeaxanthin 
peroxidase has been found responsible for carotenoid varia-
tion in sorghum (Cruet‐Burgos et al. 2020). A similar study 
has been carried out to quantify grain phenols, polyphenols, 
and proanthocyanadins in 381 sorghum accessions through the 
near-infrared spectroscopy (NIRS) and GWAS to identify the 
genetic loci with associated traits (Rhodes et al. 2014). Interest-
ingly, a sorghum mutant P721Q, with high lysine content, has 

been found to be associated with enhanced protein digestibility 
as compared to other sorghum cultivars. This higher lysine 
content was observed because of reduction of kafirin storage 
proteins. Genomic sequence analysis of bulked segregants 
from a P721Q × BTx623 mapping population suggested that 
the highly digestible protein trait maps with the same cluster 
of kafirin genes containing high-lysine mutation (Massafaro 
et al. 2016).

Major traits, which are widely targeted for improve-
ment, are the iron and zinc contents of the grain in a diverse 
population of pearl millet and sorghum to identify genetic 
loci controlling the traits (Singhal et al. 2021; Kotla et al. 
2019; Pujar et al. 2019; Kumar et al. 2018). A total of 166 
pearl millet accessions were evaluated for total starch (TS), 
rapidly and digestible starch (RDS and SDS), and resist-
ant starch (RS) content, depending on available glucose 
percentage after digestion (Yadav et al. 2022). Most sig-
nificant genetic variations of starch-related traits lead to the 
identification of donor accessions for pearl millet-breeding 
programs. Owing to the higher calcium content in finger 
millet, recent reports emphasize its importance as a nutri-
tional trait. For example, a study by Sharma et al. (2022) 
involved a set of 202 finger millet accessions grown in two 
different environments in India which are subjected to grain 
calcium content assessment, which was ranging between 
53 and 454 mg per 100 g of grain. This study led to identi-
fication of two putative homologs of Setaria italica genes, 
calmodulin-binding protein (CBP) and CBL-interacting 
protein kinase7 (CIPK7), through GBS and marker trait 
association, which might be regulating the grain calcium 
content. Furthermore, both genes were highly expressed 
in calcium-rich genotypes in comparison to medium- and 
low-calcium-containing genotypes (Sharma et al. 2016). In 
foxtail millet, a comprehensive assessment of 23 nutritional 
traits in 93 different accessions has identified the genetic 
variation responsible for varying phosphorus and potassium 
contents (Jaiswal et al. 2019). Major traits targeted for nutri-
tional improvement of sorghum and millets are summarized 
in Table 2. Altogether, understanding the genetic regula-
tion controlling nutritional traits in millets has enormous 
potential for wider application in breeding and biotechnical 
programs to further improve nutritional quality of millets as 
well as other cereal crop plants.

1.3 � Major Challenges in Millet Improvement

Millet production, especially of the small millets, is 
inconsistent due to many factors. They are often grown 
in marginal lands, generally poor in nutrients and water 
retention, leading to variable productivity across different 
growing seasons. Farmers for these crops do not generally 
implement the modern crop management practices due 
to multiple socioeconomic considerations. They also 
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lack organized programs for production and supply of 
improved seed varieties. The main drawback of pearl millet 
consumption is their apparent lack of flavor and bitter taste 
(due to rancidity), making them a relatively less-popular 
choice than other staples. Additionally, the shelf life of pearl 
millet flour is shorter due to rapid rancidity (Goswami et al. 
2020; Yadav et al. 2012). A collective effort in the area of 
production, marketing, and food processing is required to 
again reestablish millets in the central position of the global 
agri-economic sector (Fig. 1).

Genetic modification for targeted trait improvement is 
widely applied in major cereal crops. However, due to lack 
of good reference genome and their annotation and stable 
genetic transformation system due to recalcitrant to in vitro 
propagation of most of the millets, accessions have resulted 
in limited success of this technology in millets. Agrobacte-
rium-mediated transformation methods are reported only for 
the foxtail, finger, and pearl millets (Sood et al. 2020; Singh 
and Prasad 2016; Ramineni et al. 2014; Ceasar et al. 2017). 
While many genomic and genomic interventions identified 
several candidate genes related to agronomic and defense-
related traits, their functional genomic analysis using mod-
ern biotechnological platforms is currently a major bottle-
neck (Singh et al. 2021). Furthermore, the application of 
Clustered Regularly Interspaced Short Palindromic Repeat 
(CRISPR)/CRISPR-associated protein (Cas) has been exten-
sively employed in many cereal crops with tangible benefits, 
the same is yet to be employed in millets, except for the 
foxtail millet (Yang et al. 2020). The application of targeted 
genome editing is required to be applied to other millets 
also. However, majority of the minor millet crops lack good 
reference genomes and their annotations, functional charac-
terization of their genes, and genetic transformation system 
(Singh et al. 2022).

1.4 � Scope and Future Prospects

Extreme climate fluctuations and hidden hunger are one of 
the major factors confronting global food and nutrition secu-
rity in this era, and the salient features of unique stress adap-
tation and nutritive value make millets the ideal candidate 
for crop improvement strategies. Furthermore, due to their 
relative photo-insensitivity than other staple crops, shorter 
growing season, and low moisture demand, growing millets 
is economically more affordable to marginal farmers of Asia 
and Sub-Saharan Africa. Additionally, their longer storabil-
ity and nutritional potential make them ideal candidates to 
act as “famine reserves.” This assumes more significance, 
given the recent trends in climate change characterized by 
global warming, water shortages, and malnutrition, which 
has severely impacted most of the developing world wherein 
a millet-based food security system in these countries appears 
to be durable solution. However, the specific aspects of millet 
cultivation and post-harvest processes would require renewed 
focus and direction to achieve the goals of food and nutrition 
security. Despite the fact that millets are common to dry-
land farming systems, they are irrigation responsive. Hence, 
selecting genotypes with better water use efficiency (WUE) is 
important. Improvement of nutritive quality of millet stands 
to directly impact the health of consuming population, which 
are largely poor or marginal, thereby helping to improve a 
significant section of our societies.

With the employment and advancement of hybridization, 
heterosis, and genomic techniques accompanied by better 
crop management, millets can potentially register significantly 
more yields. Approaches encompassing genomic-assisted 
breeding and genetic engineering/biotechnology will help in 
identification of novel genes, alleles, and the underlying regu-
latory pathways influencing agronomic attributes of impor-
tance. Since most of the millet crops are polyploid (except for 
the pearl and foxtail millets) in nature, making segregation is 
challenging in them. However, they may display enhanced 
vigor and outperform their parental lines following hybridi-
zation. Generating and analyzing molecular markers can be 
complicated in polyploid species due to the high sequence 
homology between sub-genomes. Furthermore, advances in 
next-generation sequencing technologies will provide enough 
data and leads that will efficiently complement the compara-
tive genomics approach for identification of novel ortholog 
gene targets for improving millets whose genome is not fully 
sequenced and/or annotated yet.

In view of the above observations, betterment of yield and 
nutritive potential of millets is poised to make a significant 
contribution towards addressing malnutrition globally in the 
twenty-first century. The existence of significant genetic vari-
ability in them allows for planned breeding work to be pos-
sible. In the present global situation, the demand for millets is 
going to significantly increase in the international markets, and, 

Fig. 1   Challenges and possible strategies to re-establish millets as 
major food for food and nutritional security
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hence, serious efforts must be made not only to develop varie-
ties that cater for nutritional needs of the population but also to 
present them as champions of sustainable global food security.
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