
https://doi.org/10.1007/s42729-022-01032-2

ORIGINAL PAPER

Plant Metabolic Networks Under Stress: a Multi‑species/Stress 
Condition Meta‑analysis

Livia L. Cardoso1 · Francisco Bruno S. Freire1 · Danilo M. Daloso1 

Received: 1 April 2022 / Accepted: 6 October 2022 
© The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2022

Abstract 
Plant stress acclimation depends on metabolic changes. However, the knowledge concerning the modularity and robustness 
of plant metabolic networks under stress conditions remains fragmented. Here we carried out a multi-species/stress condition 
meta-analysis using previously published metabolite profiling data from plants under water deficit, cold, salt and nitrogen 
deprivation stress conditions. We carried out extensive network and multivariate analyses aiming to identify stress biomarkers 
and to investigate how plant metabolic network is altered in terms of topology and connectivity by stress conditions. Partial 
least squares discriminant analysis (PLS-DA) was effective in differentiating stressed from non-stressed plants at a metabolic 
level. However, no general pattern in both density and heterogeneity of the metabolic network was observed after stress 
imposition. Integrative analysis identified metabolic markers for multiple stresses in plants, including asparagine, shikimate, 
fructose and raffinose. This analysis further highlights that amino acid metabolism is a major hub for plant stress acclima-
tion. This idea is supported by the fact that several amino acids related to photorespiration and that are used as substrates 
for alternative plant respiration pathways or the synthesis of secondary metabolites were found as key for the structure and 
modulation of the network under stress. Our results collectively suggest that stress-induced changes in metabolic network 
topology are species/stress level–specific. However, several hubs related to amino acid metabolism emerge as key nodes in 
the network when plants are subjected to stress conditions, highlighting that our approach can be used by systems-driven 
plant breeding programs toward plant stress tolerance improvement.
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1 � Introduction 

The global population is expected to increase up to 9.5 bil-
lion by 2050 (USCB, 2015), which will require substantial 
increases in primary foodstuff production (Zandalinas et al. 
2021). According to FAO, the production of staple cereal 
crops must double by 2050 to meet the global food demand 
(FAO 2017). In parallel, it has been shown that stressful peri-
ods triggered by the climate change scenario are negatively 
affecting the yield of several crops cultivated worldwide 
(Birami et al. 2020; Bisbis et al. 2018; Rosenzweig et al. 

2014; Trisos et al. 2020; Ye and Fan 2021). The increase in 
demand for primary foodstuffs is thus outstripping increases 
in crop yield, given that yield improvements are slowing or 
stagnating as the approaches of the green revolution reach 
their biological limits (Long et al. 2015). It is thus important 
to find strategies to improve plant productivity in a highly 
stressful environment (Evans and Lawson 2020; Yoshida and 
Yamaguchi-Shinozaki 2021). To achieve this, understand-
ing the mechanisms that regulate plant stress responses is 
key for the development of new strategies to simultaneously 
improve crop yield and stress tolerance through metabolic 
engineer, synthetic biology and/or de novo domestication of 
wild crop relatives (Fernie and Yan 2019; Kubis and Bar-
Even 2019; Wurtzel et al. 2019; Zsögön et al. 2018). How-
ever, unfortunately, our knowledge concerning plant stress 
responses has been limited by the failure to consider the 
regulation in a systemic perspective (Neto et al. 2021; Souza 
et al. 2016; Sweetlove and Fernie 2005). Our understanding 
about structure, modulation and robustness of plant networks 
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is thus very scarce, which explains the lack of success in 
obtaining stress-tolerant crops (Flexas 2016).

As sessile organisms, plants are constantly subjected 
to stress conditions (Galviz et  al. 2022). A common 
phenomenon observed in plants under stress is the 
generation of different strains, i.e. when a stress factor 
generates different types of stress responses in plant cells 
(Kranner et al. 2010; Lichtenthaler 1998). Furthermore, 
different types of (a)biotic stress lead to common responses 
in plants (Zandalinas et al. 2022; Zandalinas and Mittler 
2022). For instance, stomatal closure has been reported 
as one of the primary plant responses to an internal 
osmotic stress (Jones 1998), which can be induced by 
water deficit, excess of salt, extreme temperatures and 
other adverse environmental conditions (Gago et  al. 
2020). Given that the stomatal pore is the first barrier for 
the influx of CO2 for photosynthesis (Lima et al. 2018), 
the stress-induced stomatal closure reduces the amount 
of substrate for CO2 assimilation and consequently for 
the entire metabolism (Auler et al. 2022). It is expected 
therefore that certain metabolic changes may be similarly 
altered between different types of stress. Indeed, it has 
been shown that the accumulation of sugars, amino acids 
and polyols is commonly observed in plants under stress 
(Avin-Wittenberg et al. 2015; Barros et al. 2017; Batista 
et al. 2019; Domingues-Junior et al. 2019; Fonseca-Pereira 
et al. 2019; Merchant et al. 2006; Merchant and Richter 
2011; Obata and Fernie 2012; Pires et al. 2016). However, 
given the complexity of plant metabolism (Sweetlove 
and Fernie 2013), reductionist approaches have failed in 
unveiling how these metabolic changes regulate plant stress 
acclimation. This is because some emergent properties are 
fundamental to understand the functioning of complex 
biological systems, such as plants (Barabási 2009; Bertolli 
et al. 2014; Lüttge 2021; Neto et al. 2021; Souza et al. 
2004). This implies that it is not possible to understand 
stress acclimation mechanisms by only looking at the parts, 
highlighting the need for systemic analysis (Neto et al. 
2021).

Systems biology approaches have been successfully 
used to understand the modulation of networks of a wide 
range of biological systems (Barabási 2009; Mitchell 
2006), especially microorganisms that served as a basis 
for the establishment of network theories (Albert and 
Barabási 2002; Almaas et al. 2004; Jeong et al. 2001). 
For instance, the lethality and centrality theory of network 
biology suggests that nodes of the yeast protein–protein 
interaction network with a higher degree of connections 
(known as hubs) have a high probability to be essential to 
the organism, i.e. mutation in hubs has a high probability 
to be lethal to the organism (Jeong et al. 2001). However, 
plant protein–protein interaction network analysis 
demonstrates that hubs of the plastidial redox network 

are in fact important for plant growth, but not essential 
(Souza et al. 2019). In fact, plants may have fewer lethal 
nodes given their higher genetic and biochemical plasticity 
when compared to animals and microorganisms, which 
is a fundamental characteristic acquired by a sessile 
organism along evolution (Daloso 2014; Leitch and Leitch 
2008; Valladares et al. 2002). The higher biochemical 
plasticity is evidenced by the fact that plants have several 
isoforms of enzymes that carry high metabolic control 
coefficients (Araújo et al. 2012) coupled to a complex, 
highly connected and spatially distributed redundant and 
compensatory systems responsible for post-translational 
regulation of plant metabolic pathways (Friso and van 
Wijk 2015; Geigenberger et  al. 2017; O’Leary and 
Plaxton 2020; Souza et al. 2019; Sweetlove et al. 2017). 
These characteristics aid plants to grow and survive in 
highly stressful environments, but it makes it difficult 
to manipulate plant metabolism toward a desired state 
such as plants with improved growth and stress resilience 
(Razaghi-Moghadam and Nikoloski 2021; Sweetlove et al. 
2014, 2017).

Biological systems are known to have scale-free net-
works, in which the number of nodes and links follow a 
power law distribution, i.e. few nodes have a high number 
of links (Albert 2005; Barabási et al. 2003; Barabási 2009; 
Broido and Clauset 2019). The hubs are important to the 
maintenance of the network structure, but they are also more 
vulnerable to external attacks (Albert et al. 2001; Albert and 
Barabási 2002; Barabási and Oltvai 2004). Therefore, hubs 
have been pointed out as important elements for the stabil-
ity of the networks (Souza and Lüttge 2015), setting them 
as prominent players of biological networks. However, the 
controllability of real networks, i.e. the capacity to control a 
system to a desired final state by, for example, modifying the 
expression of a certain gene, is not driven by the hubs of the 
network (Liu et al. 2011). Thus, it is not clear which nodes 
of the network should be the focus of systems-driven plant 
breeding programs. This highlights the need to improve our 
knowledge regarding the modulation of networks under 
stress, especially concerning plant metabolic networks in 
which information is scarce. Taking this into account, we 
have investigated how the topology and the connectivity of 
metabolic networks are altered when plants are subjected to 
stress conditions. We carried out a meta-analysis of previ-
ously published metabolite profiling data from Arabidopsis, 
rice, grapevine, soybean and sugarcane under water defi-
cit, eucalyptus under cold stress, sugarcane cell suspension 
under nitrogen (N) starvation and Egletes viscosa (L.) Less 
under salt stress. Metabolomics data was used to construct 
correlation-based networks, which, coupled to multivariate 
analyses, allowed us to identify stress metabolic markers as 
well as to investigate how stress imposition alters the topol-
ogy and connectivity of metabolic networks.
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2 � Material and Methods

2.1 � Meta‑analysis Approach

We carried out a meta-analysis of previously published 
metabolite profiling data obtained from plants under dif-
ferent stress conditions. No new experiment has been 
performed in this work. Our meta-analysis approach is 
then solely based in previously performed experiments. 
In Sects. 2.2 and 2.3, we briefly describe how the plants 
were grown, how the stress treatments were imposed and 
how the metabolite profiling was carried out.

2.2 � Plant Material, Growth Conditions and Stress 
Treatments

Rice (Oriza sativa cv. Nipponbare) plants were grown 
under greenhouse conditions (natural sunlight photoper-
iod, 28 ± 3 °C, relative humidity 60%) and submitted to 
five hydric treatments using the soil matric potential (SMP, 
kPa) as soil moisture measurement. Plants were kept under 
well-watered (0 kPa, control), mild drought (− 9.8 kPa), 
moderate drought (− 31 kPa), heavy drought (− 309.9 kPa) 
and severe drought conditions (Sds, severe dehydration 
stress in soil containers, in which the irrigation was inter-
rupted) (Todaka et al. 2017).

Grapevine (Vitis vinifera L.) “Grenache” plants were 
grown under field natural conditions (natural sunlight 
photoperiod, maximum of 1500 μmol photons m−2 s−1, 
32 ± 5 °C, relative humidity 55.57%) and submitted to two 
hydric treatments, well-watered (WW, control) and water 
deficit (WD) (Gago et al. 2017).

Sugarcane (Saccharum spp.) plants were cultivated 
under greenhouse conditions (natural sunlight photo-
period, average temperature 25.8 °C) and subjected to 
three hydric treatments using the leaf water potential 
(LWP, MPa) as plant hydration measurement. Plants were 
kept under well-watered (control), moderate drought 
(− 0.5 Mpa) and severe drought (− 1 MPa) conditions 
(Vital et al. 2017).

Arabidopsis thaliana plants were grown under growth 
chamber conditions (8/16  h light/dark photoperiod, 
150 μmol photons m−2 s−1, 19 ± 3 °C, relative humidity 
67 ± 7%) and submitted to six hydric treatments, well-
watered (control), one or two drought cycle events, rehy-
dration of control and after one or two drought cycle 
events (Fonseca-Pereira et al. 2019).

Two eucalyptus plant species (Eucalyptus globulus and 
E. Grandis) were grown in greenhouse and acclimated 
under growth chamber conditions (12/12 h light/dark pho-
toperiod, 500 μmol photons m−2 s−1, average temperature 

25 °C). After acclimation, they were subjected to two ther-
mic treatments, ambient temperature of 25 °C (control) 
and 10 °C (cold) (Domingues-Junior et al. 2019).

Egletes viscosa L. plants were cultivated under green-
house conditions (12/12 h photoperiod, 29 ± 3 °C, relative 
humidity 63.5%) and subjected to three treatments, irri-
gated only with water (control), irrigated with doses of 40 
or 80 mM NaCl (Batista et al. 2019).

Soybean (Glycine max L.) plants were grown under 
greenhouse conditions (natural sunlight photoperiod, 
25 ± 10 °C, relative humidity 75 ± 10%) and submitted to 
four hydric treatments using LWP as plant water status 
measurement, well-watered (control), moderate drought 
(− 1 MPa), severe drought (-1.5 MPa) and rehydration after 
severe drought (Mesquita et al. 2020).

Cell cultures of sugarcane were cultivated in MS medium 
(Murashige and Skoog 1962) supplemented with vitamins, 
3% sucrose and 3 mg L–1 of 2,4-dichlorophenoxiacetic 
acid (2,4-D) and subjected to three nitrogen treatments, 
non-stressed (full MS, control), slightly nitrogen deficient 
(MS with only 12 mmol L–1 of nitrate (NO−3); N 30%) and 
completely nitrogen deficient (MS without NO−3, N 0%) 
(Bottcher et al. 2021).

2.3 � Metabolomics Analysis

Shoots from rice, whole rosettes from Arabidopsis thali-
ana and leaves from grapevine, eucalyptus, sugarcane, 
eucalyptus, soybean and Egletes viscosa were collected 
and immediately frozen in liquid nitrogen for metabolite 
profiling analysis. The extraction, derivatization and gas 
chromatography coupled to mass spectrometry analysis of 
polar metabolites were performed as described previously 
(Avin-Wittenberg et al. 2015; Lisec et al. 2006). Metabolite 
analysis and annotation were carried out using TagFinder® 
and the Golm Metabolome Database (http://​gmd.​mpimp-​
golm.​mpg.​de/), as previously described (Kopka et al. 2005; 
Luedemann et al. 2008).

2.4 � Multivariate Statistical Analysis

Metabolomics data was analysed by biomarker analysis 
and partial least squares discriminant analysis (PLS-DA) 
using the Metaboanalyst platform (Chong et al. 2018). 
Biomarker analysis is used to identify potential single or 
multiple biomarkers from two conditions based on receiver 
operating characteristic (ROC) curves using well-estab-
lished methods (Xia et al. 2013). PLS-DA is a biased, 
scale-reduction analysis largely used in metabolomics 
studies (Worley and Powers 2015). Beyond differentiating 
sample groups, PLS-DA also provides variable importance 
in projection (VIP) scores of the main parameters (metabo-
lites) responsible for the discrimination found between the 
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two major components of the PLS-DA. Metabolites with 
VIP scores higher than 1 are considered great representa-
tives of the PLS-DA (Xia and Wishart 2011). The metabo-
lite profiling data was normalized by cube root transforma-
tion and Pareto scale options in the Metaboanalyst® 5.0 
platform (Pang et al. 2021).

2.5 � Network Analysis

Correlation-based networks were created between the 
relative metabolite content found in all species under all 
treatments using each data separately using. The nodes in 
all networks represent the metabolites and the edges (links) 
correspond to the strength of the correlation among them. 
The correlation-based networks were created by restricting 
the connections to a specific limit of debiased sparse partial 
correlation (DSPC) coefficient (r) value (− 0.5 > r > 0.5) 
(Freire et  al. 2021). DSPC analysis was carried out by 
using the CorrelationCalculator software (Basu et al. 2017). 
Correlation-based metabolic networks were generated by 
using Cytoscape® (Shannon et al. 2003).

Network parameters such as network heterogeneity and 
network density were obtained using the NetworkAnalyzer on 
Cytoscape®, as described earlier (Assenov et al. 2008). Other 
parameters such as the number of hubs (NºHubs), preferential 
attachment and new hubs were obtained as described in our 
previous work (Freire et al. 2021). The relationship between 
NºHubs and the network was analysed by linear regression 
and Pearson’s correlation using the software SigmaPlot® 14 
(Systat Software Inc., San Jose, CA, USA).

In order to investigate the existence of a pattern of 
changes in network parameters after stress imposition, the 
relative changes in network heterogeneity, network density 
and NºHubs were obtained under stress conditions of each 
study, normalized by those found in their respective controls, 
and a heatmap was constructed. A hierarchical clustering 
analysis (HCL) was carried out in the heatmap created, using 
the MeV® software.

2.6 � Integrative Analysis

We next integrated the data derived from PLS-DA, 
biomarker and network analyses. We combined all 
metabolites with VIP scores higher than 1 from PLS-DA, 
all significant biomarkers (P < 0.05) and the hubs of 
the metabolic networks under stress conditions. The 
information were grouped in a Venn diagram in order to 
observe shared metabolites among the three approaches 
used. Venn diagram was constructed using a web platform 
(https://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/).

3 � Results

3.1 � Stress Imposition Substantially Alters Plant 
Metabolism

In order to obtain better insights on common and specific 
metabolic changes induced by different abiotic stress 
conditions, we collected previously published metabolite 
profiling data and analysed them by different systemic 
approaches. Firstly, we analysed to which extent the level 
of stress imposed altered plant metabolism by partial least 
squares discriminant analysis (PLS-DA). In general, PLS-
DA clearly discriminated stressed from non-stressed plants 
(Fig. 1A–F), with exception of plants under modest stress 
levels. This is the case of rice plants under mild and mod-
erate water deficit (WD), which were clustered together 
with well-watered (WW) plants (Fig. 2A), and soybean 
plants under moderate WD, which were partially clustered 
with WW plants (Fig. 3A).

Beyond discriminating different groups of data, the 
PLS-DA further provides a list of metabolites, based 
on the variable importance in projection (VIP) score, 
which mostly contributed to the discrimination observed 
in the PLS-DA model (Xia and Wishart 2011). The 
number of metabolites included in the VIP score lists 
ranges from 9 in Eucalyptus under cold stress to 20 in 
sugarcane under WD conditions (Figs. S1–S2). Several 
amino acids related to osmotic adjustment (e.g. Pro), 
photorespiration (e.g. Gly, Ser), synthesis of secondary 
metabolites (Trp, Phe) and alternative pathways of 
respiration (Val, Leu, Ile) have VIP scores higher than 1. 
Furthermore, sugars and organic acids were also highly 
representative in the VIP score lists (Figs. S1–S2). In 
general, these metabolites have higher levels in the most 
stressful conditions, as clearly observed in rice and 
soybean plants under four and two levels of drought, 
respectively (Figs. 2B, B).

Fig. 1   Partial least squares discriminant analysis (PLS-DA) using 
metabolite profiling data from stressed and non-stressed plants. A 
Vitis vinifera L. Grenache under well-watered (WW) and water-deficit 
(WD) conditions. B Sugarcane under WW (control) and moderate 
and severe drought conditions. C Egletes viscosa under non-stressed 
(control) and excess of NaCl (40 mM and 80 mM NaCl) conditions. 
D Eucalyptus under ambient temperature of 25  °C (control) and 
10  °C (cold). E Arabidopsis thaliana under well-watered (control), 
one or two drought cycles, rehydration of well-watered control, rehy-
dration after one or two drought cycle conditions. F Sugarcane under 
non-stressed (control), completely nitrogen deficient (N 0%) and 
slightly nitrogen deficient (N 30%) conditions. These analyses were 
carried out using Metaboanalyst (Chong et al. 2018)

◂
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Fig. 2   Partial least squares discriminant analysis (PLS-DA) (A) and 
variable importance in projection (VIP) score (B) using metabolite 
profiling data from Oryza sativa L. under well-watered (WW) or dif-

ferent levels of drought. These analyses were carried out using Meta-
boanalyst (Chong et al. 2018)

Fig. 3   Partial least squares discriminant analysis (PLS-DA) (A) and 
variable importance in projection (VIP) score (B) using metabolite 
profiling data from Glycine max L. under well-watered (WW), mod-

erate and severe drought conditions and after rehydration. These anal-
yses were carried out using Metaboanalyst (Chong et al. 2018)
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3.2 � Network Analysis Reveals that the Changes 
Induced by Abiotic Stress Imposition Are 
Species/Stress Level–Specific

We next created correlation-based metabolic networks 
to investigate the effect of stress at the network level. 
No general pattern of response in network density, 
heterogeneity and number of hubs. However, the number 
of hubs (nodes with a high degree of connection) 
increased under stress in all species, which is related 
either to the appearance of new hubs (i.e. nodes that are 
only considered hubs under stress) or to the preferential 
attachment (Supplementary Dataset S1). Hubs are defined 
here as nodes with a higher degree of connection (number 
of links) than the average of links found in the network 
under non-stress conditions, whilst preferential attachment 
is observed when a node is considered a hub under both 
control (non-stress) and stress conditions (Freire et al. 
2021). In the next sections, we describe the network results 
in each species.

3.2.1 � Rice Under Drought

Network density increased 1.8 times in moderate 
drought when compared to control, thus presenting a 
greater connection. Regarding heterogeneity, this was 
approximately 2 times lower in moderate drought and 
5 times lower in severe drought, when compared to the 
control. Moderate, heavy and severe drought conditions 
presented 2.7, 1.6 and 1.1 times more hubs than the 
control. Among the drought treatments, moderate and 
heavy drought presented a bigger hub appearance and 
preferential attachment values. Among the identified 
metabolites as hubs, arginine presented 8 connections, 
trehalose, putrescine 7 and mannose and tryptophan 6 
(Fig. 4; Supplementary Dataset S1).

3.2.2 � Grapevine Under Drought

Metabolic network density in plant under water deficit 
(WD) was 1.3 times higher than the control, presenting, 
therefore, a more connected network (Fig. 5A–B). Regard-
ing heterogeneity, plants under WD presented a value 
of 0.352, being less than the control treatment (0.425). 
Regarding the number of hubs, WD presented 34 metabo-
lites defined as hubs, whilst the control presented only 
21. Among these, alanine, myo-inositol and proline have 
a higher number of links (12, 12 and 11, respectively). 
Nineteen metabolites were classified as new hubs under 
WD and fifteen were classified as hubs in both control and 
WD conditions (Supplementary Dataset S1).

3.2.3 � Eucalyptus Under Cold Stress

Metabolic networks in stressed plants presented density 
1.2 times bigger than the control, whilst heterogeneity was 
1.1 times bigger in the control. In contrast, the number of 
hubs in cold was 23, being 1.8 times bigger than the control, 
which had only 13. The number of hub appearances in cold 
was 11, whilst the other 12 metabolites were and remained 
classified as hubs in both conditions. Among the hubs, 
3,6-anidrogalactose, trans-2-hidroxi-cinamic acid and glyc-
erol presented degree of connectedness 5, followed by tryp-
tophan and glucose, both with 4 connections (Fig. 5C–D; 
Supplementary Dataset S1).

3.2.4 � Arabidopsis thaliana Under Water Deficit

Arabidopsis metabolic networks under WD presented lower 
density than the control (Fig. 6A–C). However, heterogene-
ity was greater and lesser in plants under one or two cycles 
of WD, respectively, compared to the control. Curiously, 
plants under one cycle of WD did not present hubs in the 
metabolic network, whilst plants under two cycles of WD 
had just 2 metabolites classified as hubs, against 13 in the 
control treatment. It should be noted that these two hubs 
were already classified as hubs in watered plants, which 
means that hub appearance after one or two cycles of WD 
was null (Supplementary Dataset S1).

3.2.5 � Sugarcane Under Water Deficit

Sugarcane metabolic networks under moderate drought 
presented lower density when compared to the control 
treatment (Fig. S2). However, severe drought presented a 
slight decrease (1.1) in density, as compared to the control. 
Regarding heterogeneity, stressed plants presented 1.4 and 
1.1-times higher values in moderate and severe drought, 
respectively, when compared to the control. The highest 
number of hubs was in severe drought with 17, whilst the 
control and moderate drought presented 15 and 18 hubs, 
respectively. Among these, alanine, aspartate and fructose 
were the metabolites with more connections in moderate 
drought with 3, 3 and 2 connections, respectively, whilst in 
severe drought were valine, aconitrate and fructose present-
ing 4, 3 and 3 connections respectively. It should be noted 
that leucine and fructose were identified as hubs in both 
drought conditions (Supplementary Dataset S1).

3.2.6 � Egletes viscosa Under Salt Stress

Density and heterogeneity of the metabolic networks pre-
sented low variations between the control plants and the 
ones submitted to salt stress (Fig. 7A–C). However, net-
work heterogeneity was 2.1 times lower in the 80 mM NaCl 
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Fig. 4   Correlation-based metabolic networks from rice (Oryza sativa 
L.). The data was obtained from shoot metabolite profiling of O. 
sativa plants under well-watered (A), mild drought (− 9.8  kPa) (B), 
moderate drought (− 31 kPa) (C), heavy drought (− 309.9 kPa), (D) 
and severe drought (Sds, severe dehydration stress in soil containers) 
(E) conditions. Bigger nodes indicate higher degree of connections, 

i.e. nodes with higher number of links. The links (i.e. lines connect-
ing two nodes) represent the strength of correlation between them, 
measured by debiased sparse partial correlation (r). Two nodes are 
connected only if − 0.5 > r > 0.5. Thicker lines indicate higher r, in 
module. Blue and red lines represent positive and negative correla-
tions, respectively
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treatment than in the control. This treatment (80 mM NaCl) 
also presented a substantial increase (2.2 times) in the num-
ber of hubs, having 19 new hubs. Valine, norleucine and 
phosphoric acid were the metabolites that presented a higher 
degree of connections, with 20, 19 and 18, respectively 
(Supplementary Dataset S1).

3.2.7 � Soybean Under Water Deficit

The network density was 1.6 times lower in severe drought 
when compared to the control, whilst there was no varia-
tion in network density in plants under moderate drought 

or rehydrated (Fig. S3). Network heterogeneity increased 
in all treatments, compared to the control, being the big-
gest difference reported for severe drought treatment, which 
presented an increase of 1.5 times compared to the control. 
Among the treatments, moderate drought presented the high-
est number of hubs (22), in which 11 were new hubs and 11 
were already classified as hubs in control situations and that 
remained highly connected in stress situations, evidenced 
by the value of preferential attachment. Metabolites with 
the highest degree of connection in moderate drought were 
transcaffeic acid, galactonic acid and glycolate with 4, 3 
and 3 degrees, respectively, whilst in severe drought were 

Fig. 5   Correlation-based metabolic networks from Vitis vinifera 
L. “Grenache” (A–B) and Eucalyptus (E. globulus and E. Grandis) 
(C–D). The data from V. vinifera and Eucalyptus were obtained from 
leaf metabolite profiling of V. vinifera plants under well-watered (A) 
and water-deficit (B) conditions and Eucalyptus plants under ambi-
ent temperature (25 °C) (C) and cold stress (10 °C) (D) conditions. 

Bigger nodes indicate higher degree of connections, i.e. nodes with 
higher number of links. The links (i.e. lines connecting two nodes) 
represent the strength of correlation between them, measured by 
debiased sparse partial correlation (r). Two nodes are connected only 
if − 0.5 > r > 0.5. Thicker lines indicate higher r, in module. Blue and 
red lines represent positive and negative correlations, respectively
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dehydroascorbate, ethanolamine and lactate presenting 1 
connection and fructose and fumarate with 2 connections 
each (Supplementary Dataset S1).

3.2.8 � Sugarcane Under N Starvation

Slight decreases in metabolic network density for both N 
deprivation conditions were observed (Fig. S4). However, 
heterogeneity was 2.4 and 1.7 times smaller in conditions 
of N 0% and N30%, respectively. The number of hubs was 
also not altered after stress, although 13 and 15 new hubs 
were identified in N 0% and N 30% treatments, respectively. 
Among the new hubs, sucrose stands out presenting 35 and 

36 connections in N 0% and 30% treatments, respectively 
(Supplementary Dataset S1).

3.3 � Integrating Network and Multivariate Analyses

We next used integrative approaches to obtain better 
insights concerning plant stress metabolic responses. First, 
we combined all network analyses and investigated the 
relative changes in the network parameters of each study. 
For this, the values of heterogeneity, density and number 
of hubs (NºHubs) obtained under stress conditions were 
normalized by dividing them by the values found in the 
respective control of the experiment (i.e. non-stressed 
plants). The objective of this analysis was to investigate 

Fig. 6   Correlation-based metabolic networks from Arabidopsis thali-
ana. The data was obtained from whole rosette metabolite profiling of 
A. thaliana plants under well-watered (A) and one (B) or two drought 
cycle events (C) conditions. Bigger nodes indicate higher degree of 
connections, i.e. nodes with higher number of links. The links (i.e. 

lines connecting two nodes) represent the strength of correlation 
between them, measured by debiased sparse partial correlation (r). 
Two nodes are connected only if − 0.5 > r > 0.5. Thicker lines indicate 
higher r, in module. Blue and red lines represent positive and nega-
tive correlations, respectively
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if there is a pattern of the response of these parameters 
after stress imposition. However, no pattern was observed, 
neither in relation to the type of stress (e.g. drought) nor 
among the level of stress within the species (Fig. 8A). The 
hierarchical clustering analysis (HCL) grouped different 
species and treatments according to the decrease in den-
sity and N°Hubs, whilst another large group was grouped 
according to the increase in these parameters. An interme-
diate group containing sugarcane under severe drought and 

soybean under moderate drought were clustered separately, 
as they showed small increases in all parameters (Fig. 8A). 
HCL analysis also highlighted that the density and N°Hubs 
parameters are highly correlated. We then investigated the 
relationship between these parameters through regression 
analysis. The N°Hubs was positively correlated with the 
density of the network (R2 = 0.82; P < 0.001) (Fig. 8B), 
highlighting the power of the N°Hubs parameter to provide 

Fig. 7   Correlation-based metabolic networks from Egletes viscosa. 
The data was obtained from leaf metabolite profiling of E. viscosa 
plants under non-stressed (A) and saline conditions by irrigation with 
40 (B) or 80  mM NaCl solution (C). Bigger nodes indicate higher 
degree of connections, i.e. nodes with higher number of links. The 

links (i.e. lines connecting two nodes) represent the strength of cor-
relation between them, measured by debiased sparse partial correla-
tion (r). Two nodes are connected only if − 0.5 > r > 0.5. Thicker lines 
indicate higher r, in module. Blue and red lines represent positive and 
negative correlations, respectively
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direct information concerning the major hubs of the net-
work and indirectly about the density of the network.

Afterwards, we carried out a biomarker analysis using 
the Metaboanalyst platform (Pang et al. 2021). This analy-
sis indicates which metabolites are markers of each stress 
level condition (Xia et al. 2013). Thus, in experiments in 
which more than one stress level was used, biomarkers 
were obtained for each stress level. After obtaining the list 
of metabolites that were considered markers for each stress 
level (Supplementary Dataset S1), we then combined this 
with the list of metabolites with VIP scores higher than 1 in 
the PLS-DA model and the hubs found in each stress level 
condition in Venn diagrams (Fig. 9A). The construction of 
Venn diagrams allowed us to identify metabolites from each 
experiment and stress level that are at the intersection of the 
three approaches used (biomarkers, PLS-DA and networks). 
Subsequently, we combined the information from all experi-
ments in order to verify which metabolites appeared most at 
these intersections (Fig. 9B). The metabolites with the high-
est number of intersections in the different treatments are 
shown in Table 1. Among these, asparagine had the highest 
number of intersections (6), including three different types 

of stress (water deficit, salt stress and N limitation). Fur-
thermore, several amino acids (Val, Leu, Ile, Phe, Trp, Gly 
and Pro), glycerate, shikimate and the sugars raffinose and 
fructose also showed two or more intersections, with many 
of these intersections involving different types of stress 
(Table 1). This analysis highlight that different metabolic 
pathways are involved in plant stress acclimation, but amino 
acid metabolism is a major hub for it.

4 � Discussion

4.1 � Unveiling the Complexity of Plant Stress 
Metabolic Responses at Network Level

In the face of the climate change scenario, in which more 
severe and prolonged droughts and extreme temperatures 
are predicted to be more common, it is important to under-
stand how plants acclimate to abiotic stress conditions to 
maintain or improve crop yield under stressful conditions 
(Cattivelli et al. 2008; Zandalinas et al. 2021). In this vein, 
the use of systemic approaches is fundamental to unravel the 

Fig. 8   Comparative analysis of the parameters obtained in the meta-
bolic network analysis of plants under several abiotic stress condi-
tions. A Hierarchical clustered heat map demonstrating the relative 
changes in network heterogeneity, density and number of hubs. The 
values obtained under stress conditions were normalized according to 
their respective controls. Similar trends were grouped by hierarchical 

clustering analysis (HCL) using the MeV® software. B Relationship 
between number of hubs and network density. Linear regression was 
carried out using data from all species/stress conditions and the Sig-
maPlot® software. Both R2 and P value of the regression analysis are 
highlighted in the graph 
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mechanisms of plant acclimation and adaptation to abiotic 
stresses (Evans and Lawson 2020; Neto et al. 2021). Indeed, 
network analyses are routinely used to better understand the 
abundance of information originated from large-scale data 
analysis, especially those from transcriptomics and inter-
actome studies (Gutiérrez et al. 2007; Jeong et al. 2001; 
Jones et al. 2014; Kuhalskaya et al. 2020; Souza et al. 2019). 

However, it is not clear how and to which extent network and 
multivariate statistical analyses can be used in conjunction 
in metabolomics studies and which emergent properties are 
obtained by combining these approaches. Here, we carried 
out a meta-analysis using data from previously published 
metabolite profiling of plants under different stress con-
ditions, aiming to identify common metabolic responses 

Fig. 9   Integration of multivariate and network analyses. A Venn dia-
gram integrating the metabolites found as stress biomarkers, the hubs 
from network analyses and metabolites from the variable importance 

in projection (VIP) scores list of the partial least squares discriminant 
analysis (PLS-DA). B Venn diagram highlighting the intersections of 
those metabolites in each stress condition

Table 1   Metabolites found in the intersections of the Venn diagrams 
from biomarkers, network and PLS-DA analyses. The number of 
intersections column indicates the number of studies in which the 
metabolite was found in the intersection of the Venn diagram. The 
column types of stress highlight under which stress condition the 

metabolite was found in the intersection of the Venn diagram. The 
last column demonstrates the metabolism or metabolic pathway 
which the metabolite is related. Abbreviations: ETF/ETFQO, elec-
tron-transfer flavoprotein/ electron-transfer flavoprotein:ubiquinone 
oxidoreductase; -N, nitrogen deprivation stress; WD, water deficit

Metabolites Number of intersections Type of stress Metabolism/metabolic pathway

Asparagine 6 WD, salt, -N Amino acids
Valine 4 WD, cold, salt Amino acids/substrate ETF/ETFQO
Isoleucine 4 WD, cold, salt Amino acids/substrate ETF/ETFQO
Leucine 3 WD, cold Amino acids/substrate ETF/ETFQO
Raffinose 3 WD, cold Sugars/Osmoprotection
Glycine 3 WD, salt Photorespiration
Phenylalanine 3 WD Amino acids/secondary metabolism
Fructose 3 WD Sugar/signalling/Osmoprotection
Glycerate 2 WD, -N Photorespiration
Proline 2 WD, salt Amino acids/Osmoprotection
Tryptophan 2 WD Amino acids/secondary metabolism
Shikimate 2 -N Secondary metabolism

1 3

16



Journal of Soil Science and Plant Nutrition  (2023) 23:4–21

among the studies and which emergent properties raise from 
the integration of different systemic analysis.

Previous studies suggest that plants under stress have 
higher connected photosynthetic networks (Daloso et al. 
2014; Souza et al. 2005b, 2009). Higher network connectiv-
ity has been proposed to be associated to a higher stability of 
the system (Souza et al. 2005a; Souza and Lüttge 2015). We 
then hypothesized that stress conditions would lead to higher 
connected metabolic networks, i.e. with higher network den-
sity. However, no clear pattern of changes in network density 
and topology among species/stress conditions was observed. 
Whilst the network density increased in some species under 
stress, the opposite was observed in other studies or under a 
different intensity of stress. Our results suggest therefore that 
plant metabolic network responses are specific to the level of 
stress condition in which the plant is subjected. These results 
highlight the difficulty to identify stress metabolic markers 
for multiple species and to choose biotechnological targets 
to improve stress tolerance in plants through systems-driven 
metabolic engineering (Bertolli et al. 2014; Flexas 2016). 
It is noteworthy that the responses to stress vary according 
to the level of stress in which the plant is subjected (Galviz 
et al. 2022). Thus, the lack of pattern in network parameters 
among the different stress/species investigated here could be 
due to the intrinsic limitation of our meta-analysis, which 
was based on different studies.

Although metabolic network analysis was highly variant 
among the studies, network analysis of distinct plant spe-
cies under stress allowed us to further evaluate the power 
of the parameter number of hubs (NºHubs) recently estab-
lished in our group (Freire et al. 2021). This parameter was 
created aiming to identify the hubs in metabolic networks, 
highlighting the nodes (metabolites) that are key for the 
topology of the network under different conditions. Here, 
we use this approach to identify the hubs that are prominent 
in plant metabolic networks under non-stress and/or stress 
conditions. Interestingly, the NºHubs was positively corre-
lated to network density (R2 = 0.82; P < 0.001), which is a 
well-established and widely used network parameter. How-
ever, network density provides an idea only about network 
connectivity per se, whereas, in addition to it, the NºHubs 
provides which nodes most influence network topology 
according to the conditions in which the plant is submitted. 
Furthermore, beyond unveiling the major connected nodes 
of the network, NºHubs offer a possibility to be integrated 
into other analyses in order to have better insights concern-
ing the plasticity of metabolic networks.

4.2 � Metabolism of Amino Acids as a Major Hub 
for Plant Stress Metabolic Responses

The integration of network, PLS-DA and biomarker analy-
ses enable the identification of metabolites that mostly 

contributed to plant acclimation, in which several of them 
are common to different species/stress conditions. In gen-
eral, PLS-DA using metabolite profiling data clearly dis-
tinguished stressed from non-stressed plants, similar to 
other studies that have used PLS-DA or principal compo-
nent analysis (PCA) (Filippou et al. 2021; Fonseca-Pereira 
et al. 2019; Obata et al. 2015; Todaka et al. 2017). Moreo-
ver, the intersections of Venn diagrams obtained by com-
bining the VIP score list of the PLS-DA and network and 
biomarker analyses identified which metabolites mostly 
contributed to plant stress acclimation. Several metabo-
lites appeared in the Venn diagram intersections in more 
than one type and level of stress, ranging from one in 
Arabidopsis under drought to thirteen in sugarcane under 
severe drought. Among these, asparagine stands out in 6 
intersections, in which its content increased in five out of 
six stress conditions compared to its respective control. 
Asparagine is a metabolite belonging to the glutamine/
asparagine synthetase pathway, being an important source 
of nitrogen for this and other pathways (Gaufichon et al. 
2016). This result reinforces the importance of nitrogen 
metabolism for plant stress acclimation (Batista-Silva 
et al. 2019; Hildebrandt 2018).

Plant stress responses involve the activation of complex 
signalling networks that leads to substantial metabolic 
alterations throughout the plant (Fàbregas and Fernie 2019; 
Zandalinas et al. 2022; Zandalinas and Mittler 2022). Among 
the pathways activated under stress, amino acid catabolism is of 
paramount importance for metabolic homeostasis (Hildebrandt 
et al. 2015). For example, plants activate alternative pathways 
to provide substrate to mitochondrial respiration under stress-
induced carbon starvation. This occurs through the degradation 
of proteins and branched-chain amino acids (Leu, Ile and 
Val) and activation of the energetic metabolism through the 
alternative ETF/ETFQO pathway of respiration (Araújo et al. 
2010, 2011), which contribute to alleviating damage triggered 
by stress conditions (Barros et al. 2020; Brito et al. 2022; 
Pires et al. 2016). Additionally, the degradation of aromatic 
amino acids (Tyr, Trp and Phe) further helps plants cope with 
stress by providing substrates for the synthesis of hormones 
and secondary metabolites (Saito et al. 2013). Here, several 
of these amino acids were identified in the Venn diagram 
intersections, i.e. different approaches indicate that they are 
good candidates to discriminate plants under stress to those 
under non-stress conditions. It is noteworthy that amino acid 
metabolism has been implicated in modulating both local 
and systemic responses, suggesting that these metabolites 
are not the only source of carbon and nitrogen for different 
pathways but are also good stress signal messengers that aid 
the entire plant to acclimate to stress conditions (Balfagón 
et al. 2022; Choudhury et al. 2018). These results collectively 
pinpoint amino acid metabolism as a major hub for plant stress 
responses.
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The other metabolites with a high number of intersections 
in the Venn diagrams are osmoprotectants (Pro, fructose and 
raffinose) and related to photorespiration (Gly and glycer-
ate), two mechanisms highly documented of contributing to 
stress acclimation (Gomes Silveira et al. 2003; Guilherme 
et al. 2019; Timm and Hagemann 2020), especially under 
drought (Fàbregas and Fernie 2019; Obata and Fernie 2012). 
Recent temporal metabolomics analyses demonstrated that 
the osmoprotectants Pro, raffinose, trehalose and sucrose 
progressively accumulate in Arabidopsis plants under 
drought (Lozano-Elena et al. 2022). Furthermore, the accu-
mulation of these metabolites plus fructose, glycerate and 
other sugars, amino acids and organic acids are exacerbated 
in plants overexpressing brassinosteroid insensitive-like 
3 (BRL3), which has been previously shown to be more 
drought-tolerant (Fàbregas et al. 2018). Lozano-Elena and 
collaborators further demonstrated that several transcripts 
related to both jasmonic (JA) and abscisic (ABA) acids are 
upregulated in response to drought (Lozano-Elena et al. 
2022). These findings coupled to our results suggest that 
metabolic responses to drought involve a complex interplay 
between signalling pathways coordinated by JA, ABA and 
brassinosteroids, highlighting the challenge to elect targets 
for genetic manipulation toward plant drought tolerance 
improvement (Flexas 2016).

5 � Conclusions

The integration of network, PLS-DA and biomarker analy-
ses allowed us to identify which metabolites are possible 
markers of the abiotic stresses tested here, among which 
asparagine, amino acids (Val, Ile, Leu, Gly, Phe, Pro and 
Trp), sugars (fructose and raffinose) and shikimate appears 
as key for plant stress acclimation. Our results highlight 
that the metabolism of amino acids is a major hub for plant 
stress responses. Our meta-analysis provides a systemic data 
analysis strategy for analysing metabolite profiling data from 
plants under stress, in which different tools are used to iden-
tify metabolic markers. We further demonstrated that the 
parameter number of hubs has great potential in unveiling 
the major hubs of metabolic networks, which facilitate the 
evaluation of the plasticity of the metabolic network and its 
major hubs under different conditions.
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