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Abstract
High-temperature stress is a major limiting factor to decrease seed yield and oil content. Using micronutrients such as 
zinc (Zn), manganese (Mn), and boron (B) are considered agricultural management practices for improving the quantity 
and quality of oil under high temperature at the seed filling stage. The experiment was carried out as a split-plot based on 
a randomized complete block design with three replications over 2 years. Main plots consisted of three sowing date levels 
(Nov. 5, Nov. 25 and Dec. 15), and subplots included ten levels of foliar application of micro-nutrients (2, 4, 6 g  l−1 Zn; 2, 
4, 6 g  l−1 Mn; 2, 4, 6 g  l−1 B, and the foliar application of distilled water as control treatment). Foliar applications were at 
rosette (BBCH scale code-30) and the opening of the first flower (BBCH scale code-61). Any delay in planting resulted in 
higher mean air temperature during the seed-filling period by 4 °C and 0.9 °C in the first and second year, respectively. The 
reduction of seed yield due to the delay in sowing date on Nov. 25 and Dec. 15 were respectively 7% and 35%. The highest 
seed yield (4411 kg ha −1) belonged to foliar application of B (4 g  l−1) at the first sowing date (Nov. 5) and the lowest ones 
(1624 kg ha −1) were associated with the last sowing date and using distilled water. High temperature during the seed fill-
ing period led to more palmitic, stearic, linolenic, and oleic acids, but generated less linoleic acid. Foliar application of Zn 
(4 g  l−1), Mn (2 g  l−1) and B (4 g  l−1) led to an increase in the seed yield by 12%, 22% and 29%, respectively. According to the 
results of this experiment, more than 340 kg  ha−1 reduction in the seed yield was observed as the temperature increased by 
one degree from 28 °C. Based on the results of the experiment, the application of micro-nutrients (Zn, Mn, and B) elevated 
the seed yield and oil content on all sowing dates.
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1 Introduction

Climate change which is caused by global warming is a 
global concern (Yerlikaya et al. 2020) and the rise in tem-
perature reduces the yield of many crops (Malhi et al. 2021), 

such as canola (Ghani et al. 2021). The global mean tem-
perature has increased by 0.5 °C during the past century and 
it is predicted to experience a further rise by 0.3–4.8 °C by 
2100 (IPCC 2014).

Canola is a major oilseed crop around the world and 
increasing temperature impacts floral morphology, seed 
yield, oil content, and fatty acids (Pokharel et al. 2020). Can-
ola oil has a lower content of saturated acids (Shiranirad et al. 
2021), high content of monounsaturated fatty acids, and an 
adequate amount of polyunsaturated fatty acids (Beyzi et al. 
2019). The qualitative and quantitative characteristics of can-
ola oil are influenced by environmental factors and nutrition 
conditions (Shiranirad et al. 2021; Mokhtassi-Bidgoli et al. 
2021). Canola grows well if it is sown on the optimum sow-
ing date (Aghdam et al. 2019) when flowering, silique, and 
seed filling periods are not influenced by terminal heat stress 
(Kalantar Ahmadi and Daneshian 2021). Heat stress can have 
adverse effects on reproductive stages as it decreases the seed 
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yield and yield components (Zinn et al. 2010; Ahmad et al. 
2021b), photosynthetic rate, and water potential (Ahmad 
et al. 2021a). Exposing flowering plants to high tempera-
tures (30 °C day and 15 °C night) lowers the seed yield due 
to an increase in the flowers’ abortion rate and a consequent 
decrease in the number of siliques per plant (Gan et al. 2004). 
Canola oil content is negatively influenced by late-season 
high temperature (Kutcher et al. 2010), and fatty acids com-
position has been changed by temperature and sowing date 
(Izquierdo et al. 2006). High temperatures (30 °C day and 
25 °C night) over an extended period up to 40 days after 
flowering or short-term heat stress (38 °C day and 23 °C 
night temperatures over 5 days) commenced in 25–29 days 
post-flowering changed fatty acids amounts and oil content 
(Aksouh-Harradj et al. 2006; Pritchard et al. 2000).

Heat stress causes a reduction in the uptake of nutri-
ents from the soil and exogenous application of nutrients 
is proved as a useful way to alleviate the injurious effects of 
heat stress (Waraich et al. 2012). Plant nutrition improves 
quantitative and qualitative yields under environmental 
stresses (Movahhedy-Dehnavy et al. 2009; Ibrahim and 
Ramadan 2015). Foliar application of nutrient elements is 
used as a quick and sustainable method to ensure adequate 
nutrient supply for crops (Fageria et al. 2009) and could be 
a useful strategy for reducing the harmful effects of heat 
stress (Waraich et al. 2012). Zn mediates the regulation of 
water relations, maintaining cell water and osmotic poten-
tial under high-temperature conditions (Venugopalan et al. 
2022). B increases stomatal opening, and gaseous exchange 
regulation (Waraich et al. 2011; Imtiaz et al. 2010) and Mn 
accelerates photosynthesis and nitrogen metabolism under 
high-temperature conditions (Waraich et al. 2012).

Some studies have revealed that foliar application of 
a small amount of micro-nutrients like Zn, B, and Mn 
increased the yield (Sarkar et al. 2007; Wissuwa et al. 2008). 
Zn is an essential element for the activity of different types 
of enzymes (Cakmak 2008) and foliar Zn application leads 
to greater seed yield, oil, and protein content (Bybordi and 
Mamedov 2010). Zn deficiency influenced carbohydrate 
metabolism, mitigated pollen germination, and reduced the 
yield (Mei et al. 2009). Also, there is a relationship between 
Zn deficiency and susceptibility to high temperatures (Gra-
ham and McDonald 2001). Sufficient Zn can soften the 
negative effects of the short periods of high temperature on 
seed growth and chloroplast function (Razzaq et al. 2013; 
Peck and McDonald 2010). The application of Zn improves 
the quality and quantity of canola oil. The use of Zn at the 
pollen grain formation stage in canola increases the linolenic 
acid (Agha Mohammad Reza et al. 2021) and changes other 
fatty acids (Movahhedy-Dehnavy et al. 2009).

B is absorbed by plants in small amounts, which is 
involved in many physiological and biochemical processes 
(Badawy et al. 2016). The application of B can enhance the 

seed weight, oil yield, and the oil quality of canola (Mei 
et al. 2009), and alleviate the harmful effects of the high-
temperature stress (Waraich et al. 2011), which can eventu-
ally lead to the growth of canola (Badawy et al. 2016). More-
over, B can enhance the antioxidant activities of plants and 
thereby mitigate ROS damage induced by heat stress. Also, 
nutrition by B plays an important role in the metabolism 
of oil (Manaf et al. 2019), carbohydrates, protein, phenol 
(Bellaloui et al. 2013), and sugar transportation which can 
improve seed formation (Waraich et al., 2012), enhance pho-
tosynthesis, and reduce cell damage (Waraich et al. 2011).

Mn is a vital element for plants and participates in various 
processes such as photosynthesis, respiration, and enzyme 
activity (Pourjafar et al. 2016). Furthermore, foliar spray-
ing of Mn enhances the seed yield of canola (Bahrani and 
Pourreza 2014). Mn can reduce the adverse effects of high 
temperature by accelerating photosynthesis and nitrogen 
metabolism (Waraich et al. 2012). The direct influence of 
Mn as a component of the biotic enzyme could be a con-
tributing factor in the biosynthesis of the fatty acids (Jabeen 
et al. 2013).

Canola’s importance in oil supply and food security is 
known in many parts of the world and the implementa-
tion of proper agricultural management practices has great 
importance in achieving this goal. Scanty information is 
available on the effect of micronutrients to decrease the 
undesirable influences of high temperature on quantita-
tive and qualitative characteristics of canola. Studying 
the important role of micronutrients (Zn, Mn, and B) in 
protecting crops under high-temperature conditions might 
alleviate the negative impact of heat stress. Moreover, it 
is important to find a suitable sowing date and appropri-
ate management for a successful agricultural practice. 
Therefore, this experiment was carried out to arrive at 
the optimum dose and probe the role of Zn, Mn, and B to 
ameliorate the adverse effect of heat stress on seed yield, 
oil content, and fatty acids, which can improve both the 
quantitative and qualitative traits of canola oil in areas with 
similar climatic conditions.

2  Materials and Methods

2.1  Experimental Site

The study was carried out within 2 years (2015–2017) at 
Safiabad Agricultural and Natural Resources Research and 
Education Center which is located in Khuzestan province 
in the southwest of Iran (82.9 m a.s.l., 48° 26′ E, 32° 16′ 
N). The characteristics of the soil are presented in Table 1. 
The temperature during flowering, siliquing and seed filling 
periods are shown in Tables 2 and 3, respectively. Climatic 
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data including temperature, rainfall, and relative humidity 
was provided in Supplementary Figs. 1 and 2.

2.2  Soil Properties

Before conducting the experiment, composite farm soil 
samples were taken (0-–30-cm depth) and then dried out 
and sieved with a 2-mm sieve. Physical and chemical 
characteristics of soil were measured. The properties con-
sisted of K and P, electrical conductivity (EC) (Page et al. 
1982), organic carbon (OC) (Walkley and Black 1934), pH 
(Metrohm pH meter, Metrohm, Herisau, Switzerland), and 
soil texture (Gee and Bauder 1986). Available Zn, Mn, and 
B were extracted by diethylenetriaminepentaacetic acid 
(DTPA) (Baker and Amachar 1983) and analyzed by atomic 
absorption spectrometry (Lindsay and Norvell 1978).

2.3  Experimental Design

A split plot was used based on a completely randomized block 
design with three replications over 2 years. The main plots 
included three sowing dates (November 5, November 25 and 
December 15) and subplots consisting of 10 levels of foliar 
application of micro-nutrients concentrations (2, 4, 6 g  l−1 Zn 
sulfate, 2, 4, 6 g  l−1 Mn sulfate, 2, 4, 6 g  l−1 boric acid, and 
the foliar application of distilled water as control treatment). 
The land-map design (3 main plots and 10 sub-plots) of the 
experiment was described in Supplementary Table 4. Foliar 
applications were at rosette (BBCH scale code-30) and the 
opening of the first flower (BBCH scale code-61; Weber and 
Bleiholder 1990). The studied cultivar was Hyola401. The 
first sowing date (Nov. 5) was considered the suitable sowing 
date (Kalantar Ahmadi et al. 2014). The air temperature was 
nearly 28 °C considered the threshold temperature (Morrison 
and Stewart 2002; Ghobadi et al. 2006).

2.4  Experiment Procedure

There was a 75-cm distance between ridges and two rows 
were sowed on each ridge. The needed area for each plot was 
12  m2. Each subplot included 4 ridges. After establishment, 
the plants were tinned to achieve 80 plants  m−2 at the 6-leaf 
stage. Before planting, 200 kg  ha−1 and 150 kg  ha−1 potas-
sium sulfate and triple superphosphate were used, respec-
tively. Nitrogen (N) was used to 180 kg  ha−1 (391 kg  ha−1 

urea) while one-third of it was applied during the sowing 
period. Besides, split application of the remaining nitrogen 
was used at rosette (BBCH scale code-30) and the opening 
of the first flower (BBCH scale code-61; Weber and Blei-
holder 1990).

2.5  Seed Yield, Oil, and Fatty Acids Content 
Assessment

Two center rows in each plot were harvested at maturity 
to measure seed yield in an area of 6  m2. NMR (Nuclear 
Magnetic Resonance) German Broker Brand minispc mq20 
model (Iso 5511, 1992) was used to assess the oil content 
of 5 g seed samples. To determine the oil percentage, after 
daily calibration of the machine with a reference sample and 
calibration of the product with pre-prepared standard sam-
ples, at least 3 g of seed canola was measured and transferred 
to the special cell of the device, then the oil percentage of 
the sample was recorded in the monitor for less than 1 min.

Fatty acid composition was determined using the gas 
chromatography (GS) method. Oil samples were extracted 
in triplicate from 100 g of seed canola based on the method 
explained by Azadmard-Damirchi et al. (2005). Fatty acid 
methyl esters were provided from the oil samples. Two ml 
of 0.01 M NaOH in methanol was added to the oil sample 
dissolved in 0.5 ml hexane and then kept in the water bath 
at 60 °C for 10 min. Next, B trifluoride in methanol (20% 
of BF3 in methanol) was added and then it was held for 
10 min in a water bath at 60 °C. Then, the sample was cooled 
under water and added 2 ml of sodium chloride (20% w/v) 
as well as added 1 ml hexane was added. After blending 
completely, the layer of hexane which contained the fatty 
acid methyl esters was detached by centrifugation. The fatty 
acid methyl esters were analyzed by GC according to the 
method illustrated by Azadmard-Damirchi and Dutta (2006). 
The glucosinolate was estimated using a spectrophotometer, 
equipped with a 50-m length CP-Sil 88 capillary column, the 
internal diameter of 0.25 Modified, and 0.2 µm of the static 
thickness (Makkar et al. 2007).

2.6  Statistical Analysis

Statistical analysis was performed using SAS (Version 9.2) 
for combined analysis of variance after conducting Bartlett’s 
test and providing the homogeneity of the test variance in 

Table 1  Characteristics of physical and chemical properties of soil used in the experiment

OC organic carbon, P phosphorus, K potassium, pH potential of hydrogen, EC electrical conductivity, Zn zinc, Mn manganese, B boron

Year Soil texture OC (%) P (mg  kg−1) K (mg  kg−1) pH EC (ds  m−1) Zn (mg  kg−1) Mn (mg  kg−1) B (mg  kg−1)

2015 Clay-loam 0.62 8.5 178 7.64 0.57 0.71 4.5 0.6
2016 Clay-loam 0.65 10.1 185 7.61 0.56 0.73 4.2 0.62
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each year. When the F-test indicated statistical significance 
at P ˂ 0.01 or P ˂ 0.05, the protected least significant differ-
ence (protected LSD) was applied to separate the means of 
the main effect and the significant interactions were per-
formed by the least significant difference (LSD) test by slic-
ing method at P ˂ 0.05. The regression relationship between 
seed yield, oil content, and fatty acids with temperature 
during seed filling period was calculated by interaction 
year × sowing date. To calculate the regression relationship 
between the studied traits and micronutrients, we used the 
mean of the simple effect of micronutrients during 2 years 
of the experiments. Minitab software (Version 16) was 
employed to do principal component analysis. In this study, 
principal components analysis was employed to select the 
effective features in the quantity and quality of the oil. In 
the composition technique, the variables  X1,  X2, …  Xp are 
combined with the components P, and a series of indicators 
or components  Z1,  Z2, … and  Zp that are not correlated with 
each other were obtained.

3  Results

Combined analysis showed that the simple effect of year 
and foliar application was significant in all the studies traits. 
The sowing date had a significant effect on all traits, except 
erucic acid. The interaction effect of year × sowing date on 
palmitic acid, oleic acid, linolenic acid, linoleic acid, erucic 
acid, glucosinolate, and oil content was significant at 1% 
level. The interaction effect of sowing date × foliar applica-
tion of micro-nutrients was significant among all traits. The 
interaction effects of year × sowing date × foliar application 
of micro-nutrients did not significant effect on studied traits 

(Supplementary Table 1). The interaction slicing analysis 
of foliar application at any sowing date showed significant 
results for the studied traits (Supplementary Table 2). Mean 
comparison of year × sowing date revealed that the seed 
yield, oil content, and linoleic acid of all sowing dates in the 
second year were more than the first year (Table 4). Mean 
comparison of year × sowing date showed that palmitic, 
oleic, linolenic, and erucic acids of all sowing dates in the 
first year were more than in the second year (Table 4). This 
matter was related to higher temperatures and the number 
of days with temperatures more than 30 °C in the first year 
compared to the second year (Table 3). Days with tempera-
tures above 30 °C were not observed during the flowering 
stage in the second year (Table 2).

3.1  Seed Yield

An increase in temperature due to delay in the sowing date 
led to lower seed yield by 6.74% and 36.14% in the second 
(Nov. 25) and the last (Dec. 15) sowing dates, respectively. 
The mean comparison of the interaction effect of sowing 
date × foliar application revealed that the highest seed yield 
was (4411.01 kg  ha−1) allocated to the foliar application of 
B (4 g  l−1) at the first sowing date (Nov. 5). The seed yield 
increased by 32% with foliar application of B (4 g  l−1) at the 
first sowing date (Nov. 5) compared to the control treatment. 
The lowest seed yield (1624 kg  ha−1) was associated with the 
last sowing date and use of distilled water (Table 5). Slic-
ing revealed that all micro-nutrients foliar spray treatments 
except Zn (2 g  l−1) and control treatment were in the same 
statistical group for the second sowing date. In other words, 
compared to other foliar spray treatments, Zn (2 g  l−1) had 
the lowest effect on the increase in the seed yield (Table 5). 

Table 4  Mean comparison of the two way-interaction of year × sowing date on studied traits during 2 years (2015–2017)

Lettering is showing the difference among treatment means. Means in each column, followed by least one letter in common are not significantly 
different (P ≤ 0.05) by LSD test. The value after ( ±) is standard error

Year Sow-
ing 
date

Seed yield  (kg 
 ha−1)

Oil content 
(%)

Palmitic acid 
(%)

Oleic acid (%) Linolenic 
acid (%)

Linoleic acid 
(%)

Erucic acid 
(%)

Glucosi-
nolate (µmol 
 g−1)

First year 
(2015–
2016)

Nov. 
5

3125.9 ± 92.1c 43.71 ± 0.18b 3.49 ± 0.02c 53.91 ± 0.18d 4.51 ± 0.07c 21.76 ± 0.21d 0.019 ± 0.08a 5.05 ± 0.08c

Nov. 
25

2970.7 ± 99.2c 41.67 ± 0.21d 3.65 ± 0.02b 57.53 ± 0.24b 5.72 ± 0.13b 22.23 ± 0.14c 0.018 ± 0.01a 6.74 ± 0.11b

Dec. 
15

2015.8 ± 79.9e 39.22 ± 0.22f 3.87 ± 0.06a 59.12 ± 0.13a 6.62 ± 0.10a 18.4 ± 0.13f 0.015 ± 0.07b 9.68 ± 0.17a

Second 
year 
(2016–
2017)

Nov. 
5

3832.3 ± 127.3a 45.52 ± 0.19a 2.7 ± 0.03e 50.26 ± 0.22e 3.29 ± 0.07d 25.47 ± 0.18a 0.008 ± 0.06c 3.52 ± 0.14d

Nov. 
25

3505.1 ± 145.9b 42.77 ± 0.20c 3.09 ± 0.02d 54.77 ± 0.26c 4.43 ± 0.12c 23.77 ± 0.14b 0.01 ± 0.04c 5.25 ± 0.13c

Dec. 
15

2422.7 ± 113.7d 40.92 ± 0.21e 3.61 ± 0.04b 57.11 ± 0.13b 5.59 ± 0.11b 19.57 ± 0.11e 0.013 ± 0.08b 7.08 ± 0.14b

LSD (0.05) 320.67 0.57 0.09 0.53 0.29 0.42 0.001 0.35
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At the last sowing date (Dec. 15), foliar application of Mn 
(2 g  l−1) increased the seed yield by 41% compared to the 
control treatment (Table 5) and played a greater role in 
increasing the seed yield.

3.2  Oil Content

Foliar application of Zn (6 g  l−1) and B (6 g  l−1) at all levels 
of sowing dates produced the highest oil content (Table 5). 
When the high concentration of Zn, B, and Mn applied oil 
content was increased, the Zn and B had stronger effects in 
comparison to Mn (Table 5). On the first sowing date, the 
effect of Zn (6 g  l−1), Mn (6 g  l−1) and B (6 g  l−1) on increas-
ing the oil content was 6.28%, 4%, and 6.08%, respectively. 
Nevertheless, under high-temperature conditions (Dec. 
15), foliar application of Zn (6 g  l−1), Mn (6 g  l−1), and B 
(6 g  l−1) enhanced oil content by 7.6%, 5.04%, and 8.13%, 
respectively.

The regression results of oil content and seed yield with 
seed filling period (Fig. 1a) as well as the number of days 
with temperature less than 28 °C (Fig. 1b) were positive. 
In addition, increasing the duration of seed filling and the 
number of days with a temperature of less than 28 °C led 
to less oil content and seed yield. This happened while the 
regression relations between mean temperature (Fig. 1c) 
with oil content and seed yield were negative. In other 
words, the increase in temperature caused a reduction in 
oil content and seed yield. The oil’s sensitivity to the higher 
temperature is more intense than that of the seed yield, in a 
way that with increasing the temperature from 27 to 29 °C; 
the seed yield did not show any change, while it caused 
a linear significant decrease in oil (Fig. 1c). The regres-
sion relationship between the seed yield and micronutrients 
showed that increasing the concentration of Zn, Mn, and B 
up to 4 g  l−1 improved the seed yield (Fig. 2a) but the effects 
of micronutrients on oil content followed linear regression 
and high concentration of micronutrients (6 g  l−1) had a 
positive effect on the enhancement of oil content. Also, B 
had the greatest effect on increasing oil content (Fig. 2b). 
For a unit increase in Zn, Mn, and B concentrations, the 
oil content increased 0.44, 0.31, and 0.46%, respectively 
(Fig. 2b).

3.3  Palmitic Acid

Mean comparison of sowing date × foliar application of 
micro-nutrients on palmitic acid during 2 years showed 
that the highest (4.09%) amount of palmitic acid belonged 
to the third sowing date (Dec. 15) and use of Zn (6 g  l−1). 
The lowest one was related to the first sowing date (Nov. 
5) and foliar application of distilled water (Table 5). Under 
non-application of micro-nutrients, the amount of palmitic 
acid decreased at all sowing dates (Table 5). Increasing the 

amount of the application of micro-nutrients had a stronger 
effect on palmitic acid at all sowing dates. Results of slic-
ing revealed that the maximum palmitic acid was related to 
foliar application of B (6 g  l−1) at the first (Nov. 5) and sec-
ond (Nov. 25) sowing dates, but at the last sowing date (Dec. 
15), the application of Zn (6 g  l−1) had the most influence on 
palmitic acid (Table 5). It seems that the reaction of palmitic 
acid was different from the foliar spray of micronutrients on 
different sowing dates.
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Fig. 1  Regression relationship of oil content and seed yield with 
seed-filling period (a), number of days with temperature˂28  °C (b), 
and mean temperature (c) during seed-filling period. Means of inter-
action year × sowing date were used (Each point shows mean three 
replications)
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3.4  stearic Acid

Results of slicing showed that the application of micro-
nutrients did not have a significant effect on stearic acid at 
the first sowing date (Table 5). By delay in sowing date, the 
amount of stearic acid affected micro-nutrients and the high-
est amount of stearic acid was obtained by application of 
Zn (6 g  l−1) and B (6 g  l−1). With the value of 3.05%, foliar 
application of B (6 g  l−1) revealed the maximum amount of 
stearic acid at the third sowing date (Table 5).

There was a polynomial relationship between palmitic 
and stearic acid with maximum temperature (Fig. 3a) and 
the number of days with temperatures less than 28 °C 
(Fig. 3b). Increasing the maximum temperature led to 
more palmitic and stearic acids (Fig. 3a) while the num-
ber of days with a temperature of less than 28 °C caused 
less saturated acids (palmitic and stearic acids) (Fig. 3b). 
Palmitic acid was more sensitive to temperature changes 

than stearic acid (Fig. 3a). Increasing the number of days 
with a mean temperature of less than 28 °C significantly 
reduced palmitic acid. An increase in the temperature of 
more than 30° C caused a significant increase in palmitic 
acid but it did not cause any significant changes in the 
amount of stearic acid (Fig. 3b). The regression relation-
ships between micronutrients and palmitic acid were poly-
nomial. Higher micronutrients concentration led to more 
palmitic acid and B had the greatest effect on palmitic 
acid (Supplementary Fig. 3a). After the evaluation of the 
relationships between stearic acid and micronutrients, a 
positive relationship was found between them. For each 
unit increase in Zn, Mn, and B concentrations, stearic acid 
increased by 0.12, 0.08, and 0.13%, respectively. Changes 
in micro-nutrients application on palmitic acid content fol-
lowed a similar trend, so it was not significantly affected 
by the 2 g  l−1 rate of application (Supplementary Fig. 3a). 
B had the most significant effect on stearic acid content 
and an increasing trend was observed at all levels of its 
application (Supplementary Fig. 4b).
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3.5  Oleic Acid

In the first year, high temperature due to delay in sowing 
date increased the oleic acid by 6.71% and 9.66% in the 
second (Nov. 25) and the last (Dec. 15) sowing dates, respec-
tively, while in the second year these amounts were 9% and 
13.62%, respectively (Table 4). As shown in Table 5, the 
highest oleic acid (58.86%) at the third sowing date (Dec. 
15) belonged to B (6 g  l−1) application. The lowest amount 
of oleic acid (50.52%) was obtained at the first sowing date 
(Nov. 5) and application of 6 g  l−1 of B (Table 5). Slicing 
findings showed that the effects of micro-nutrients could 
be different at various sowing dates. On the timely sowing 
date (Nov. 5), the application of Zn (6 g  l−1) and B (6 g  l−1) 
produced the maximum oleic acid. Also, in the second sow-
ing date, the maximum oleic acid belonged to B (6 g  l−1) 
treatment. On the delayed sowing date (Dec. 15), the high-
est oleic acid obtained by foliar application of Zn (4 g  l−1), 
Mn (6 g  l−1), and B (6 g  l−1), and all of them belonged to 
the same statistical group (Table 5). The interaction sowing 
date × foliar application revealed that higher temperature 
during the seed filling period in the last sowing date and the 
use of Zn (4 g  l−1), Mn (6 g  l−1), and B (6 g  l−1) augmented 
the oleic acid by 1.68%, 1.68% and 2.12%, respectively 
(Table 5).

3.6  Linolenic Acid

The highest linolenic acid (7.09%) was observed at the last 
sowing date (Dec. 15) and foliar application of Zn (6 g  l−1). 
The lowest ones belonged to the first sowing date (Nov. 
5) and the application of distilled water (Table 6). Slicing 
showed that foliar application of Zn (6 g  l−1) produced the 
maximum linolenic acid in all sowing dates. Increasing tem-
perature during seed filling period in the last sowing date 
decreased the linoleic acid by 15.44% and 23.16%, respec-
tively in the first and second years (Table 4). Mean com-
parison for the interaction effect of sowing date and micro-
nutrients showed that linoleic acid (24.88%) was higher in 
the first sowing date and foliar application of B.

3.7  Linoleic Acid

Mean comparison between treatments according to the slic-
ing method showed that the highest oleic acid was obtained 
by foliar application of B (6 g  l−1) at the first and second 
sowing date. However, in the last sowing date, the use of 
B (4 and 6 g  l−1), Mn (6 g  l−1), and Zn (6 g  l−1) had also 
some positive effects on increasing linoleic acid (Table 5). 
The interaction sowing date × foliar application demon-
strated that the use of Zn (6 g   l−1), Mn (4 g   l−1), and B 
(6 g  l−1) increased the oleic acid by 10.78%, 8.54%, and 
11.85%, respectively in the first sowing date. Application of 

Zn (4 g  l−1), Mn (6 g  l−1), and B (6 g  l−1) increased the oleic 
acid by 2.91%, 2.14%, and 6.86%. In the last sowing date 
(Dec. 15), use of Zn (6 g  l−1), Mn (6 g  l−1) and B (6 g  l−1) 
elevated the oleic acid by 5.66%, 5.03%, and 5.75%, respec-
tively (Table 5).

The regression relationship between oleic acid and seed 
filling period showed that the maximum oleic acid was 
obtained at nearly the seed filling period by 60–65 days. 
Extending the grain-filling period increased the percent-
age of linoleic acid and decreased the oleic and linolenic 
acids (Fig. 4a). The oleic acid changes were nearly con-
stant during 55–65 days (Fig. 4a), but by increasing the 
length of the seed filling period and decreasing the mean 
temperature (Fig. 4b), the oleic acid percentage decreased. 
The accumulation trends of oleic and linoleic acids were 
not similar to each other. Longer seed filling periods up to 
about 75 days led to an initial increase and a subsequent 
decrease in oleic acid content but this was not true for lin-
oleic acid in which case its content increased indefinitely 
regardless of how long the seed filling period was extended 
(Fig. 4a). The regression revealed that the highest linolenic 
acid was obtained at the seed filling period of 60–65 days 
(Fig. 4a). The highest linoleic acid was achieved at a mean 
temperature of nearly 20–22 °C (Fig. 4b). The relationship 

y = -0.0111x2 + 1.4225x + 11.798

R² = 0.7815

y = 0.187x + 8.0606

R² = 0.5432

y = -0.0839x + 11.219

R² = 0.5333

0

10

20

30

40

50

60

70

55 60 65 70 75 80 85 90 95

O
le

ic
, 

li
n

o
ln

ic
 a

n
d

 l
in

o
le

ic
 a

ci
d
s 

(%
)

Grain filling period (day)

(a) Oleic Linoleic Linolenic

y = 0.2426x2 - 9.0244x + 136.4

R² = 0.5587

y = -0.5566x2 + 23.396x - 222.71

R² = 0.5662

y = 0.1401x2 - 5.5102x + 58.295

R² = 0.68
0

10

20

30

40

50

60

70

19 20 21 22 23 24 25

O
le

ic
, 
li

n
o
le

n
ic

 a
n

d
 l

in
o

le
ic

 a
ci

d
s 

(%
)

Mean temperature (˚C)

(b)
Oleic Linoleic Linolenic

Fig. 4  Regression relationship of oleic, linolenic, and linoleic acids 
with seed-filling period (a) and mean temperature (b) during seed-
filling period (each point shows mean three replications)

359Journal of Soil Science and Plant Nutrition (2023) 23:351–367



1 3

was significant between maximum temperature with oleic, 
linolenic and linoleic acid during the seed filling period 
and this regression showed 0.67, 0.63, and 0.75% of the 
variation in oleic, linoleic, and linolenic, respectively.

Positive correlations were observed between micronu-
trients and unsaturated acids (oleic, linolenic and linoleic 
acids). Between micro-nutrients, B was more effective 
on oleic acid (Fig. 5a) and linoleic acid (Fig. 5c), but Zn 
had more effect on linolenic acid (Fig. 5b). Enhancement 

Fig. 5  Oleic acid (a), linolenic 
acid (b), and linoleic acid (c) 
regression reaction to different 
micronutrients foliar application 
treatments (each point shows 
mean three replications dur-
ing two years) marked by (0): 
denoting control using distilled 
water, (1): 2 g  l−1 of  ZnSO4, 
 MnSO4, and  H3BO3; (2): 4 g  l−1 
of  ZnSO4,  MnSO4, and  H3BO3; 
(3): 6 g  l−1 of  ZnSO4,  MnSO4, 
and  H3BO3, respectively
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in oleic, linolenic, and linoleic acids as a result of foliar 
application of Zn, Mn, and B was strongly and positively 
correlated with a higher concentration of the mentioned ele-
ments (Fig. 5a–c).

3.8  Erucic Acid

Mean interaction between sowing date and foliar application 
showed that the highest erucic acid (0.244%) was related to 
the combination of the first sowing date (Nov. 5) and foliar 
application of distilled water (Table 5). Slicing revealed that 
the use of Mn (2 g  l−1) produced the maximum amount of 
erucic acid at the second (Nov. 25) and the third sowing 
date (Dec. 15). The minimum amount of produced erucic 
acid at all sowing dates belonged to the foliar application 
of B (6 g  l−1).

3.9  Glucosinolate

Response of glucosinolate amount to the foliar appli-
cation of micro-nutrients at different sowing dates was 
various. Slicing showed that a delay in sowing reduced 
glucosinolate amount, and foliar application of B (6 g  l−1) 
led to making the lowest amount of it at all sowing dates 
(Table 5). The absence of micro-nutrients increased glu-
cosinolate amount at the first (Nov. 5) and second (Nov. 
25) sowing dates, but on the last sowing date (Dec. 15), 
the use of micro-nutrients did not decrease glucosinolate 
in comparison to the control treatment (Distilled water) 
(Table 5).

Regression showed that the effect of the seed filling 
period on erucic acid was significant (Fig. 6a), but the 
mean temperature (Fig.  6c) did not have a significant 
effect on erucic acid. The relationship between erucic acid 
and glucosinolate with seed filling period was described 
by polynomial equations (Fig. 6a). A longer seed filling 
period due to lower average temperatures (Fig. 6a) and 
more days with less than 28 °C temperature (Fig. 6b); 
decreased the glucosinolate amount while increasing 
average temperatures of up to 22 °C led to a decrease and 
subsequent increase in erucic acid content. An increase 
in the seed filling period up to 80 days led to an increase 
in erucic acid content while longer grain-filling periods 
harmed it. The regression analysis showed that increas-
ing the concentration of Zn and Mn mitigated the amount 
of erucic acid. Reduction of the applied concentration of 
B at nearly 4 g   l−1 led to less erucic acid, but a larger 
concentration boosted the production of the erucic acid. 
There was a strong negative relationship between glucosi-
nolate amount with Zn and B. For each unit increase in 
Zn and Mn concentrations, glucosinolate decreased 0.28 
and 0.24, respectively. Application of B in amounts greater 

than 2 g  l−1 led to more glucosinolate. All micro-nutrients 
reduced the amount of the erucic acid and glucosinolate 
but B was more effective in reducing them (Supplementary 
Fig. 4a, 4b).

3.9.1  Relationship Between Oil Content and Fatty Acids

Oil content had a negative relationship with stearic and 
palmitic acids. For each unit of increase in stearic and pal-
mitic acids, the oil content decreased by 0.16 and 0.17%, 
respectively (Supplementary Fig. 5a). There was a positive 
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relationship between oil content and linoleic acid. For each 
unit of increase in linoleic acid, the oil content increased by 
1.07%. The relationship between oil content with oleic and 
linolenic acids was negative. With more oleic and linolenic 
acids, the oil content was reduced by 1.4 and 0.52%, respec-
tively (Supplementary Fig. 5b). An increase in temperature 
led to less oil content but it increased the oleic and linolenic 
acid while it decreased the linoleic acid. Therefore, increas-
ing the oil percentage which occurs at lower temperatures 
has less saturated fatty acids and more linoleic acid.

3.9.2  Principal Component Analysis

Principal component analysis showed that all changes between 
data were expressed by both the first and the second princi-
pal components (69% and 17% for  PCA1 and  PCA2, respec-
tively). Palmitic acid, stearic acid, oleic acid, linolenic acid, 
and glucosinolate had a positive coefficient and seed yield, oil 
content, and linoleic acid had a negative coefficient in  PCA1. 
As shown in Fig. 7, erucic acid had a positive coefficient in 
PCA2, while linoleic acid had a slightly negative coefficient 
in PCA2. Therefore, a biplot diagram along with the vector of 
the investigated traits was drawn to determine the best sowing 
date and application level of micronutrients based on PCA1 
and PCA2 (Fig. 7). The distance between the treatment lev-
els and the trait vector indicates their relationship with the 
desired trait and also the length of the standard deviation of 

the trait (Mishra et al., 2017). In this cosine diagram, the angle 
between the vectors of two attributes represents their correla-
tion coefficient. Therefore, the proximity of the vectors of 
oleic acid and linolenic acid traits indicates a high correla-
tion between these traits. At an obtuse angle between glucosi-
nolate, stearic acid, palmitic acid, oleic acid. and linolenic 
acid with seed yield, oil content, and linoleic acid indicated 
inconsistent changes among these traits (Fig. 7). Considering 
PCA1, treatments in the third sowing date had the highest 
Eigenvalue and had the maximum amount of oleic acid and 
linolenic acid (data not shown). Therefore,  PCA1 showed the 
oil quality and choice based on it leads to achieving oil with 
high quality. Based on this, the highest quality of the oil is 
obtained on the third sowing date, and comparing micronu-
trient levels,  S3Zn2 and  S3Zn3 treatments had the highest oil 
quality. Also, vectors of seed yield, oil content, and linoleic 
acid had a negative correlation with the mentioned traits. 
Treatment levels on the first sowing date had the lowest  PCA1 
and the highest oil production (seed yield and oil content) as 
well as  S1B1 and  S1B2 produced the maximum oil content.

4  Discussion

Heat stress during and after flowering affects silique devel-
opment and decreases the seed yield as well as photo-assim-
ilates for triacylglycerol biosynthesis and oil accumulation 

Fig. 7  Graphical biplot for 3 sowing dates and 10 levels of micro-
nutrients on the basis of first and second principal components.  1: 
S1Zn1, 2: S1Zn2, 3: S1Zn3, 4: S1Mn1, 5: S1Mn2, 6: S1Mn3, 7: 
S1B1, 8: S1B2, 9: S1B3, 10: S1Control. 11: S2Zn1, 12: S2Zn2, 13: 
S2Zn3, 14: S2Mn1, 15: S2Mn2, 16: S2Mn3, 17: S2B1, 18: S2B2, 19: 
S2B3, 20: S2Control. 21: S3Zn1, 22: S3Zn2, 23: S3Zn3, 24: S3Mn1, 

25: S3Mn2, 26: S3Mn3, 27: S3B1, 28: S3B2, 29: S3B3, 30: S3Con-
trol. Note: S1, S2 and S3 indicate different sowing dates (Nov. 5, Nov. 
25 and Dec. 15, respectively) while Zn, Mn and B numbered as 1 to 
3 show the foliar application of ZnSO4, MnSO4 and H3BO3 at con-
centrations of 2, 4 and 6 g l-1, respectively. Distilled water was used 
as control
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in seeds (Pokharel et al. 2020). Delaying in sowing date 
in autumn caused to coincide the stages of flowering and 
seed filling stages to high-temperature stress in April and 
May. The maximum temperature in flowering stage were 
increased by 0.9 and 4.2 °C and the grain filling period were 
enhanced by 1.6 and 3.2 °C on the second and third sowing 
dates, respectively. Therefore, mean duration of the flower-
ing stage were decreased by 10 and 25 days and the grain 
filling period duration was reduced by 13 and 20 days on 
the second and third sowing dates, respectively. The dif-
ference between studied traits can be attributed to different 
temperature during 2 years, especially during silique stage 
and grain filling period in delayed sowing dates (Dec. 15). 
Therefore, the appropriate temperature during silique and 
grain filling period let to optimal growth of canola and more 
seed yield in the second year compared with the second year. 
These results are in line with Shiranirad et al. (2021) and 
Zinn et al. (2010) who report that high temperature can have 
harmful effects on reproductive stages and decrease seed 
yield of canola.

The process of seed construction in oil crops was done 
after pollination and fertilization, in seed formation stage 
(Miklaszewska et al. 2021). Heat stress deprives the plants 
of performing to their genetic potential (Ahmad et al. 2021a) 
and some researchers reported that sugar limitation (Farooq 
et al. 2017) photo-assimilates reduction for triacylglyc-
erol biosynthesis (Pokharel et al. 2020), slows down of oil 
biosynthesis pathway activity (Iyer et al. 2008; Baud and 
Lepiniec 2010), and reduces seed oil percentage in high-
temperature stress. Decreasing of the grain filling period 
from 90 to 60 days, reduced seed yield and oil content were 
10 and 37%, respectively. By reducing the number of days 
with temperature less than 28 °C from 69 to 19 days, oil con-
tent and seed yield were decreased by 14 and 48%, respec-
tively. The rate of reduction for seed yield and oil content 
was 36% and 11% in 24 °C compared with 20 °C. Therefore, 
the sensitivity of seed yield was more than oil content to 
high-temperature stress. Thus, a delay in the sowing date due 
to high temperature during the seed filling period decreased 
the phenological period and reduced the seed yield and oil 
content.

Seed oil content was decreased by sowing delaying and 
high-temperature intensity. Micronutrients have a favora-
ble effect on essential oil production because they act as 
a cofactor of various antioxidative enzymes (Kumar et al. 
2022; Bhat et al. 2020); it is involved in the mechanism of 
stress tolerance of higher plants (Bhat et al. 2020). Increas-
ing of micronutrients concentration by foliar spraying lin-
early improved the oil content. However, Zn and B had more 
effective than Mn on oil content. The results supported the 
hypothesis that foliar application of micronutrients could 
be effective on improving seed qualitative and quantita-
tive characteristics of canola and on alleviating the harmful 

effects of high temperature. Plants employ adaptive mecha-
nisms to detoxify heat stress damage (Ahmad et al. 2021b). 
Previous experiments have also pointed to the beneficial 
role of micronutrients (Zn, B, and Mn) in improving the 
seed yield and oil content (Ashkiani et al. 2020; Manaf et al. 
2017; Jankowski et al. 2019; Sehgal et al. 2018). As it was 
mentioned in the results, exposure to high-temperature stress 
may aggravate the seed yield and oil content under no appli-
cation of micronutrients and application of Zn, Mn, and B 
increased seed yield and oil content in all sowing dates.

The use of Zn increases the mass weight of canola and 
as a result increases the production of carbohydrates. Ulti-
mately, the oil content rises on the optimum sowing date 
(Mozafari et al. 2022) and these findings are in line with pre-
sent results. The stability of enzymes controlling oil accumu-
lation may have differential sensitivities to high-temperature 
stress (Aksouh-Harradj et al. 2006) and it was determined 
that increasing temperature leads to a reduction in the oil 
content (Hammac et al. 2017). Therefore, Zn deficiency can 
decrease the oil content under a delay in the sowing date 
(Mozafari et al. 2022; Shoja et al. 2018). B helps to alleviate 
high-temperature stress in plants since it can participate in 
several physiological processes, such as chlorophyll biosyn-
thesis, sugar mobilization, and pollen viability (Sarwar et al. 
2019; Calderón-Páez et al. 2021), and the positive role of B 
in improved oil content and seed yield under heat stress may 
attribute to cell wall synthesis (Bellaloui et al. 2015) which 
leads to producing oil content (Ahmed et al., 2013) and fatty 
acids (Bellaloui et al. 2013). The increase in the oil content 
with B application may be due to a richer assimilate, acceler-
ated total photosynthesis, and more effective translocation 
of photoassimilates (Mehmood et al. 2021).

Although oil content and composition are genetically 
determined in canola, they are affected by temperature dur-
ing seed development (Pokharel et al. 2020). Palmitic and 
stearic acids are the main saturated acids (Badawy et al. 
2016), and the results of this study indicated that delayed 
sowing date increased these saturated acids. The results 
of present study were similar to those previously reported 
that fatty acids profile changed and saturated fatty acids 
increased under high-temperature conditions (Elferjani 
and Soolanayakanahally 2018; Pritchard et al. 2000). The 
response of palmitic acid to foliar application of Zn at the 
first sowing date was more than on the second (Nov. 25) 
and third (Dec. 15) sowing dates in which the temperature 
was higher during the seed filling period. Micro-nutrients 
play a crucial role in metabolic processes, enzyme activi-
ties and Zn improved metabolism of fatty acids, especially 
stearic and palmitic acid (Shahsavari et al. 2014; Bybordi 
and Mamedov 2010). As found, a higher concentration of 
B increases the amount of palmitic and stearic acids, which 
could be due to the greater ability of canola to absorb this 
element to enhance these saturated acids. The results of 
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this research were similar to other findings where higher 
temperature increased the saturated fatty acids (Aslam et al. 
2009; Elferjani and Soolanayakanahally 2018; Pokharel 
et al. 2020; Pritchard et al. 2000).

Lipid biosynthesis is related to enzymes which are sensi-
tive to high temperatures and reduces oil synthesis (Elferjani 
and Soolanayakanahally 2018). High temperature affected 
oil formation and its composition for oilseeds (Schulte et al. 
2013). The enzymes that have double bonds (unsaturation) in 
the fatty acyl chains (Narayanan et al. 2020), can be targets 
of high-temperature stress (Lanna et al. 2018). Fatty acids 
including Oleic, linoleic, and linolenic were affected by the 
high temperatures during grain filling period (Matías et al. 
2021). How temperature affects fatty acid profiles depends 
on the severity and timing of higher temperatures. Extremely 
high temperatures (38 °C for 5 h, 25–29 day after flowering) 
elevated oleic acid and reduces linoleic acid (Aksouh-Har-
radj et al. 2006) and these results were consistent with the 
finding of the present study that high temperature occurred 
during the seed filling period at the delayed sowing date 
(Nov. 15 and Dec. 15). The effect of heat stress due to a 
delay in the sowing date increased the oleic acid by 8% and 
11% in the second (Nov. 25) and third (Dec. 15) sowing 
dates, but the linoleic acid was reduced by 2.6% and 19%, 
respectively. The positive effect of Zn, Mn, and B on aug-
menting the oleic acid was 3.5, 3, and 4.5% in comparison 
with the control treatment, respectively. From this, it can be 
concluded that the effect of temperature on changes in fatty 
acids such as oleic acid is greater than a foliar application of 
micronutrients. An increase in oleic acid might be due to the 
limitation of the conversion of oleic acid as a precursor of 
linoleic acid, thereby the percentage of oleic acid increased 
and linoleic acid decreased under high temperatures (Dorn-
bos and Mullen 1992). Cytololic desaturation of oleic acid 
to form linoleic is mediated by the enzyme oleate desatu-
rase and the activity of this enzyme was put forward as an 
interpretation for shifts in oleic acid/linoleic acid ratio under 
drought and heat stresses (Flagella et al. 2002).

The use of Zn, Mn, and B (6 g  l−1) increased the amount 
of the oleic acid at three sowing dates. The positive effect of 
micronutrients in increasing the amount of oleic acid under 
heat stress conditions (Dec. 15) was slight compared to the 
optimum sowing date (Nov. 5). Regarding micro-nutrients, it 
was reported that Zn lessens the negative effect of late-season 
temperature stress on oleic and linoleic (stating resistance 
to high temperature) and as a result improves the oil quality 
(Ashkiani et al. 2020). The increase in oleic acid and change 
in other fatty acids by foliar application of B may be due to 
the effect of B on the activity of the fatty acid desaturases 
which control the accumulation and conversion of unsatu-
rated fatty acids (Bellaloui et al. 2010, 2013). The role of Mn 
in the metabolism of lipid is more complex and it increases 
the amount of typical thylakoid membrane constituents such 

as polyunsaturated acids (Salama et al. 2015). Moreover, the 
direct involvement of Mn in the biosynthesis of fatty acids 
may be a contributing factor (Broadley et al. 2012).

Erucic acid is one of the most important fatty acids that 
affects the quality of canola oil and human health, and its 
amount is influenced by genotype, nutrition and environment 
conditions (Mokhtassi-Bidgoli; Shiranirad et al. 2021). We 
found that a delay in the sowing date led to decrease the 
erucic acid in the first year, but increased it in the second 
year, which shows that in addition to the sowing date, other 
environmental parameters can alter the erucic acid. Ghare-
chaei et al. (2019) found that the delay in sowing dates led 
to a decrease in erucic acid. Unlike erucic acid, an increase 
in temperature caused by a delay in the sowing date led to 
more glucosinolate amounts. Hot temperature (40 °C) from 
29 to 34 days after flowering produces higher glucosinolate 
than a moderate temperature 21/16 °C (day-time maximum/
night-time minimum) (Aksouh et al. 2001). A significant 
reduction in the erucic acid concentration of canola in reac-
tion to a foliar spray of B and Zn was reported by Mei et al. 
(2009) and the results of the present study are in line with 
the findings of Mei et al. (2009). High-B availability could 
produce lower glucosinolate (Tian et al. 2020) and this is in 
agreement with our findings. In this research, the content 
of erucic acid (less than 2%) and glucosinolate (less than 
30 µmol  g−1) had been within the standard range (Amiri 
et al. 2020).

5  Conclusion

Oil production is a regular process and total oil content 
results from the synthesis of different fatty acids, including 
saturated and unsaturated acids. It was observed that delay-
ing the sowing date caused an increase the air temperature 
from 27 to 32 °C during the seed filling period, which had a 
different effect on the seed yield and oil quality. High tem-
perature reduced the seed yield and seed oil percentage but 
increased the oil quality by an enhancement in oleic acid by 
11%. Foliar application of zinc (6 g  l−1) and boron (6 g  l−1) 
was more effective to increase oleic acid in optimum sow-
ing date (Nov. 5), but under high-temperature conditions 
(Dec. 15), foliar application of zinc (4 g  l−1), manganese 
(6 g  l−1), and boron (6 g  l−1) had the same effect in increas-
ing oleic acid. In short, the present experiment suggested 
that foliar application of micronutrients helped to mitigate 
high-temperature adversities in seed yield and oil content. 
Generally, the following treatments are recommended for 
hot and dry regions: Nov. 5 sowing date × foliar application 
of boron (4 g  l−1) due to greater seed yield as well as oil 
content and Dec. 15 sowing date × foliar application of boron 
(6 g  l−1), Zn (4 g  l−1), and  manganese (6 g  l−1) because of 
high oleic acid as qualitative indexes.
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