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Abstract
Knowledge of plant nutrient strategies is crucial for defining and predicting the patterns and mechanisms resulting from 
nitrogen (N) deposition. However, the impacts of N enrichment on plant nutrient strategies are unclear in global grasslands. 
We conducted a meta-analysis of 127 publications to synthesize the pathways underlying the responses of plant nutrient con-
centration and resorption to N addition across global grassland ecosystems. Our analysis indicated that N addition increased 
the N concentration in green and senesced leaves, the phosphorus (P) concentration in senesced leaves, and aboveground and 
belowground biomass by about 32%, 50%, 7%, 74%, and 19%, respectively. Meanwhile, it reduced N resorption efficiency 
(NRE) and P resorption efficiency (PRE) by about 9% and 6%, respectively. Nitrogen addition did not significantly affect 
green leaf P concentration. These responses were modulated by N application rates and humidity, and they differed among 
grassland types, plant groups, fertilizer types, and experimental durations. Nitrogen addition changed the relationship between 
N and P in green leaves and between NRE and PRE, but it did not alter the N:P ratio in senesced leaves. Our results suggest 
that N addition affects leaf nutrient concentrations and resorption in global grassland ecosystems, although such effects 
vary among grassland types and among plant functional groups. Nutrient resorption may be a critical pathway that mediates 
plant regulation of the coupled N:P balance. Changes in humidity due to climate change also mediate the response of plant 
nutrients to N addition and thereby affect the soil–plant nutrient cycles of grassland ecosystems under future N enrichment.
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1  Introduction

Nitrogen (N) is one of the essential and limiting nutrients 
for plant growth and development in terrestrial ecosystems 
(Elser et al. 2007; Yuan and Chen 2012; Moreau et al. 2019). 
Thus, moderate N enrichment may have a positive impact 
on plant growth and terrestrial ecosystem productivity 

(LeBauer and Treseder 2008; Bobbink et al. 2010; Tian et al. 
2020). However, extensive atmospheric N deposition, owing 
to human activities (e.g., fertilization and urbanization), has 
occurred in current terrestrial ecosystems and continues to 
increase on a global scale (Lamarque et al. 2005; Elser and 
Bennett 2011; Dietrich et al. 2017). These actions stimulate 
plant growth and affect plant nutrient cycling (Kallenbach 
et al. 2017; Bellenger et al. 2020; Iqbal et al. 2020; Tognetti 
et al. 2021). Therefore, it is crucial to fully understand the 
changes in terrestrial ecosystem responses to future N depo-
sition (Zaehle and Dalmonech 2011; Greaver et al. 2016; 
Soong et al. 2020).

Plant nutrient concentration reflects plant growth, nutri-
ent uptake, and use strategies in terrestrial ecosystems, 
which are collectively affected by N enrichment (Yuan and 
Chen 2009; Lihavainen et al. 2016). However, this issue 
is still controversial, although most previous studies have 
focused on the effect of N enrichment on changes in plant 
nutrient concentration. For example, field experiments 
reported varied effects of N enrichment on plant P levels, 
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either increasing (Lu et al. 2013; Carate-Tandalla et al. 
2018; Gonzales and Yanai 2019), decreasing (Sardans 
et al. 2016; Tiruvaimozhi et al. 2018; Liu et al. 2021a), or 
not affecting (Zong et al. 2018; Tian et al. 2020) P concen-
tration. Nitrogen addition also had positive, negative, and 
neutral effects on the plant leaf N and P concentrations in 
the same ecosystem (Lu et al. 2013; Su et al. 2021). These 
differences may result from the comprehensive effects of 
multiple factors such as species (Van Heerwaarden et al. 
2003), soil nutrient conditions (Gusewell 2005), N addi-
tion rates, experimental duration (Hao et al. 2018), and 
environmental factors. Our study complements the limited 
knowledge about the complex responses of plant nutrient 
concentration and nutrient resorption to N addition in var-
ying grassland types and among plant functional groups.

Plants reduce their dependence on external nutrients 
and enhance their survival and adaptability by resorbing 
nutrients from senesced tissues (Yuan et al. 2006; Gerdol 
et al. 2019). This process can be quantified by computing 
the nutrient resorption efficiency (Milla et al. 2005). Pre-
vious studies reported that N addition reduced the nitro-
gen resorption efficiency (NRE) owing to the increase in 
soil N availability (Soudzilovskaia et al. 2007; Ren et al. 
2015; Li et al. 2016). However, the effect of N addition 
on phosphorus resorption efficiency (PRE) has not been 
determined in grassland ecosystems (Lu et al. 2013; Yuan 
and Chen 2015a, b; Zheng et al. 2018). Nitrogen addi-
tion to an ecosystem was thought to transform N limita-
tion to P limitation or co-limitation of N and P (Dong 
et al. 2019). It is unclear how N addition affects nutrient 
resorption efficiency in grassland ecosystems, which are 
usually limited by P (Van Dobben et al. 2017). Therefore, 
knowledge of nutrient resorption responses to N enrich-
ment has great significance for managing plant nutrient 
conservation and plant productivity under future global 
environmental changes.

Grasslands account for approximately 26% of the global 
terrestrial area (Obermeier et al. 2016). Extensive atmos-
pheric N deposition inevitably affected plant nutrient 
concentrations and nutrient uptake strategies in grassland 
ecosystems (Sattari et al. 2016; Shi et al. 2021; Hu et al. 
2022). Many studies reported that different N addition rates 
produced varying responses of leaf nutrient concentrations 
and nutrient resorption (Cerasoli et al. 2018; Bai et al. 2019; 
Graff et al. 2020). However, the patterns and mechanisms 
of leaf nutrient concentrations and nutrient resorption 
responses to N addition in grassland ecosystems have not 
been defined, particularly the complex plant responses to 
changes in multiple biotic and abiotic factors. Therefore, 
we conducted a meta-analysis to integrate the available data 
from different field experiments in global grassland ecosys-
tems and define the responses of grassland leaf nutrients and 
nutrient resorption to N addition.

Here, by using a weighted meta-analysis of a global data 
set of 1935 observations at 98 sites from 127 publications 
based on N addition, we examined how leaf nutrient con-
centration and nutrient resorption respond to N addition 
in grassland ecosystems. We tested three hypotheses. (1) 
Nitrogen addition enhances the N concentration in green 
and senesced leaves due to an N-induced increase in soil 
N availability (Soudzilovskaia et al. 2007; Li et al. 2016). 
The corresponding P concentration in green and senesced 
leaves will also increase to maintain the balance of N and P 
(You et al. 2018b). (2) Plants will reduce N resorption from 
senesced tissues due to increased soil N availability (Ren 
et al. 2018), thereby reducing NRE but not PRE (to balance 
N and P). (3) Numerous experimental and environmental 
factors alter leaf nutrient and resorption responses to N addi-
tion by modulating plant nutrient cycle patterns.

2 � Material and Methods

2.1 � Data Collection

We collected peer-reviewed publications that reported 
changes in plant nutrient concentrations and resorption effi-
ciency in global grassland ecosystems under the addition of 
N to fields. We performed Boolean searches of the Web of 
Science (http://​apps.​webof​knowl​edge.​com) and the China 
National Knowledge Infrastructure (CNKI, https://​www.​
cnki.​net) databases using the following keywords: (a) ‘N 
addition’ or ‘nitrogen addition’ or ‘nitrogen amendment’ or 
‘nitrogen deposition’, (b) ‘leaf N’ or ‘leaf nutrient’, (c) ‘leaf 
P’ or ‘leaf nutrient’, (d) ‘NRE’ or ‘nutrient resorption’, (e) 
‘PRE’ or ‘nutrient resorption’, (f) ‘AGB’ or ‘aboveground 
biomass’, (g) ‘BGB’ or ‘belowground biomass’, and (h) 
‘grassland’ or ‘grassland ecosystem’. Seven criteria were 
used to select suitable publications: (1) Experiments were 
conducted on global grassland ecosystems; (2) experiments 
were conducted in the field; (3) studies reported comparisons 
between controls (i.e., without nitrogen addition) and treat-
ments (i.e., nitrogen addition); (4) studies reported means, 
standard deviations (SD) or standard errors (SE), and sample 
sizes of the selected variables; (5) studies reported the treat-
ment method, magnitude, and duration; (6) the publications 
were peer-reviewed journal articles, conference collections, 
theses, or dissertations; and (7) where data were published in 
different papers for studies at the same site, we only reserved 
one recent publication to ensure the relative independence of 
data. These search and selection criteria yielded 1935 exper-
imental observations from 127 papers at 98 sites across the 
globe (Fig. 1; Supplementary information, data sources list).

We performed a stratified analysis to evaluate whether 
grassland type, plant group, fertilizer type, and experimental 
duration affected plant nutrient concentration and resorption 
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efficiency responses to N addition. The data classifications 
included the following categories: Grassland types were 
categorized into temperate grassland and alpine grassland; 
plant functional group was categorized into grass and forb; 
experimental duration was categorized into short-, interme-
diate- and long-term (i.e., < 3 years, 3–6 years, and > 6 years, 
respectively), and fertilizer type was categorized into urea 
and NH4NO3. We extracted site information related to the 
experiments to construct an integrated database of geo-
graphic variables (longitude, latitude, and altitude) and cli-
matic factors [mean annual temperature (MAT) and mean 
annual precipitation (MAP)]. Data presented in the figures 
were extracted using GetData version 2.20 (http://​www.​
getda​ta-​graph-​digit​izer.​com). We investigated how the cli-
matic factors affected the plant nutrient concentration and 
resorption efficiency responses to N addition using the De 
Martonne aridity index to compute the humidity combined 
with MAT and MAP data at each experimental site [aridity 
index = MAP/(MAT + 10)] as described in previous studies 
(Song et al. 2019; Su et al. 2021).

2.2 � Data Analysis

We conducted a meta-analysis to determine the effects of 
N addition on plant nutrient concentrations and resorption 
efficiency in global grasslands. The natural logarithm of the 
response ratio (lnRR) was calculated to indicate the effect 
size of each treatment (Hedges et al. 1999) [Eq. (1)]:

where X
T
 and X

C
 are the mean treatment and control values, 

respectively. The variance (v) of each lnRR was calculated 
using Eq. (2):

where n
T
 and n

C
 are the sample sizes, and S

T
 and S

C
 are the 

SD of means for each treatment and control. Most of the 
selected studies reported SE, which was transformed to SD 
according to Eq. (3):

where n was the sample size. Based on previous studies, 
the lnRR was calculated separately for each control-treat-
ment pair and treated as independent data when data were 
extracted from multifactor experiments with multiple sin-
gle-factor treatments and a single control (Lajeunesse 2011; 
Song et al. 2019).

The weighted response ratio (lnRR++) and bias-corrected 
95% bootstrap-confidence interval (CI) were calculated 
using inverse-variance weighted regressions and random-
effects models with the rma function in the “metafor” pack-
age version 3.0–2 of R version 4.1.2 (The R Project for 
Statistical Computing, https://​www.r-​proje​ct.​org/) (Hedges 
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Fig. 1   Map of sites conducting field studies of nitrogen addition in grasslands that were included in the meta-analysis. Points with different 
colors represent different N application rates (g N m−2 year−1) in each study site
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et al. 1999). The effects of treatments on selected variables 
were considered statistically significant if the 95% CI did not 
overlap zero, whereas the effects between groups or under 
different conditions differed if their 95% CIs did not over-
lap. To clarify data interpretation, the percentage change 
(%) was calculated based on weighted response ratios using 
the equation [exp (lnRR++) – 1] × 100 (Yan et al. 2020). 
We computed multiple comparisons to examine differences 
in treatment effects on different groups or under different 
conditions. Statistical results were reported as differences 
among group cumulative effect size (QB) and residual error 
(QE). Regression analysis (including univariate covariance 
analysis) was conducted to examine the effects of N addition 
rate and environmental factors (e.g., aridity index) on the 
response ratio of plant nutrient concentration and resorption 
efficiency under N addition and evaluate the relationships 
of response ratios of objective variables (e.g., green and 
senesced leaf N and P). Statistical differences were consid-
ered significant when P < 0.05. All statistical analyses were 
performed in R version 4.1.2.

3 � Results

3.1 � Effects of N Addition on Leaf Nutrient 
Concentration and Resorption

Nitrogen addition significantly increased the concentra-
tions of leaf N, green leaf N, senesced leaf N, senesced 
leaf P, AGB, and BGB by 29%, 32%, 50%, 7%, 74%, and 
19%, respectively (P < 0.001, Fig. 2). By contrast, N addi-
tion reduced NRE and PRE by 9% and 5%, respectively 
(P < 0.001, Fig. 2). Nitrogen addition did not significantly 
affect the concentrations of total leaf P and green leaf P 
(P > 0.05, Fig. 2). Regression analysis identified significant 
and positive relationships between the concentrations of 
green leaf N and P, senesced leaf N and P, and NRE and 
PRE. Regression analysis also identified significant dif-
ferences in the relationships between NRE and PRE, and 
green leaf N and P in the control and N enrichment plots, but 
the relationship between N and P in senesced leaves in the 
control and N enrichment plots did not significantly differ 
(Fig. 3a–d, Supplementary Table S1).

3.2 � Effects of N Enrichment on Leaf Nutrient 
Concentration and Resorption Among Varying 
Subgroups

Subgroup analysis indicated that the responses of leaf 
nutrient concentration and nutrient resorption to N addition 
differed in subgroups (Fig. 4, Supplementary Table S2). 
Nitrogen addition increased the green and senesced leaf N 
concentration in temperate and alpine grasslands (P < 0.001, 

Fig. 4a,b), but the responses were more sensitive in alpine 
than in temperate grassland. The N addition impacts on leaf 
P concentration in different grassland types varied among 
green and senesced leaves (Fig. 4d,e). Nitrogen addition 
decreased NRE and PRE in temperate grassland, but did 
not significantly affect NRE and PRE in alpine grassland 
(Fig. 4c,f, Supplementary Table S2).

Nitrogen addition enhanced green and senesced leaf N 
concentration in both grass and forb (P < 0.001, Fig. 4a,b), 
but grass had a higher response ratio than forb. The effect 
of N addition on green leaf P concentration was opposite 
in grass and forb (i.e., decreased in grass and increased in 
forb; P < 0.05, Fig. 4d), while N addition impact on senesced 
leaf P concentration was not significantly different between 
grass and forb (P > 0.05, Fig. 4e). Nitrogen addition sig-
nificantly reduced NRE and PRE in both grass and forb, 
while forb had greater responsiveness than grass (P < 0.001, 

Fig. 2   Responses of leaf nutrient concentrations, nutrient resorp-
tion, and biomass to experimental nitrogen addition in global grass-
land ecosystems. N, leaf nitrogen concentration; P, leaf phosphorus 
concentration; Ng, green leaf nitrogen concentration; Pg, green leaf 
phosphorus concentration; Ns, senesced leaf nitrogen concentration; 
Ps, senesced leaf phosphorus concentration; AGB, aboveground bio-
mass; BGB, belowground biomass; NRE, nitrogen resorption effi-
ciency; PRE, phosphorus resorption efficiency. Error bars represent 
95% confidence intervals (CI). The vertical dashed line represents 
the response ratio = 0. Treatment effects were statistically significant 
(denoted by *) if 95% CI did not overlap zero. *, **, and *** indicate 
significant correlations at p < 0.05, p < 0.01, and p < 0.001, respec-
tively. The sample size for each variable is given in parentheses
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Fig. 4c,f). Ammonium nitrate and urea increased the green 
and senesced leaf N concentration, but the NH4NO3 effect 
on plant N concentration was stronger than that of urea 
(Fig. 4a,b, Supplementary Table S2). Ammonium nitrate 
increased the senesced leaf P concentration (P < 0.001), 
whereas urea did not (P > 0.05, Fig.  4e). The effect of 
NH4NO3 and urea on green leaf P concentration was not 
significantly different (P > 0.05, Fig. 4d). Ammonium nitrate 
and urea both reduced NRE (P < 0.001, Fig. 4c), but the 
effect of urea on NRE was greater than that of NH4NO3. 
Phosphorus resorption efficiency was only reduced by 
NH4NO3 (P < 0.001, Fig.  4f). Long-term experiments 
yielded larger increases in senesced leaf N concentration 
than short- and intermediate-term experiments. Long-
term experiments increased senesced leaf P and reduced 
green leaf P, whereas short-term and intermediate-term 
experiments did not affect green leaf P. Larger increases 
in green leaf N and decreases in NRE were observed in 

intermediate-term and short-term experiments, respectively 
(Fig. 4a,c).

3.3 � Effects of N Application Rates and Humidity 
Conditions on Leaf Nutrient Concentration 
and Nutrient Resorption Responses to N 
Addition

The response ratios exhibited significant differences under 
different N application rates (Fig. 5). The aboveground 
biomass and green and senesced leaf N concentrations 
enhanced with increasing N addition rates (Fig. 5a,b,g), 
and the maximum occurred at the N application rate 
of ~ 40 g N m−2 year−1. Phosphorus resorption efficiency 
decreased with the increasing N addition rates (Fig. 5f), 
and NRE also decreased to a minimum at the N application 
rate of ~ 40 g N m−2 year−1 (Fig. 5e). Our results indicated 
that the effects of N addition on green and senesced leaf 

Fig. 3   Relationships between 
(a) leaf nitrogen (N) and 
phosphorus (P), (b) green leaf 
N and P, (c) senesced leaf N and 
P, and (d) nitrogen resorption 
efficiency (NRE) and phospho-
rus resorption efficiency (PRE) 
under control (N0) and N addi-
tion (N) conditions
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P concentrations were shifted from decrease to increase 
when the N application rate was ~ 10  g  N  m−2  year−1 
(Fig. 5c,d). The green and senesced leaf N concentration 
response to N addition was enhanced with increasing arid-
ity index (Fig. 6a,b), whereas the green and senesced leaf 
P concentration decreased with increasing aridity index 
(Fig. 6c,d). The aridity index did not significantly affect 
NRE and PRE responses to N addition (Fig. 6e,f).

4 � Discussion

Our global data analyses of N addition experiments indi-
cate that N addition alters leaf nutrient uptake strategies 
and patterns. The relationship between green leaf N and 
P and between NRE and PRE changed under N addition, 
but the relationship between senesced leaf N and P was 

Fig. 4   Subgroup analysis of the response of leaf nutrient concentra-
tions and nutrient resorption to experimental nitrogen addition in 
global grassland ecosystems. Ng, green leaf nitrogen concentration; 
Ns, senesced leaf nitrogen concentration; Pg, green leaf phosphorus 
concentration; Ps, senesced leaf phosphorus concentration; NRE, 
nitrogen resorption efficiency; PRE, phosphorus resorption efficiency. 

Error bars represent 95% confidence intervals (CI). The vertical 
dashed line represents the response ratio = 0. Treatment effects were 
statistically significant (denoted by *) if 95% CI did not overlap zero. 
*, **, and *** indicate significant correlations at p < 0.05, p < 0.01, 
and p < 0.001, respectively. The number represents the sample size of 
each variable
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not altered. Green leaves in grassland ecosystems tend to 
have higher N:P ratios. These results verify that nutrient 
resorption may be an important pathway regulating the 
relationships between leaf N and P concentrations. The 
multiple responses of varying grassland types and plant 
groups to N addition also highlight the complex impacts 
of future N deposition on global grasslands.

4.1 � Nitrogen Addition Alters Leaf Nutrient 
Concentrations and Resorption in Grasslands

Consistent with our first hypothesis, N addition significantly 
enhanced the green and senesced leaf N concentration. This 
was primarily attributed to enhanced soil N availability 
(Yuan and Chen 2015a; Taylor et al. 2021). These results are 
also consistent with previous global-scale synthesis, which 
demonstrated that N addition significantly increased foliar 
N concentration under all nutrient-limited conditions and 
increased the foliar P concentration under P-limited condi-
tions (You et al. 2018a). However, the results in our study 
demonstrated that N addition only increased P concentra-
tion in senesced leaves across global grasslands universally 
limited by P (Van Dobben et al. 2017). The nonsignificant 
change of P concentration in green leaves under N addition 
may be due to the dilution of green leaf P concentration 

caused by N-induced enhancement of aboveground biomass 
(Sardans et al. 2016). Overall, these findings suggested that 
plants alter the nutrient uptake strategies and tend to have 
higher N:P ratios in green leaves across grassland ecosys-
tems under future N enrichment.

Our analysis also revealed that N addition reduced NRE in 
grassland ecosystems, which confirmed our second hypothesis. 
Nitrogen input enhanced soil N availability and reduced N 
resorption from senesced tissues (Soudzilovskaia et al. 2007; 
Li et al. 2016). Previous studies also reported the consistent 
results that N addition significantly reducing the NRE for all 
plant growth types by about 12–13% on a global scale (Yuan 
and Chen 2015b; You et al. 2018b). However, this is slightly 
higher than the 9% reduction of NRE under N addition we 
found in grassland ecosystems. This may be due to the limita-
tion of soil nutrient availability across global grassland (Craine 
and Jackson 2010). Plants tend to have high nutrient resorption 
efficiency to maintain their growth under limited soil nutri-
ent availability (Wright and Cannon 2001; Zong et al. 2018). 
The results of our study also indicated that N addition reduced 
PRE, which was in agreement with previous reports of N addi-
tion reducing PRE in forest, grassland, and shrubland ecosys-
tems (Yuan and Chen 2015b; Su et al. 2021). This suggested 
that soil was the primary P source for plants under N addi-
tion, even in P-limited grassland ecosystems. Previous studies 

Fig. 5   Relationships of the natural logarithm of the response ratio 
(lnRR) of leaf nutrient concentrations, nutrient resorption, and bio-
mass with changes in the nitrogen application rates. Ng, green leaf 
nitrogen concentration; Ns, senesced leaf nitrogen concentration; Pg, 

green leaf phosphorus concentration; Ps, senesced leaf phosphorus 
concentration; AGB, aboveground biomass; BGB, belowground bio-
mass; NRE, nitrogen resorption efficiency; PRE, phosphorus resorp-
tion efficiency
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also showed that N addition leads to an imbalance in N and 
P cycles in soil and plants during biogeochemical processes 
(Penuelas et al. 2012) and can decouple N and P cycles in 
plants (Lü et al. 2016; Yan et al. 2018). However, the results 
in our analysis showed that plant N and P cycles remained 
coupled under N enrichment in global grassland ecosystems, 
whereas the relationships between NRE and PRE, and between 
green leaf N and P concentrations, changed significantly under 
N enrichment. Early studies reported that nutrient resorption 
had a key role in maintaining the coupled balance between N 
and P cycles in senesced leaves (Lü et al. 2016). Plants uptake 
critical nutrients from senesced leaves, which reduces their 
dependence on soil nutrient availability (Killingbeck 1996). 
This can explain why PRE was reduced under N enrichment. 
Nutrient resorption from senesced leaves may be an important 
pathway regulating the coupled relationship between N and 
P cycles.

4.2 � Nitrogen Addition Differentially Affected 
Leaf Nutrient Concentrations and Nutrient 
Resorption in Different Subgroups

Our results indicated that N addition differentially affected 
leaf nutrient concentrations and nutrient resorption in 

temperate and alpine grasslands. Alpine grasslands displayed 
more sensitivity in leaf N concentration changes under N 
addition than temperate grasslands. Plants in alpine environ-
ments tend to have efficient nutrient uptake and utilization 
strategies to adapt to nutrient limitations under extreme envi-
ronments (Zong et al. 2017; Zimmer et al. 2018). Combined 
with the decrease of green leaf P and unchanged senesced 
leaf P under N addition in alpine grasslands, it suggests 
that alpine plants will tend to have a higher N:P ratio than 
temperate plants under N addition. Generally, a higher N:P 
ratio means that N is abundant while P is relatively deficient, 
which suggests that plant growth is limited by P availability 
(Zong et al. 2018). Alpine grasslands will probably show a 
more severe limitation of P availability than temperate grass-
lands under future N enrichment. By contrast, temperate 
grasslands displayed greater sensitivity in nutrient resorption 
efficiency under N addition than alpine grasslands. Nutrient 
resorption efficiency reflects soil nutrient conditions and the 
plant adaptation strategies to soil nutrient availability in dif-
ferent environments (Kobe et al. 2005). The nonsignificant 
response of nutrient resorption efficiency to N addition in 
alpine grasslands may be due to the low soil availability 
of N and P, which was likely induced by the inhibition of 
enzyme and microbial activities caused by low temperature 

Fig. 6   Relationships of the natural logarithm of the response ratio 
(lnRR) of leaf nutrient concentration, nutrient resorption, and bio-
mass with changes in the aridity index [aridity index = MAP/
(MAT + 10)]. MAP, mean annual precipitation; MAT, mean annual 
temperature; Ng, green leaf nitrogen concentration; Ns, senesced leaf 

nitrogen concentration; Pg, green leaf phosphorus concentration; Ps, 
senesced leaf phosphorus concentration; AGB, aboveground biomass; 
BGB, belowground biomass; NRE, nitrogen resorption efficiency; 
PRE, phosphorus resorption efficiency
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under high altitude (Liu et al. 2021b). The increase of plant 
biomass in alpine grassland under N enrichment means that 
plants demand to acquire extensive nutrients, which is obvi-
ously difficult for alpine grassland soil to satisfy. Therefore, 
alpine plants still need to uptake substantial nutrients from 
senesced tissues to meet their own growth needs even under 
N addition. Plants in alpine grasslands tended to display 
stronger dependence on nutrient resorption from senesced 
tissues than those in temperate grasslands under N addition.

The green leaf N concentration displayed a greater 
increase under N addition in grasses than in forbs, but nutri-
ent resorption efficiency displayed a greater decrease under 
N addition in forbs than in grasses. As one of the dominant 
functional groups in grassland ecosystems, grasses always 
have higher nutrient resorption efficiency than other spe-
cies (Zong et al. 2018), which is an effective strategy for the 
successful competition of grasses with other species. The 
greater decrease in green leaf P concentration of grass than 
that of forb under N addition may be due to higher P utiliza-
tion efficiency in grasses than in forbs (Hayes et al. 2018; 
Pereira et al. 2018). These results demonstrated that grasses 
possess a higher N:P ratio under N addition than forbs. This 
suggests that P limitation in grasses under future N deposi-
tion may be more pronounced than in forbs in global grass-
lands. Long-term N addition and NH4NO3 fertilizer were 
more likely to shift the leaf nutrient in grassland ecosys-
tems, as NH4NO3 is more soluble in water and more easily 
acquired and utilized by plants. In summary, our analyses 
indicated that the responses of leaf nutrient concentrations 
and nutrient resorption to N addition differed among grass-
land types, plant groups, and experimental conditions. These 
results will deepen our understanding of the effects of N 
enrichment in global grassland ecosystems.

4.3 � Factors that Shift the Impact of N Addition 
on Leaf Nutrient Concentrations and Nutrient 
Resorption

Consistent with our third hypothesis, the responses of 
leaf nutrient concentration and nutrient resorption to N 
addition were modulated by factors such as N application 
rates and humidity. Our analysis showed that N application 
rates of ~ 40 g N m−2 year−1 had greater impacts on leaf 
N concentration and NRE than other N application rates. 
The plant N uptake gradually increased due to enhanced 
soil N availability when the N addition rate was below 
the critical threshold, whereas plant N uptake was lim-
ited by the availability of other nutrients such as carbon 
and phosphorus when the N addition rate was above the 
critical threshold (Yuan and Chen 2015a, b). This simi-
lar critical threshold was also reflected in our analysis of 
the response of aboveground biomass to N addition. Our 

results also exhibited that the turning point from decrease 
to increase in leaf P concentration to N addition was when 
the N application rate was ~ 10 g N m−2 year−1, which was 
consistent with the results of a previous study of grass-
lands across northern China (Su et al. 2021). Low N addi-
tion (< 10 g N m−2 year1) tends to inhibit plant uptake of 
P, but high N addition (> 10 g N m−2 year−1) stimulates 
plant P uptake. This also may be why soil available P dif-
fered due to varying responses of soil phosphatase activ-
ity to N application rates (Gong et al. 2020; Widdig et al. 
2020). Moreover, previous studies reported that N addition 
increased aboveground biomass by 20–35% and the effects 
of N addition on aboveground biomass had a unimodal 
distribution (Liu and Greaver 2010; Jiang et al. 2019). 
These responses are also reflected in our analysis. Dilu-
tion effects resulting from the increase in plant biomass 
may also partly explain the complex responses of leaf P 
concentration to N addition due to mismatched changes 
in plant biomass and soil phosphatase activity (Yuan and 
Chen 2015a). However, the mechanism of a critical thresh-
old for the changes in plant P concentration to N addition 
still needs to be further studied.

Humidity (aridity index) also shifted N addition 
impacts on leaf nutrient concentrations. Our results indi-
cated that the response of green and senesced leaf N to 
N addition increased with greater aridity index, whereas 
the response of green and senesced leaf P to N addition 
decreased with rising aridity index. This may result from 
a synergy between N enrichment and humidity, which 
was reported in previous studies (Grunzweig and Korner 
2003; Copeland et al. 2012). Grassland ecosystems can 
be particularly sensitive to changes in nutrient and water 
availability (Su et al. 2021). An increase in soil moisture 
usually led to a higher N mineralization rate and improved 
the availability of soil inorganic N, which further pro-
moted plant aboveground biomass and nitrogen absorption 
(Schuster and Dukes 2017; Dijkstra et al. 2018). However, 
this synergy may also lead to an inhibition of plant growth 
induced by excessive nitrogen and water. The aridity index 
did not affect plant biomass and nutrient resorption effi-
ciency responses to N addition, which may be due to the 
multiple responses of different grassland types and plant 
groups to the effects of N addition and water availability. 
For example, N addition and water availability impacts 
on leaf nutrient concentration and nutrient resorption of 
grass and forb plants were different in semi-arid grassland, 
and the distinction also was reflected in varying grassland 
ecosystems (Lu and Han 2010; Zhang et al. 2019). Overall, 
our combined results indicated that temperature and pre-
cipitation jointly modulate the responses of plant nutrient 
concentrations and nutrient resorption to N addition in 
grassland ecosystems.
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5 � Conclusions

Our meta-analysis synthesized data on changes in leaf nutri-
ent concentration and resorption across global grassland 
ecosystems under experimental N addition. The results sug-
gested that N enrichment altered leaf nutrient concentration 
and nutrient resorption in grassland ecosystems, which was 
modulated by N application rates, temperature, and precipi-
tation. The sensitivity of leaf nutrient concentration and 
resorption to N enrichment varied greatly across grassland 
types and plant groups. These findings provide evidence that 
nutrient resorption plays a significant role in regulating the 
plant nutrient strategies to respond to future N deposition. 
Our results contribute to better predictions of changes in the 
plant nutrient cycle under N enrichment in global grassland. 
Future changes in temperature and precipitation may affect 
the soil–plant nutrient cycles of global grassland ecosystems 
by mediating plant nutrient responses to N addition.
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