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Abstract
Sesame genotypes have different potentiality to exploit the environmental growth factors, i.e., the available nutrients. So far, 
sesame genotypes have not received enough studies regarding their response to a mixture of micronutrients in nanostructures. 
Therefore, the current study aimed to investigate the response of some sesame genotypes under different rates of Fe, Zn, and 
Mn mixture in nano-form. Field experiment was established in a strip-plot design with three replicates during two successive 
seasons. The response of three sesame genotypes (Shandaweel3, Giza32, and Sohag1) was studied under two levels of iron 
(Fe), zinc (Zn), and manganese (Mn) package, 1:1:1 (0.25 and 0.50 g  L−1 as nanoparticles, FeZnMn-nano), in addition to 
control treatment, 0.00 g  L−1, (tap water). Sesame yield attributes, oil and protein content, micronutrient uptake, micronutri-
ent recovery efficiency, and seed yield response index were estimated. Sohag1 genotype was the most efficient for producing 
the maximum capsule number  plant−1, seed yield  plant−1, and seed yield  ha−1 as well as protein yield  ha−1. The increase in 
seed yield  ha−1 was 15.5% owing to 0.50 g  L−1 FeZnMn-nano, compared to the control treatment. The maximum values of 
micronutrient uptake were recorded with Sohag1 genotype surpassing Shandaweel3 and Giza32 genotypes. Spraying of 0.50 g 
 L−1 FeZnMn-nano recorded 25.6 and 30.5% increases for Fe uptake and Zn uptake, respectively. Sohag1 genotype × 0.50 g 
 L−1 FeZnMn-nano was the efficient interaction treatment for enhancing Fe and Zn uptake. Sohag1 genotype showed the 
maximum values of Fe and Zn recovery efficiency. Each of Sohag1 genotype and Shandaweel3 genotype whether with 0.50 g 
 L−1 FeZnMn-nano or 0.25 g  L−1 FeZnMn-nano treatments achieved the highest values of Fe and Zn recovery efficiency. Both 
Sohag1 and Shandaweel3 genotypes are belonging to efficient and responsive (ER) group, being exceeded the averages of 
seed yield at zero micronutrients rate and seed yield response index. Genotypic variations associated with the application 
of Fe, Zn, and Mn as nano-mixture introduced a promising solution for remediation of micronutrients deficiency symptoms 
in sesame. Under arid regions, i.e., Egyptian conditions, fertilizing Sohag1 genotype by 0.50 g  L−1 FeZnMn-nano could 
achieve cost-effective mean to overcome Fe, Zn, and Mn deficiency with higher productivity.
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1 Introduction

Globally, about 40% of world population is suffering from 
malnutrition owing to insufficient supply of micronutrients, 
i.e., iron (Fe), zinc (Zn), and manganese (Mn), especially 

in developing countries (Welch and Graham 2002; Jha and 
Warkentin 2020).

Seed of sesame (Sesamum indicum L.) is considered an 
important source of oil (44–58%), protein (18–25%), carbo-
hydrate (13.5%), and ash (5%). The seed contains all essen-
tial amino acids and fatty acids. It is a good source of vita-
mins and minerals such as calcium and phosphorus (Malik 
et al. 2003). Due to the presence of endogenous antioxidants 
such as sesamol, sesamolinol, and sesaminol, the edible oil 
of sesame has high degrees of stability and resistance to oxi-
dative rancidity (Alpaslan et al. 2001). Among the various 
factors of crop management, proper level of micronutrients 
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and improved sesame genotypes are playing a key role in 
boosting crop production.

Fe, Zn, and Mn are three of the most significant micro-
nutrients required for favorable plant growth and develop-
ment. The lack or excrescent concentration of these nutri-
ents leads to negative impacts on crop production (Lynch 
2019). In addition, soils in the semi-arid and arid climates 
are disposed to have a deficiency of a variety of micronu-
trients as iron, copper, zinc, and manganese (Clair and 
Lynch 2010). Approximately 80% of Fe is found in pho-
tosynthetic cells where it is essential for the biosynthesis 
of cytochromes, chlorophyll, the electron transport chain, 
and the construction of Fe-S clusters (Briat et al. 2007; 
Hänsch and Mendel 2009). Also, Varotto et al. (2002) 
reported that Fe atoms are one of the structural compo-
nents of molecules linked with photosystem II (PS-II), 
photosystem I (PS-I), cytochrome complex, and ferredoxin 
molecule. This clarifies that Fe is directly entangled in the 
photosynthetic activity of crop plants and, consequently, 
their productivity (Briat et al. 2007). Zn is a significant 
micronutrient required for humans, animals, and plants in 
minor amount (Kabata-Pendias 2011; Shukla et al. 2018). 
The function of several enzymes (alcoholic dehydrase, car-
bonic anhydrase, carboxypeptidase, alkaline phosphate, and 
phospholipase) in the metabolism of nucleic acid, lipids, 
proteins, and carbohydrates mainly depends on Zn (Khan 
et al. 2002; Ullah et al. 2020). Zn has an efficient effect 
on enhancing photosynthesis, cell division, protein synthe-
sis, gene transcription, and retains integrity of membranes 
(Broadley et al. 2007; Rehman et al. 2018). Hence, the final 
rice crop product was improved by Zn supply (El-Metwally 
and Saudy 2021). Since Mn serves as electron storage and 
delivery to the chlorophyll reaction centers, it is regarded as 
a component and a catalytically active cofactor of enzyme 
system involved in photosynthesis and several metabolic 
processes (Millaleo et al. 2010).

There is no doubt that crops growing in sandy soils 
with low fertility are subjected to nutritional stress 
affecting their productivity. Applying micronutrients to 
soil appears to be one of the most cost-effective means 
to overcome nutrient deficiency. With the scarcity of 
micronutrients in the soil, adequate supply of them is 
required for optimal growth and yield of crops (Singh 
2009). Several methods of micronutrients supply to crop 
plants have been reported, for instance, foliar application 
(Haider et al. 2018a) and seed priming (Ullah et al. 2019)  
to enhance the crop growth and productivity. Soil applica- 
tion of micronutrients has been also kept a realistic mean 
of alleviating the micronutrient deficiencies in crop plants 
(Haider et al. 2018b). However, change in soil factor can 
alter the soil chemical and physical properties, i.e., pH, 
redox potential, and organic matter (Alloway 2009), thus 
affecting biological activities for root function like ion 

uptake and respiration (Marschner and Rengel 2012). It 
is well known that foliar application of micronutrients 
established remarkably higher absorption levels than soil 
application of micronutrients (Moghadam et al. 2011). 
Recently, exploiting nanoparticles spray (materials with 
a size range from 1 to 100 nm) through nanotechnology 
(Hema et al. 2016; Suguna et al. 2017) can be utilized in  
environmental applications (Zou et al. 2016; Khan et al. 
2017). Nanoparticles contribute to nutrient use efficiency 
and plant growth (Rui et al. 2016; Pacheco and Buzea 
2018; Tombuloglu et al. 2018; Singh et al. 2019a). Nano- 
nutrient fertilizers exhibit high sorption capacity, surface  
area, and control release of nutrients to targeted sites; 
hence, these can be considered as smart nutrient delivery  
system (Rameshaiah et  al 2015). Furthermore, nano- 
fertilizers offer benefits in nutrition management through 
their strong potential to increase nutrient use efficiency 
and provide better yield and may also be used for enhanc- 
ing abiotic stress tolerance (Naderi and Danesh‒Sharaki 
2013; Zulfiqar et al 2019).

Sesame yield is highly variable according to the growing 
environment, cultural practices, and cultivated genotypes. 
Significant variations in seed yield, oil content, and oil com-
position were obtained among sesame genotypes (Ali et al. 
2016; El–khouly et al. 2018; Saudy et al. 2018). Accord-
ingly, providing sesame plants with proper amounts of Fe, 
Mn, and Zn is a crucial action for sustaining crop productiv-
ity and quality.

Despite the combined effect of Zn with Fe/Mn were pre-
viously reported in some crops (Movahhedy-Dehnavy et al. 
2009; Blasco et al. 2015; Khodabin et al. 2021; Pal et al. 
2021), there is almost no information available about the sig-
nificance of Fe, Zn, and Mn together, particularly as a nano-
mixture for the sesame crop. It was hypothesized that Fe, Zn, 
and Mn application in combination through nanotechnology 
tools will enhance productivity and seed biofortification of 
sesame genotypes. Therefore, this field study was conducted 
to evaluate the response of sesame genotypes to various rates 
of Fe, Zn, and Mn mixture in nano-form.

2  Materials and Methods

2.1  Study Area

A 2-year-field study was conducted in 2018 and 2019 
growing seasons at Imam Mllik village, Kom Hamada, 
El–Beheira governorate, Egypt (30° 30′ N, 30° 20′ E). The 
soil of the research site was sandy and its physical and 
chemical properties are shown in Table 1. The experimen-
tal site belongs to the arid areas with hot-dry summers and 
no rainfalls. As an average of the two seasons, the values 
of daily air temperature, wind speed, relative humidity, 
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and solar radiation were 39.8 °C, 4.32 m  sec–1, 59.5% and 
28.3 MJ  m–2  day–1, respectively. Wheat (Triticum aestivum 
L.) was the preceding cultivated crop in both seasons.

2.2  Trial Design and Implementation

The experiment was implemented in a strip-plot design 
with three replicates, where genotypes (Giza32, Sohag1, 
and Shandaweel3) occupied the vertical strips and 
micronutrient treatments distributed in the horizontal 
ones. The net plot size was 10.5  m2; involving five ridges, 
3.5  m length and 0.6  m width. The tested genotypes 
originated from Egypt as well as their pedigrees are 
GIZAWHIxTYPE9, BENGALIANxGIZA32, and 
GIZA32xNA130 for Giza32, Sohag1, and Shandaweel3, 
respectively. Giza32 plants have unbranched stem and bear 
one capsule in the leaf axil. This genotype is moderately 
tolerant to wilt disease. Both Sohag1 (branched) and 
Shandaweel3 (unbranched) plants bear three capsules in 
the leaf axil as well as these two genotypes are tolerant 
to wilt disease. Three levels of iron (Fe), zinc (Zn), and 
manganese (Mn) package, 1:1:1 (0.00, 0.25, and 0.50 g 
 L−1 as nano particles, FeZnMn-nano) were applied. The 
micronutrients in the form of oxides were sprayed twice 
at 30 and 45 days after sowing (DAS). The spray solutions 
were applied using a knapsack sprayer had one nozzle 
with 480 L water  ha–1 as a solvent/carrier. Transmission 
electron microscopy (TEM) images of nano-oxide crystals 
for Fe, Zn, and Mn are depicted in Fig. 1.

Calcium superphosphate (15.5%  P2O5) at a rate of 
360 kg   ha−1 was incorporated during land preparation. 
Seeds of sesame genotypes were sown on 5 May 2018 
and 1 May 2019 (about 10.0 kg  ha−1) with 10-cm distance 
between hills, and then sowing irrigation was applied. At 
25 DAS, plants were thinned to two plants per hill followed 

Table 1  Properties of soil at Imam Mllik village, Kom Hamada, El–
Beheira governorate, Egypt

Values are the mean of 3 replicates ± standard errors

Parameter Unit Value

Physical properties
Sand % 88.0 ± 0.2
Silt % 5.3 ± 0.1
Clay % 6.7 ± 0.1
Chemical analysis
pH (1:2.5) – 7.8 ± 0.1
EC dS  m−1 2.4 ± 0.3
Organic matter % 0.79 ± 0.02
Total nitrogen % 0.05 ± 0.0.02
Available P mg  kg−1 12.0 ± 0.2
Available K mg  kg−1 160.0 ± 2.4
Available Fe mg  kg−1 1.01 ± 0.01
Available Zn mg  kg−1 0.85 ± 0.03
Available Mn mg  kg−1 1.06 ± 0.03
Ca+2 meq  L−1 18.7 ± 0.7
Mg+2 meq  L−1 6.7 ± 0.1
Na+ meq  L−1 2.53 ± 0.03
K+ meq  L−1 0.74 ± 0.03
Cl− meq  L−1 4.18 ± 0.02
HCO3

− meq  L−1 2.90 ± 0.06
CaCO3 g  kg−1 56.1 ± 0.6

Fig. 1  Transmission electron 
microscopy (TEM) images of 
nano-oxide crystals for iron 
(Fe), zinc (Zn), and manganese 
(Mn) with sizes of 100 and 
200 nm (nm)
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by irrigation. Nitrogen fertilizer (in the form of ammonium 
sulfate, 20% N) was applied at the rate of 108 kg  ha−1 in 
three equal portions, at sowing, 25 and 40 DAS. Also, 
plants received potassium sulfate (48%  K2O) at a rate of 
120 kg  ha−1, 40 DAS.

Sesame plants were irrigated through trickle irrigation 
system. The irrigation system was set up consisting of 
control head (media and screen filters, pressure gauges, and 
control valves). Main line was PVC of 75.0 mm diameter 
up to 6.0 bar pressure and sub main line was PVC pipe of 
50.0 mm diameter up to 6.0 bar pressure). Lateral lines 
were polyethylene tubes of 16 mm diameter (with built 
in emitters), 20.0 cm emitter spacing, and manufacturing 
emitter discharge 4.0 L  h−1, at operating pressure of 
1.0 bar.

2.3  Assessments

2.3.1  Agronomic Traits

Flowering time was estimated based on the initial flowering 
of the first flower for whole plants per experimental unit. At 
maturity stage (on 27 August 2018 and 21 August 2019), 
ten plants were randomly selected from each plot to measure 
the means of fruiting zone length, capsules number  plant−1, 
seed yield per plant (g  plant−1), and weight of 1000 seeds. 
Moreover, sesame yield (kg  ha−1) was estimated by harvest-
ing the whole plot size.

2.3.2  Seed Oil and Protein Content

According to AOAC (2012), seed oil content was 
measured (using Soxhlet Apparatus with hexane as an 
organic solvent) as well as total nitrogen was determined 
(using the modified micro Kjeldahl method). Hence, crude 
protein content was calculated by multiplying the total 
nitrogen by 5.7. After that, oil and protein yields  ha−1 were 
computed through multiplying oil % and protein % by seed 
yield  ha−1, respectively.

2.3.3  Micronutrient Nutrient Uptake

Each of Fe, Zn, and Mn in sesame seeds was extracted as 
described by Soltanpour and Schwab (1977). Extracted 
solution was determined against a standard using ICP 
instrument Prodigy7. The ICP Specified by Optical 
Design High Energy EchellePoly chromator connected 
with a detector CMOS. The analytical wavelengths of 
Fe, Zn, and Mn assessment were 259.940, 213.857, and 
257.610 nm, respectively. Fe, Zn, and Mn uptake (kg 

 ha–1) was calculated by multiplying seed nutrient content 
by seed yield  ha–1.

2.3.4  Micronutrient Recovery Efficiency

Recovery efficiency (RE) % of Fe, Zn, and Mn was com-
puted according to Shivay et al. (2010), using formula 1 as 
follow:

where:
UNt: seed nutrient uptake in treated plots, (kg  ha–1),
UNc: seed nutrient uptake in control (no fertilizer applied) 

plots (kg  ha–1),
Na: applied nutrient in treated plots (kg  ha–1).

2.3.5  Seed Yield Response Index

Seed yield response index (SYRI) was calculated for each 
genotype using formula 2 (Fageria and Barbosa Filho 1981) 
as follow:

where:
SY: seed yield kg  ha−1

Low nutrient rate = 0.00 kg  ha−1.
High nutrient rate = 0.24 kg  ha−1 (equivalent 0.50 g  L−1 

nano-form).
According to the SYRI value, genotypes could be clas-

sified into four groups: (i) efficient and responsive (ER) 
that produce high seed yield at low as well as high rates of 
nutrient fertilizer; (ii) efficient and not responsive (ENR) 
that produce high seed yield at low nutrient rate with lower 
response to increase nutrient fertilizer than ER; (iii) not 
efficient but responsive (NER) that has low seed yield with 
response to increase nutrient fertilizer; and (iv) neither effi-
cient nor responsive (NENR) that has low seed yield with 
low response to increase nutrient fertilizer.

2.4  Statistical Analysis

The collected data were subjected to homogeneity test (Lev-
ene 1960) and Anderson–Darling normality test (Scholz and 
Stephens 1987) before carrying out the analysis of variance 
(ANOVA). Since the outputs proved that the homogeneity 
and normality of the data are satisfied for running further a 
2-way ANOVA, the combined ANOVA for the data of the 
two seasons was performed (Casella 2008), using Costat 

(1)RE% =
UNt − UNc

Na

× 100

(2)
SYRI =

SY at high nutrient rate − SY at low nutrient rate

High nutrient rate − Low nutrient rate

(

kg seeds kg nutrient−1
)
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software program, Version 6.303 (2004). Using, Duncan’s 
multiple range test, means separation was done only when 
the F-test indicated significant (P < 0.05) differences among 
the treatments.

3  Results

3.1  Agronomic Traits, Oil, and Protein of Sesame

Agronomic traits, oil, and protein of sesame were signifi-
cantly responded to the main effects of genotype (except 
weight of 1000 seed) and micronutrients application 
(except flowering time), while there was no significant 
effect of the interaction. The tested sesame genotypes were 
not similar in all agronomic traits (Table 2) and oil and 
protein yields (Table 3). In this respect, Sohag1 genotype 
was the most efficient for producing the maximum capsule 
number  plant−1, seed yield  plant−1, and seed yield  ha−1 as 
well as protein yield  ha−1. Sohag1 genotype significantly 
equaled Shandaweel3 genotype in flowering time and oil 
yield  ha−1 as well as Giza3 genotype in fruit zone length.

Concerning the effect of micronutrients fertilizer 
on agronomic traits of sesame, the results in Table  2 
revealed that except flowering time, all yield parameters 
significantly responded to nanofertilizer form of the 
applied micronutrients. In this situation, application of 
0.50 g  L−1 FeZnMn-nano showed the highest values of 
fruit zone length, capsule number  plant−1, weight of 1000 
seed, seed yield  plant−1, and seed yield  ha−1. However, 
the differences between 0.50 g  L−1 FeZnMn-nano and 
0.25  g  L−1 of FeZnMn-nano were not significant for 
weight of 1000 seed, seed weight  plant−1, and seed yield 
 ha−1. Herein, the increase seed yield  ha−1 was 15.5% 

owing to 0.50  g  L−1 FeZnMn-nano, compared to the 
control treatment (tap water). Moreover, the potential of 
0.50 g  L−1 FeZnMn-nano treatment extended to improve 
oil yield by 13.3% and protein yield by 18.4%, compared 
to the control treatment (Table 3).

3.2  Micronutrient Uptake by Sesame

Micronutrient uptake of sesame seeds was significantly 
affected by the main effects of genotype and micronutrient 
fertilization (Table 4). In this context, the maximum values 
of micronutrient uptake were recorded with Sohag1 geno-
type surpassing Shandaweel3 and Giza32 genotypes by 1.13 
and 1.38 times for Fe uptake, 1.14 and 1.42 times for Zn 
uptake, and 1.21 and 1.43 times for Mn uptake, respectively.

Table 2  Agronomic traits of sesame as influenced by genotype and micronutrient

DAS, days after sowing; FeZnMn, iron, zinc, and manganese bundle. Values are the mean of 3 replicates ± standard errors. Different letters 
within columns indicates that there are significant differences at 0.05 level of probability; ns, non-significant

Variable Flowering time 
(DAS)

Fruit zone length 
(cm)

Capsule number 
 plant−1

Seed yield  
(g  plant−1)

Weight of 1000 
seed (g)

Seed yield  
(kg  ha−1)

Genotype (G)
Giza32 29.0 ± 0.4b 128.8 ± 3.6a 106.9 ± 3.2c 26.4 ± 1.2c 3.49 ± 0.06a 845.3 ± 12.5c

Sohag1 32.2 ± 0.5a 128.7 ± 2.4a 117.8 ± 1.7a 45.2 ± 0.8a 3.58 ± 0.06a 1175.2 ± 24.0a

Shandaweel3 33.3 ± 0.6a 113.2 ± 2.7b 114.7 ± 1.8b 33.2 ± 0.8b 3.76 ± 0.05a 1042.4 ± 20.2b

Micronutrient level 
(M)

0.00 g  L−1 FeZnMn 31.6 ± 0.7a 111.3 ± 1.9c 105.9 ± 1.8c 31.1 ± 2.1b 3.50 ± 0.05b 950.8 ± 26.1b

0.25 g  L−1 
FeZnMn-nano

31.6 ± 0.6a 120.8 ± 2.0b 113.1 ± 2.5b 34.7 ± 2.0ab 3.62 ± 0.06ab 1013.5 ± 37.2ab

0.50 g  L−1 
FeZnMn-nano

31.4 ± 0.6a 138.6 ± 2.4a 120.4 ± 2.2a 39.1 ± 2.7a 3.71 ± 0.06a 1098.5 ± 40.8a

GxM ns ns ns ns ns ns

Table 3  Oil and protein yields of sesame as influenced by genotype 
and micronutrient

FeZnMn, iron, zinc, and manganese bundle. Values are the mean of 3 
replicates ± standard errors. Different letters within columns indicates 
that there are significant differences at 0.05 level of probability; ns, 
non-significant

Variable Oil yield
(kg  ha−1)

Protein yield
(kg  ha−1)

Genotype (G)
Giza32 434.3 ± 14.6b 192.7 ± 5.2b

Sohag1 562.6 ± 18.1a 261.2 ± 8.3a

Shandaweel3 521.1 ± 14.1a 223.0 ± 7.9b

Micronutrient level (M)
0.00 g  L−1 FeZnMn 500.9 ± 13.7b 213.2 ± 7.1b

0.25 g  L−1 FeZnMn-nano 449.6 ± 15.0b 211.3 ± 9.7b

0.50 g  L−1 FeZnMn-nano 567.6 ± 20.4a 252.4 ± 9.4a

GxM ns ns
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All micronutrient applications showed increases in Fe, Zn, 
and Mn uptake greater than the control treatment (Table 4). 
Spraying of 0.50 g  L−1 FeZnMn-nano possessed higher val-
ues of Fe and Zn uptake recording increases of 25.6% (for Fe) 
and 30.5% (for Zn). Also, sprayings of 0.50 g  L−1 FeZnMn-
nano and 0.25 g  L−1 FeZnMn-nano were statistically equaled 
and improved Mn uptake by 31.3 and 18.8%, respectively.

Significant interaction effect of genotype and micronutri-
ent on Fe and Zn uptake was noticed (Table 5). Generally, 
treating Sohag1 genotype by 0.50 g  L−1 FeZnMn-nano was 
the efficient interaction treatment for enhancing Fe and Zn 
uptake. Moreover, Shandaweel3 and Giza32 genotypes were 
more efficient to produce higher values of Fe and Zn uptake 
under application of 0.50 g  L−1 FeZnMn-nano than other 
fertilizer treatments.

3.3  Micronutrient Recovery Efficiency

Recovery efficiency of iron (FeRE) and zinc (ZnRE) was 
significantly changed among sesame genotypes, while 

recovery efficiency of manganese (MnRE) did not affect 
(Fig. 2). Sohag1 genotype showed the maximum values of 
FeRE and ZnRE statistically equaled Shandaweel3 genotype 
in ZnRE. No significant variations in recovery efficiency of 
FeRE, ZnRE or MnRE between 0.50 g  L−1 FeZnMn-nano 
and 0.25 g  L−1 FeZnMn-nano treatments were recorded 
(Fig. 3).

Recovery efficiency of FeRE and ZnRE was significantly 
affected by sesame genotypes × micronutrient interaction, 
while recovery efficiency of MnRE did not respond (Fig. 4). 
As for the interaction, both of Sohag1 genotype and Shan-
daweel3 genotype whether with 0.50 g  L−1 FeZnMn-nano 
or 0.25 g  L−1 FeZnMn-nano treatments achieved the highest 
values of FeRE and ZnRE.

3.4  Seed Yield Response Index (SYRI) of Sesame

Based on 0.00 FeZnMn (0.00 g  L−1) kg micronutrients, 
as low nutrient rate, and 0.24 FeZnMn-nano (0.50  g 
 L−1) kg micronutrients, as high nutrient rate of Fe, Zn, 
and Mn bundle  ha−1, SYRI of sesame was computed. 

Table 4  Iron (Fe), zinc (Zn), and manganese (Mn) uptake in sesame 
as influenced by genotype and micronutrient

FeZnMn, iron, zinc, and manganese bundle. Values are the mean of 3 
replicates ± standard errors. Different letters within columns indicates 
that there are significant differences at 0.05 level of probability; *sig-
nificant; ns, non-significant

Variable Fe uptake
(kg  ha−1)

Zn uptake
(kg  ha−1)

Mn uptake
(kg  ha−1)

Genotype (G)
Giza32 0.081 ± 0.001c 0.055 ± 0.001c 0.016 ± 0.0008c

Sohag1 0.112 ± 0.004a 0.078 ± 0.004a 0.023 ± 0.0009a

Shandaweel3 0.099 ± 0.004b 0.068 ± 0.003b 0.019 ± 0.0009b

Micronutrient level (M)
0.00 g  L−1 FeZnMn 0.086 ± 0.003c 0.059 ± 0.001c 0.016 ± 0.001b

0.25 g  L−1 FeZnMn-nano 0.096 ± 0.004b 0.066 ± 0.003b 0.019 ± 0.001a

0.50 g  L−1 FeZnMn-nano 0.108 ± 0.005a 0.077 ± 0.004a 0.021 ± 0.001a

GxM * * ns

Table 5  The significant 
interaction effect of sesame 
genotype and micronutrient on 
iron (Fe) and zinc (Zn) uptake

FeZnMn, iron, zinc, and manganese bundle. Values are the mean of 3 replicates ± standard errors. Different 
letters within columns indicates that there are significant differences at 0.05 level of probability; ns, non-
significant

Variable Giza32 Sohag1 Shandaweel3

Fe uptake (kg  ha−1)
0.00 g  L−1 FeZnMn 0.075 ± 0.0007f 0.097 ± 0.0005c 0.086 ± 0.0018d

0.25 g  L−1 FeZnMn-nano 0.079 ± 0.0016e 0.113 ± 0.0021b 0.097 ± 0.0022c

0.50 g  L−1 FeZnMn-nano 0.087 ± 0.0012d 0.125 ± 0.0003a 0.113 ± 0.0006b

Zn uptake (kg  ha−1)
0.00 g  L−1 FeZnMn 0.053 ± 0.0015f 0.065 ± 0.0013 cd 0.059 ± 0.0010def

0.25 g  L−1 FeZnMn-nano 0.054 ± 0.0022ef 0.076 ± 0.0021b 0.067 ± 0.0021c

0.50 g  L−1 FeZnMn-nano 0.060 ± 0.0007cde 0.091 ± 0.0023a 0.079 ± 0.0025b

c

a
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Fig. 2  Recovery efficiency of iron (FeRE), zinc (ZnRE), and manga-
nese (MnRE) for the tested sesame genotypes. Values are the mean of 
3 replicates ± standard errors. Bars with different letters are statisti-
cally significant at 0.05 level of probability
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SYRI pointed out to the efficient genotype for pro- 
ducing higher seed yield at low nutrient rate and their 
response to increase nutrient fertilizer rates. In this con-
nection, Fig. 5 illustrated that the average of sesame  
seed yield at zero micronutrients rate was 950.8 kg  ha−1 
as well as the mean of SYRI value for 0.24 FeZnMn- 
nano kg micronutrients was 615.4 kg seeds kg micronu-
trient  ha−1. Accordingly, both Sohag1 and Shandaweel3 
genotypes were belonging to efficient and responsive 
(ER) group, being exceeded the averages of seed yield 
at zero micronutrients rate and SYRI, while Giza32 was 
neither efficient nor responsive (NENR), since the seed 
yield at zero micronutrients rate and SYRI were lower 
than the averages.

4  Discussion

Findings of the current research clarified the differen-
tial response of sesame genotypes for agronomic traits 
(Table 2), oil and protein yields (Table 3), micronutri-
ents uptake (Table 4), micronutrients recovery efficiency 
(Fig.  2), and SYRI (Fig.  5). This refers to the varied 
potential among sesame genotypes to utilize the absorbed 
micronutrient owing to their different genetic background. 
Saudy et al. (2018) stated that the higher leaf greenness 
produced by Sohag1 cultivar than other cultivars might 
have help it to absorb more solar radiation which could 
have led to enhanced assimilate production and conse-
quently increased fruiting zone length, 1000-seed weight 
and seed yield. Different performances among sesame gen-
otypes were also reported by Saudy and Abd El–Momen 
(2009) and Kashani et al. (2016). Moreover, varietal dif-
ferences were observed between two cultivars of sesame in  
nutrient uptake (Laurentin and Rodriguez 2020).

It is interesting to clarify that the mixture of Fe, Zn, and 
Mn had promotive influences on sesame agronomic traits 
and yields (Tables 2, 3) and nutrient utilization, expressed 
in micronutrients uptake (Table 4). Since micronutrient 
combination treatment (Zn + Fe) improved net assimilation 
rate and crop growth rate (Heidarian et al. 2011), distinc-
tive increases owing to micronutrients mixture application 
in yield traits (Table 2), and oil and protein yield of sesame 
(Table 3) were produced. Micronutrients have a major role in 
cell division and development of meristematic tissues, pho-
tosynthesis, respiration, and acceleration of plant maturity 
(Zeidan et al. 2010). Also, these elements play vital roles in 
 CO2 flowing out, improvement in vitamin A and immune 
system activities (Narimani et al. 2010). It is well known that 
Fe and Zn have a decisive role in various plant growth and 
developmental phases and in numerous biochemical reac-
tions as well as in biosynthesis of RNA and DNA (Blasco 
et al. 2015). Fe is the inner component of cytochrome oxi-
dase and protein ferredoxin which are fundamental for the 
nitrate and sulfate reduction, nitrogen assimilation, and 
energy generation (Honarjoo et al. 2013). Furthermore, Zn is 
involved in the major plant metabolisms, i.e., photosynthesis 
process, biosynthesis of auxins, carbohydrate and protein, 
cell division, maintaining cellular membrane stability, and 
sexual fertilization (Marschner 2012; Wasaya et al., 2017). 
Owing to Zn, as a crucial micronutrient, is included in 
several physio molecular functions, its existence has been 
shown to enhance crop growth and productivity (Haripriya 
et al. 2018; Singh et al. 2019b; El-Metwally and Saudy 
2021). Song et al. (2015) stated that Zn is a central cofactor 
in vital biocatalytic enzymes and even has indirect roles in 
nucleic acid multiplication. Moreover, Mn plays a vital role 
in chlorophyll installation and involved in photochemical 
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electron transfer reactions of plants (Yruela 2013). Addition-
ally, Mn shares in water photolysis in photosynthesis appa-
ratus (Andresen et al. 2018) and Mn ion can bind ATP to the 
enzyme complex (Zea et al. 2008). Accordingly, combined 
foliar application of Fe, Zn, and Mn achieved distinctive 
enhancements in sesame yield and its components (Tables 2, 
3) and micronutrient uptake (Table 4). Enhancements in ses-
ame yield and yield attributes were achieved owing to appli-
cation of micronutrients mixture (Elayaraja 2018; Elayaraja 
and Sathiyamurthi 2020). Positive synergistic effects on pho-
tosynthesis, net assimilation rate, relative growth, seed yield, 
and oil yield were recorded with the combined application 
of Zn and/or Fe and Mn (Movahhedy‒Dehnavy et al. 2009; 
Imran and Khan 2017; Roosta et al. 2018; Khodabin et al. 
2021; Pal et al. 2021).

Since micronutrients in the form of nanoparticles have 
tiny size (Fig. 1), high sorption capacity, and diffusible 
nature with rapid and perfect absorption/uptake by the 
plants (Rameshaiah et al 2015), application of FeZnMn-nano 
could supply effectively the crop plants by their nutritional 
requirements (Raliya and Tarafdar 2013); thus, sesame yield 
and its components were improved with 0.50 g  L−1 of FeZ-
nMn-nano (Table 2). As reported by Prasad et al. (2012), 
plants the micronutrients in form nano quicker than the 
normal one. Compared to water-soluble ions, the penetra-
tion opportunities of nano-sized nutrients through the plant 
leaf surface, their ions across the cuticle were increased 
(Da Silva et al. 2006). Particles in nano-form have small 
size (1–100 nm) is clearly associated with the efficiency in 

their physicochemical features (Torabian et al. 2017). The 
activity of antioxidant enzymes as well as phenolics, proline, 
and chlorophyll contents positively responded to zinc-sulfate 
and nano-zinc oxide supply (Mohsenzadeh and Moosavian 
2017). Significant improvements in growth and yield as well 
as the soil microbial counts and dehydrogenase activity were 
observed with nano Zn treatment (Bala et al. 2019).

Nano-micronutrients application not only improved 
the sesame yield attributes but also the micronutrients 
uptake (Table 4). The increases in Fe and Zn uptake were 
obviously produced with 0.50 g  L−1 of FeZnMn-nano. All 
rates of nano-Fe, Mn, and Zn package achieved similar 
Mn uptake, exceeding the control treatment (Table 4). 
This refers to that the improvements in Fe and Zn uptakes 
are more correlated with the application of micronutrients 
than Mn uptake. Askary et al. (2017) pointed out that 
the nutrient solution containing nano-Fe increased fresh 
and dry weight of plant as well as K, P, Zn, Fe, and Ca 
content.

The calculation of SYRI proved the different potentiality 
of the tested sesame genotypes for absorbing and utilizing 
the available micronutrients in the plant media. Since seed 
yields of Sohag1 and Shandaweel3 genotypes were higher 
and seed yield of Giza32 genotype was lower than the aver-
age at nano-micronutrients application, this reflects the abil-
ity of both Sohag1 and Shandaweel3 genotypes to absorb the 
only source (soil) of micronutrients better than Giza32 geno-
type. The higher SYRI values, than the average, of Sohag1 
and Shandaweel3 genotypes (Fig. 5) refer to their genetic 

Fig. 5  Seed yield response 
index (SYRI) of the tested 
sesame genotypes fertilized 
by iron (Fe), zinc (Zn), and 
manganese (Mn) bundle at a 
rate of 0.24 FeZnMn-nano kg 
 ha−1 (0.50 g  L−1). (ER, efficient 
and responsive; NENR, neither 
efficient nor responsive)
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potential to be responsive to nano-micronutrient additions. 
The higher values of SYRI (853.2 for Sohag1 and 729.2 
for Shandaweel3) compared to the average of SYRI (615.4) 
under 0.24 nano kg micronutrients  ha−1 refer to their bet-
ter genetic potency to exploit and utilize micronutrients in 
soil and the exogenous supply. Differences in SYRI among 
crop genotypes were obtained by Noureldin et al. (2013) and 
Saudy et al. (2018)

5  Conclusions

Measuring micronutrients recovery efficiency and seed yield 
response index as recent parameters clarified varied perfor-
mance of sesame genotypes. This genotypic variation, in 
addition to the unique properties of micronutrient nanopar-
ticles should be exploited in nutrient addition program. In 
order to gain high profits of sesame cultivation, the farmers 
should keep in mind the relation between chosen genotype 
and micronutrient application. Thus, for efficient micronutri-
ent use, fertilizing Sohag1 genotype by iron (Fe) plus zinc 
(Zn), and manganese (Mn), as nanoparticles bundle, at a rate 
of 0.50 g  L−1 is advisable practice in sesame cultivation. 
Since Sohag1 genotypes had toughness in micronutrient 
utilization with efficient and responsive to micronutrients 
application, it is considered a promising genetic source in 
breeding programs to improve sesame varieties.
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