
https://doi.org/10.1007/s42729-021-00549-2

ORIGINAL PAPER

Effects of Biochar and Biochar‑Compost Mix as Soil Amendments 
on Soil Quality and Yield of Potatoes Irrigated with Wastewater

Ali Mawof1  · Shiv Prasher1 · Stephane Bayen2 · Christopher Nzediegwu1

Received: 20 January 2021 / Accepted: 7 July 2021 
© Sociedad Chilena de la Ciencia del Suelo 2021

Abstract
This study evaluated the impact of biochar, compost, and a biochar-compost mix on soil properties and yield of potatoes 
irrigated with wastewater. In each year of a 2-year (2017, 2018) field lysimeter study conducted under wastewater (WW) 
irrigation, a thrice-replicated completely randomized design (CRD) tested the effect of a factorial combination of 3 levels 
of barley (Hordeum vulgare L.) straw biochar amendment (none, 1%, and 3%) and 2 levels of mixed green and table waste 
compost amendment (none, 7.5%) on soil physicochemical properties, along with potato (Solanum tuberosum L.) plant 
growth, physiology, and yield components. Relative to the non-amended control, all amendment treatments had a significant 
positive effect (p ≤ 0.05) on soil physicochemical properties and crop yield; however, amendments did not affect plant growth 
or plant physiological parameters. Higher temperatures in the second year led to significantly lower yields than in the first 
year. In 2017, compost alone increased potato yield under wastewater irrigation, whereas in 2018, yield was greater at the 3% 
biochar amendment rate than at the 1% amendment rate. We conclude that amending soils with biochar and biochar-compost 
mix is a feasible way to grow potatoes under wastewater irrigation, but application rate and biochar-compost mixing ratio 
should be properly selected to achieve a high potato yield. Biochar and biochar-compost amendments improved conditions 
for potato growth under wastewater irrigation, suggesting that wastewater irrigation of crops grown in amended soil may 
prove a feasible approach to reducing the need to treat wastewater destined for use as irrigation water, while increasing water 
and nutrient cycling to improve food security.
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1 Introduction

Freshwater constitutes only about 0.8% of the total acces-
sible water resources on Earth. Roughly, 80 countries in 
the world are facing water shortages (Dompka et al. 2002; 
Gleick 1993), and 2 billion people have no access to clean 
water (UN 2021). According to the WWF US (2016), two-
thirds of the world’s population face some type of water 
stress. Combined with an expected world population of 9.7 
billion by 2050 (DESA 2015) and the concomitant rise in 
global food demand, the need for freshwater for irrigation 
will be intensified. Increased populations will also lead to 
increased wastewater discharge necessitating safe and sus-
tainable methods of wastewater disposal, currently lacking 
in many cities around the world (DESA 2014).

According to UNFPA (2001), developing countries dis-
charged 90–95% of all untreated sewage and 70% of indus-
trial wastewater into surface waters, placing downstream 
populations and ecosystem functions at great risk. Globally, 
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80% of wastewaters flows back into ecosystems, without 
being treated or reused (Baum et al. 2013; Corcoran et al. 
2010). While irrigated agriculture currently occupies 20% of 
cultivated land, it represents an increasing proportion (40% 
at present) of global food production (IBRD-IDA 2020).

From an economic viewpoint, wastewater irrigation of 
crops under proper agronomic and water management prac-
tices may provide greater yields, additional water for irriga-
tion, and fertilizer savings (Hussain et al. 2002). Accord-
ingly, wastewater irrigation has the potential to increase 
agricultural food production, promote freshwater conserva-
tion, and limit the harmful practice of openly discharging 
untreated wastewater into bodies of water, then using the 
latter for irrigation, a common practice in developing coun-
tries, where it contributes to the contamination of agricul-
tural soils (Qadir et al. 2010). Wastewater irrigation can also 
increase soil organic carbon (SOC) and nutrient availability, 
as well as provide better soil physicochemical and biological 
properties, including raising soils’ available water content, 
thereby improving soil productivity (Marofi et al. 2015).

Various studies have recorded the positive effects of 
biochar and biochar-compost mixes on crop yields and 
soil properties (Kammann et al. 2015; Karami et al. 2011; 
Seehausen et al. 2017). Soil amendment with biochar and 
compost can improve crop yields by improving soil pH, 
increasing soil cation exchange capacity (CEC), supplying 
nutrients, promoting greater nutrient use efficiency (NUE), 
and improving water holding capacity (WHC) in sandy 
soils (Agegnehu et al. 2015; Jeffery et al. 2011). Compared 
to both wastewater and freshwater controls, soil amend-
ment with either bamboo or bagasse biochar, in combina-
tion with wastewater irrigation, significantly increased the 

biomass yield of energy crops (Ramola et al. 2013). Despite 
that several studies have amended soils with biochar and 
compost, the effects of soil amendment with biochar and 
compost mix on soil and crop parameters are rare, espe-
cially in temperate regions (Cooper et al. 2020). Moreover, 
while few studies have investigated the effects of biochar 
and/or compost on the yield of agricultural crops under 
treated wastewater irrigation (Hameeda et al. 2019), to the 
best of our knowledge, even fewer studies have addressed 
the effects of using untreated wastewater to irrigate crops 
grown in coarse-textured soils amended with different rates 
of biochar, compost, and biochar-compost mix. Therefore, 
the objectives of this study were to evaluate the impacts of 
biochar, compost, and biochar-compost mix applied to sandy 
soils at different application rates on (1) soil physicochemi-
cal properties and (2) potato yield under untreated waste-
water irrigation. We hypothesize that increasing application 
rates of biochar, compost, or biochar-compost mix would 
improve plant growth parameters and yield by improving 
soil physicochemical properties.

2  Materials and Methods

2.1  Field Setup

A 2-year study was conducted in the summers of 2017 
and 2018 at the Macdonald Campus of McGill University, 
Sainte-Anne-de-Bellevue, QC, Canada (45° 24′ 48.6″ N lati-
tude and 73° 56′ 28.1″ W longitude). In the spring of 2017, 
field lysimeters (1.0 m tall × 0.45 m inner diameter; Fig. 1) 
were filled with a local sandy soil (Table 1). After the first 

Fig. 1  Schematic diagram of 
lysimeter
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season and harvest sampling efforts, the experimental units 
were protected with plastic bags over the winter until the 
next season.

The treatment combinations were as follows: (i) non-
amended soil (WW control)  (BC0CP0); (ii) 1% biochar 
alone  (BC1CP0); (iii) 3% biochar alone  (BC3CP0); (iv) 
7.5% compost alone  (BC0CP7.5); (v) 1% biochar and 7.5% 
compost  (BC1CP7.5); and (vi) 3% biochar and 7.5% com-
post  (BC3CP7.5). According to the treatment, biochar and/or 
compost was thoroughly mixed into the soil, ensuring homo-
geneity in the upper 0.10 m layer of the lysimeter soil at the 
onset of the experiments (2017). Compost was added to the 
soil at a rate of 7.5% (w/w), while biochar was added at rates 
of 1% or 3% (w/w). The compost and biochar remained in 
the lysimeters after the first year of harvest and were present 
at the onset of the second year of experiment.

To determine initial nitrogen (N), phosphorus (P), and 
potassium (K) levels in the soil, soil samples were taken 
prior to planting in 2017. In both 2017 and 2018, three ferti-
lizers, i.e., urea, triple super phosphate (TSP), and potassium 
chloride (KCl), were applied according to locally recom-
mended rates for potato (cv. Russet Burbank). Specifically, 
N was applied at a rate of 180 kg N  ha−1 (Parent and Gagné 
2010); 30% of N fertilizer was applied on day 0, 30% on 
day 31 after planting, and the remaining 40% in four equal 
parts on days 46, 53, 60, and 67 post-planting (Stark et al. 

2004). Each season, at planting, all treatments received 
280 kg K  ha−1 and 44 kg P  ha−1 (Parent and Gagné 2010).

In both years, prior to planting, SENCOR® 75 F (active 
ingredient: metribuzin, 4-amino-6-tert-butyl-3-methylsulfa-
nyl-1,2,4-triazin-5-one), a common herbicide approved for 
use in Canada, was applied to the soil at the rate of 2.25 
L  ha−1 following local guidelines (OMAFRA 2019). Seed 
potatoes were purchased from Global Agri. Services Inc. 
(New Maryland, NB, Canada). Potato tubers were stored 
at 8–10 °C on receipt, then warmed to room temperature 
2 weeks prior to planting to promote sprouting. On the day 
of planting, one tuber was planted 0.10 m deep in the center 
of each lysimeter.

A canvas tent was set up over the lysimeters to prevent 
precipitation from entering them. To supplement the natu-
ral light, 10 LED bulbs (60 W) were installed in an equally 
spaced array above the lysimeters, and operated 4 h per day. 
An Apogee MQ-200 Quantum Flux sensor (Apogee Instru-
ments Inc., Logan, UT) was used to determine the quantum 
flux under the tent. Daily weather data for both 2017 and 
2018 was collected for the field location (45° 25′ 38.000″ 
N, 73° 55′ 45.000″ W) from Environment Canada and aver-
aged for each month of interest (Environment-Canada 2021).

2.2  Physicochemical Characterization of Biochar, 
Compost, and Soil

Barley straw biochar was purchased from Alberta Inno-
vates–Technology Futures (AI-TF) at Vegreville, AB, Can-
ada. Prior to carbonization, the barley straw feedstock was 
chopped into pieces less than 0.05 m in length. Pyrolysis was 
performed in a batch rotary drum (203 × 61 cm) at ~ 535 °C 
for 28 min (total retention time 83 min). The final product 
was cooled by purging the drum with  CO2 gas for 2–3 h. 
The compost used was derived from mixed green and table 
waste supplied by the West Island region of Montreal, QC 
(City of Baie-D’Urfé).

Barley straw biochar and compost samples were char-
acterized through an ultimate and proximate analysis. As 
shown in Table 2, moisture content, ash content, volatile 
matter, and fixed carbon content (ASTM D7582 and ISO 
562 for volatile) were determined by proximate analysis, 
while carbon, hydrogen, oxygen, N, and sulfur contents were 
determined by ultimate analysis (ASTM D5373 and ASTM 
D4239 for S). The analyses of biochar and compost were 
performed at the CanmetENERGY (NRC) Characterization 
Laboratory, Ottawa, ON, Canada. The heavy metal content 
was determined by hot acid extraction (USEPA 1996; Kargar 
et al. 2015). The P, K, calcium (Ca), magnesium (Mg), and 
manganese (Mn) concentrations were determined following 
Mehlich III extraction (Mehlich 1984), while N was deter-
mined following the method of Carter and Gregorich (2008).

Table 1  Soil physiochemical properties prior to soil amendments

SOM, soil organic matter; EC, electrical conductivity; ZPC, zero 
point of charge; CEC, cation exchange capacity; DOC, dissolved 
organic carbon; LOD, limit of detection. N, P, K, Mg, Ca, Mn, and 
Al were determined using Mehlich III extraction (Mehlich 1984); 
the heavy metals Cd, Cr, Cu, Fe, Pb, and Zn were determined using 
hot acid extraction (Kargar et al. 2015) and quantified by inductively 
coupled plasma optical emission spectrometry (ICP-OES). Other soil 
properties were adapted from a previous study conducted with soil 
from the same field (ElSayed et al. 2013)

Mineral 
compo-
nents

mg  kg−1 Soil properties

N 3.67 ± 0.21 Sand (%) 92.2
P 74.7 ± 3.52 Silt (%) 4.3
K 54.7 ± 6.03 Clay (%) 3.5
Mg 50.0 ± 2.93 pH 5.61 ± 0.19
Ca 754 ± 48.15 SOM (%) 1.82 ± 0.05
Al 1689.2 ± 96.85 EC (mS  cm−1) 66.43 ± 11.13
Mn 1.9 ± 0.22 ZPC 3.40
Cd  < LOD CEC (cmol( +)  kg−1) 3.35 ± 0.33
Cr 21.1 ± 2.81 C (%) 0.82 ± 0.14
Cu 6.8 ± 1.24 N (%) 0.085
Fe 8822 ± 352.14 C:N ratio 9.61 ± 0.72
Pb  < LOD DOC (mg  kg−1) 29.52 ± 2.15
Zn 22 ± 5.14 Bulk density (Mg  m−3) 1.35
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The CEC was measured using the  BaCl2 method (Hend-
ershot et al. 2008). The soil pH was measured following the 
method of Rayment and Higginson (1992) using a pH elec-
trode (Accumet pH meter model AB15, Fisher, Scientific, 
USA). Soil organic matter (SOM) was quantified by loss-on-
ignition (Schulte et al. 1991). The soil moisture content (θ) 
was determined by the gravimetric method (ASTM 1988).

2.3  Irrigation

The day before planting, each lysimeter was watered to field 
capacity using freshwater. After planting (day 0), each lysim-
eter was irrigated with wastewater every 10 days: eight times 
per season. Each wastewater irrigation consisted of 11.5 L 
of synthetic wastewater applied per lysimeter. The irrigation 
volume was determined based on the water requirements 
(500–700 mm) and growing season (120 days) of the potato 
crop. The make-up of the synthetic wastewater is given in 
Table 3. The organic contaminants and heavy metals con-
centrations were representative of a worst-case scenario 
wastewater.

2.4  Plant Physiological Parameters

Relative chlorophyll content (SPAD) was estimated 
2 days before each irrigation and 5 days after each irriga-
tion, using a chlorophyll meter (SPAD-502 Plus; Konica 
Minolta). Plant photosynthetic activity, stomatal conduct-
ance, and transpiration rate were measured 5 days after 
each irrigation, using Li-Cor 6400 (LI-COR, Nebraska, 
USA). Crop vigor, quantified by reflectance (normal-
ized difference vegetation index (NDVI)), was measured, 

5 days after irrigation, using an active crop canopy sensor 
(Crop Circle ACS-470; Holland Scientific Inc., NE, USA).

2.5  Plant Harvest

In both years, potatoes in each lysimeter were harvested 
120 days after planting, as per local growing season rec-
ommendations for ‘Russet Burbank’ potatoes. Above-
ground biomass was cut off at ground level with a knife, 
then separated into stems and leaves. The weight of the 
above-ground biomass, number of branches, shoot weight, 
and the height of the shoot were measured. The under-
ground biomass was harvested, roots and tubers sepa-
rated and weighed, and the yield components counted and 
graded (number of tubers, weight of tubers, and graded 
tuber (50 mm) weight and numbers (Shiri-e-Janagard et al. 
2009; USDA 1983).

2.6  Data Analysis

Physiological parameters were analyzed by considering 
the treatment and measurement time as factors. For soil 
properties, plant growth, and yield components, treat-
ment was considered as the only factor; therefore, the 
analyses were one-way analysis of variance. Each year 
was analyzed separately. Least significant difference test 
was used for a pairwise comparison, and differences were 
considered significant when p ≤ 0.05. All analyses were 
performed using IBM SPSS® V.24 (Copyright © IBM 
Corp 2016 Armonk, NY).

Table 2  Properties of barley 
straw biochar (BC), and mixed 
green and table waste compost 
(CP)

TGA , thermogravimetric analysis; SSA, specific surface area; EC, electrical conductivity; NA, not available. 
*Based on International Biochar Initiative allowable thresholds of heavy metals in biochar, and Guidelines 
for Compost Quality (Canadian Council of Ministers of the Environment-2005) (mg  kg−1)

Parameter Observed value (%, w/w) Heavy metal and mineral concentra-
tions (mg kg−1)

Allow-
able thresholds 
(mg kg−1)*

BC CP BC CP BC CP

Moisture TGA 3.88 4.38 Cd  < LOD  < LOD 1.40 20.00
Ash TGA 19.29 64.43 Cr 29.80 19.91 64 1060
Volatile 18.19 29.09 Cu  < LOD 44.22 63 757
Fixed carbon 62.53 6.47 Fe 706.71 8205.25 NA NA
Carbon 70.40 18.80 Pb  < LOD  < LOD 70 505
Hydrogen 2.20 1.83 Zn 33.11 90.01 200 1850
Nitrogen 1.07 1.28 N 5.12 36.81 NA NA
Total sulfur 0.53 0.16 P 244.02 763.72 NA NA
Oxygen 6.47 13.47 K 18,201.05 4324.15 NA NA
SSA  (m2  g−1) 8.5 2.05 Mg 520.23 1008.01 NA NA
pH 9.61 7.87 Ca 750.09 4991.21 NA NA
EC (mS  cm−1) 4302.02 1226.61 Mn 40.02 40.15 NA NA
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3  Results

3.1  Soil Physiochemical Properties

Our results indicated that the application of single or com-
bined compost and biochar amendments  (BC1CP0,  BC3CP0, 
 BC0CP7.5,  BC1CP7.5,  BC3CP7.5) altered soil physicochemi-
cal properties, as compared with the non-amended control 
 (BC0CP0). The soil CEC, SOM, and pH were significantly 
increased by soil amendment with compost (Table 4).

The CEC at the soil surface was higher (p ≤ 0.05) in 
the  BC3CP7.5,  BC1CP7.5, and  BC0CP7.5 treatments than 
in the  BC3CP0,  BC1CP0, and  BC0CP0 treatments. How-
ever, at the 0.10-m soil depth, the CEC was only signifi-
cantly higher (p ≤ 0.05) in the  BC3CP7.5 treatment than 

under other treatments, except for  BC0CP7.5. No signifi-
cant differences were observed between the soil CEC 
under the  BC0CP0,  BC1CP0, and  BC3CP0 treatments. At 
both soil depths (surface and 0.10 m), SOM was greater 
(p ≤ 0.05) under  BC3CP7.5 than under  BC0CP0,  BC1CP0, 
or  BC3CP0. There was no significant (p > 0.05) difference 
between  BC1CP0 and  BC3CP0 relative to the  BC0CP0 con-
trol at either depth. Similarly, at both depths, soil under 
the  BC0CP7.5 and  BC3CP7.5 treatments showed a higher 
(p ≤ 0.05) pH than soils treated with  BC1CP0 or receiving 
no amendment  (BC0CP0). Also,  BC3CP7.5 and  BC1CP7.5 
showed higher (p ≤ 0.05) pH values than their compost-
free counterparts  BC3CP0  and  BC1CP0, at either depth. 

Table 3  Components and 
concentrations in synthetic 
wastewater

* Concentrations in µg  L−1. NA, not applicable; PPCPs, pharmaceutical and personal care products. Num-
bers in () indicate the concentration used in this work

Category Substance/compounds Country Concentration (mg  L−1) Reference

Basic synthetic wastewater constituents
  C source Na acetate NA 79.37 Nopens et al. (2001)

Milk powder NA 116.19
Soy oil NA 29.02
Starch NA 122
Yeast extract NA 52.24

  N source NH4Cl NA 12.75
Peptone NA 17.41
Urea NA 91.74

  P source Mg3O8P2 NA 29.02
  Minerals CaCl2 NA 60 LaPara et al. (2006)

NaHCO3 NA 100
  Surfactant Triton X-100 NA 30* Aboulhassan et al. (2006)

Wastewater contaminants 
  Heavy metals Chromium (Cr) India 2 Ahmad et al. (2011)

Cadmium (Cd) India 5
Lead (Pb) India 16
Iron (Fe)(II) India 120
Zinc (Zn) India 3
Copper (Cu)(II) India 8

  Hormones Estrone: E1 S. Korea 8.15 (20)* Sim et al. (2011)
Estradiol: E2 S. Korea 0.634 (20)*
Estriol: E3 S. Korea 2.28 (20)*
Ethinylestradiol: EE2 China 0.33 (20)* Zhou et al. (2012)
Progesterone China 0.90 (20)* Huang et al. (2009)

  PPCPs Ibuprofen Canada 45* Guerra et al. (2014)
DEET USA 6.5* Lietz and Meyer (2006)
Caffeine China 6.6* Sui et al. (2010)
Carbamazepine S. Korea 21.6* Sim et al. (2011)
Diclofenac India 25.68* Singh et al. (2014)
Triclosan UK 21.9* Sabaliunas et al. (2003)
Oxytetracycline China 19.5* Li et al. (2008)

2604 Journal of Soil Science and Plant Nutrition  (2021) 21:2600–2612



No significant difference was observed between  BC0CP0 
and  BC1CP0 at either depth.

In 2017, on 2 days after the first irrigation, the θ was 
higher (p ≤ 0.05) under  BC3CP7.5 and  BC3CP0 than under 
all other treatments (Fig. 2; 2 days after irrigation 4), the 
θ for the  BC3CP7.5 was higher (p ≤ 0.05) than that under 
the control  (BC0CP0). However, neither amendment influ-
enced θ on 2 days after irrigation 8. No amendment effects 
on θ were observed in 2018 for 2 days after irrigation 4, 
and for 2 days after irrigation 8, when θ under  BC3CP7.5 
was higher than under  BC3CP0,  BC1CP0, or  BC0CP0. A 
similar increase was also observed on 2 days after the first 
irrigation, where θ was higher under  BC3CP7.5 than under 
 BC1CP0,  BC3CP0, or  BC0CP0.

3.2  Plant Growth Parameters

No amendment treatment affected plant growth parameters 
(plant height, no. of branches, shoot fresh weight, or root 
fresh weight; Fig. 3), relative to the  BC0CP0 control in either 
year. Plant height and shoot fresh weight were greater in 
2018 compared with 2017. For example, the mean shoot 
weight for  BC0CP0 was 0.9 kg in 2017 and 1.45 kg in 2018, 
while for  BC3CP7.5, shoot weight was 0.9 kg in 2017 and 
1.31 kg in 2018. Similarly, mean shoot height for  BC0CP0 
was 997 mm in 2017 and 1,212 mm in 2018, while for 
 BC3CP7.5, it was 943 mm in 2017 and 1061 mm in 2018. 
The increase in plant growth parameters during the second 
season can be attributed to a greater mean temperature in the 
summer of 2018 than in the summer of 2017. Increased tem-
peratures, up to a point, can facilitate plant uptake of nutri-
ents to the above-ground biomass as a result of enhanced 
photosynthesis and faster evolving plant phenology.

3.3  Plant Physiological Parameters

The plant physiological parameters of SPAD, NDVI, tran-
spiration rate, stomatal conductance, and photosynthesis 
showed no significant treatment effect (p > 0.05); however, 
there was a significant time effect (p ≤ 0.05) in both years 
(Fig. 4), i.e., SPAD readings declined with plant age.

Another indicator for plant canopy health or vigor meas-
ured over the 2 years, the NDVI also showed no significant 
difference (p > 0.05) across treatments (Fig. 5), indicat-
ing that the treatments did not impact above-ground plant 
growth, in comparison to the control  (BC0CP0). In 2017, 
NDVI ranged from 0.87 (day 51) to 0.78 (day 91), while 
in 2018, NDVI ranged from 0.79 (day 55) to 0.85 (day 95).

LICOR measurements of photosynthesis and transpira-
tion rates, as well as stomatal conductance, were only taken 
in 2018 (Fig. 6). None of these parameters showed any 
significant single treatment or treatment interaction (treat-
ment × time) effect. However, time had a significant effect 

Table 4  Effects of biochar, 
compost, and biochar-compost 
mix on soil cation exchange 
capacity (CEC), soil organic 
matter (SOM), and pH

The different superscript lowercase letters in each column represent a significant difference at p ≤ 0.05; val-
ues are mean ± standard error of three replicates.  BC0CP0: non-amended soil;  BC1CP0: 1% biochar alone; 
 BC3CP0: 3% biochar alone;  BC0CP7.5: 7.5% compost alone;  BC1CP7.5: 1% biochar and 7.5% compost; and 
 BC3CP7.5: 3% biochar and 7.5% compost

Treatments CEC (cmol( +)  kg−1) SOM (%) pH

Surface 0.10 m Surface 0.10 m Surface 0.10 m

BC0CP0 1.78 ± 0.29b 2.62 ± 1.24c 2.79 ± 0.64c 2.72 ± 0.18b 5 ± 0.10d 5.26 ± 0.14d

BC1CP0 1.69 ± 0.31b 1.88 ± 0.33c 2.89 ± 0.37c 3.07 ± 0.56b 5.18 ± 0.15 cd 5 ± 0.21d

BC3CP0 1.94 ± 0.44b 4.12 ± 1.34bc 2.84 ± 0.67c 2.90 ± 0.31b 5.33 ± 0.14bc 6.11 ± 0.03c

BC0CP7.5 4.58 ± 0.94a 7.39 ± 0.93ab 3.19 ± 0.70bc 3.87 ± 0.89ab 5.6 ± 0.11a 6.43 ± 0.32bc

BC1CP7.5 4.60 ± 1.46a 5.54 ± 0.29b 4.76 ± 0.10b 3.62 ± 0.17ab 5.43 ± 0.17ab 6.5 ± 0.14b

BC3CP7.5 5.73 ± 2.74a 7.57 ± 1.60a 6.77 ± 1.91a 4.89 ± 1.49a 5.66 ± 0.11a 7.13 ± 0.15a

Fig. 2  Moisture content of soil collected 2  days after irrigations 1 
(Irrig1), 4 (Irrig4), and 8 (Irrig8) in 2017 and 2018. The different 
letters on the bars in each column represent significant difference at 
p ≤ 0.05; error bars are standard error of three replicates.  BC0CP0: 
non-amended soil;  BC1CP0: 1% biochar alone;  BC3CP0: 3% biochar 
alone;  BC0CP7.5: 7.5% compost alone;  BC1CP7.5: 1% biochar and 
7.5% compost; and  BC3CP7.5: 3% biochar and 7.5% compost
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(p ≤ 0.05) on response. The photosynthetic rate ranged from 
a maximum of 11.7 µmol  CO2  m−2  s−1 (day 65) to a mini-
mum of 5.4 µmol  CO2  m−2  s−1 (day 95). Transpiration rate 
ranged from a minimum of 0.59 mmol  H2O  m−2  s−1 (day 45) 
to a maximum of 3.9 mmol  H2O  m−2  s−1 (day 65). Stoma-
tal conductance ranged from a maximum of 0.48 mol  H2O 
 m−2  s−1 (day 65) to a minimum of 0.074 mol  H2O  m−2  s−1 
(day 95).

3.4  Yield Components

Yield components for each treatment were compared to the 
 BC0CP0 control group (Fig. 7). The greatest mean tuber 
weight observed in both years was for  BC3CP7.5 at 1.58 kg 
in 2017 and 0.88 kg in 2018. Compared to the  BC0CP0 non-
amended treatment, no significant differences (p > 0.05) 
were observed in either year for the compost treatments 
alone or in combination with biochar. Compared to 2017, 
mean potato tuber weight per plant in 2018 decreased by 
28.3% in the  BC0CP0  treatment (0.88 kg in 2017 to 0.64 kg 
in 2018). The corresponding reductions under  BC1CP0, 
 BC1CP7.5,  BC0CP7.5, and  BC3CP7.5 were 66, 61, 50, and 
44%, respectively. Potato tuber weight did not reduce in the 
 BC3  (BC3CP0 and  BC3CP7.5) treatments in either year. No 
significant difference (p > 0.05) in the number of tubers per 
plant was observed between the amended treatments and 
the  BC0CP0 control in either year. The number of tubers 
that were not damaged and over 50 mm in size (i.e., market-
able potatoes) was not significantly affected (p > 0.05) by 

amendment treatments (compared with control  BC0CP0 or 
between treatments) in either year.

4  Discussion

Biochar and biochar-compost mixes have previously been 
shown to improve soil properties (Agegnehu et al. 2017). 
This was also observed in the present study: amendment 
with compost and biochar-compost mixes significantly 
increased (p ≤ 0.05) soil CEC, pH, and SOM (Table 4).

As the compost amendment’s mineral content exceeded 
that of biochar (Table 2), a significant (p ≤ 0.05) and greater 
increase in soil CEC, relative to non-amended soil, was 
found for the singly applied compost treatment than either 
singly applied biochar treatments. Epstein et al. (1976) found 
that upon a soil’s amendment with compost, the minerals it 
bears are released to the soil, thereby increasing exchange-
able cations in the soil exchange complex. Under combined 
compost-biochar amendments, one would therefore expect 
that a greater rate of biochar application would result in a 
greater retention of compost-borne minerals within the com-
post, thereby increasing the soil CEC.

At corresponding levels of biochar amendment  (BC0, 
 BC1,  BC3), wastewater-irrigated soils amended with com-
post  (CP7.5) showed greater SOM levels than those receiv-
ing no compost amendment  (CP0). These observations that, 
under wastewater irrigation, a compost amendment enhances 
SOM closely concur with the results of Marofi et al. (2015). 
This effect is likely tied to the compost’s high organic matter 

Fig. 3  Effect of biochar and/or 
compost amendments on potato 
(A) plant height, (B) number 
of branches, (C) root weight, 
and (D) shoot weight in 2017 
and 2018. The different letters 
on the bars in each column 
represent significant difference 
at p ≤ 0.05; error bars are stand-
ard error of three replicates. 
 BC0CP0: non-amended soil; 
 BC1CP0: 1% biochar alone; 
 BC3CP0: 3% biochar alone; 
 BC0CP7.5: 7.5% compost alone; 
 BC1CP7.5: 1% biochar and 7.5% 
compost; and  BC3CP7.5: 3% 
biochar and 7.5% compost
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content (Table 4). However, an increased SOM can also be 
associated with soil amendments’ rate of mineralization. As 
compost bears less fixed C (Table 2) and exhibits a lesser 
C/N ratio than biochar, compost would mineralize faster in 
soil (Bolan et al., 2012). Although soil amendment with bio-
char alone did not increase SOM, raising its application rate 
from 1 to 3% in compost treatments  (CP7.5) did improve min-
eralization of organic matter, thereby increasing SOM levels 
(Table 4). Therefore, when co-amending soils with biochar 
and compost, an increase in the rate of biochar amendment 
may increase SOM.

Overall, our results suggest that soil amendment with a 
combination of the higher percentage of biochar (3%) along 
with compost may help stabilize and retain the organic mat-
ter contributed by the compost. In contrast, Agegnehu et al. 

(2015) found that a mixed amendment of compost and bio-
char had no more effect on SOC as an indicator of SOM than 
compost or biochar amendments alone. This disparity may 
reflect the different sources, rates and ratios of amendments 
used in the two studies.

The 2017 potato tuber yield stood within the range (0.90 
to 2.12 kg per plant) reported by Bethke et al. (2014) for cv. 
‘Russet Burbank’, cultivated in Canada, over three growing 
seasons. In 2018, the tuber yield declined for all treatments, 
except those amended with 3% biochar alone or in combi-
nation with compost (0.89 kg per plant). The differences in 
temperature between the growing seasons of 2017 (6 days 
with temperatures above 30 °C) and 2018 (18 days with 
temperatures above 30 °C) could have been the reason for 

Fig. 4  Effect of biochar, compost, and biochar-compost mix on potato 
plant greenness readings (SPAD) in (A) 2017 and (B) 2018. The 
same letters on the bars in each column represent no significant dif-
ference at p ≤ 0.05; error bars are standard error of three replicates. 
 BC0CP0: non-amended soil;  BC1CP0: 1% biochar alone;  BC3CP0: 3% 
biochar alone;  BC0CP7.5: 7.5% compost alone;  BC1CP7.5: 1% biochar 
and 7.5% compost; and  BC3CP7.5: 3% biochar and 7.5% compost

Fig. 5  Effect of biochar, compost, and biochar-compost mix on nor-
malized difference vegetation index (NDVI) readings on potato 
plants in (A) 2017 and (B) 2018. The same letters on the bars in each 
column represent no significant difference at p ≤ 0.05; error bars 
are standard error of three replicates.  BC0CP0: non-amended soil; 
 BC1CP0: 1% biochar alone;  BC3CP0: 3% biochar alone;  BC0CP7.5: 
7.5% compost alone;  BC1CP7.5: 1% biochar and 7.5% compost; and 
 BC3CP7.5: 3% biochar and 7.5% compost
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lower yield in 2018 (Table 5). Indeed, high temperatures can 
affect both tuber initiation and growth by reducing the potato 
plant’s  CO2 assimilation rate (Ku et al. 1977). At tempera-
tures above 25 °C, a greater portion of mass is partitioned 

Fig. 6  Effect of biochar, compost, and biochar-compost mix on (A) 
photosynthetic rate, (B) transpiration rate, and (C) stomatal conduct-
ance of potato plants in 2018. The different letters on the bars in 
each column represent significant difference at p ≤ 0.05; error bars 
are standard error of three replicates.  BC0CP0: non-amended soil; 
 BC1CP0: 1% biochar alone;  BC3CP0: 3% biochar alone;  BC0CP7.5: 
7.5% compost alone;  BC1CP7.5: 1% biochar and 7.5% compost; and 
 BC3CP7.5: 3% biochar and 7.5% compost

Fig. 7  Effects of biochar, compost, and biochar-compost mix on 
potato (A) tuber weight, (B) number of tubers, and (C) tuber grading 
in 2017 and 2018. The different letters on the bars in each column 
represent significant difference at p ≤ 0.05; error bars are standard 
error of three replicates.  BC0CP0: non-amended soil;  BC1CP0: 1% 
biochar alone;  BC3CP0: 3% biochar alone;  BC0CP7.5: 7.5% compost 
alone;  BC1CP7.5: 1% biochar and 7.5% compost; and  BC3CP7.5: 3% 
biochar and 7.5% compost
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towards above-ground biomass than towards tubers (Van 
Dam et al. 1996), while above 30 °C, tuber growth rates 
decline substantially (Burton 1972), leaving tubers unformed 
or severely delayed in development (Mendoza and Estrada 
1979). Accordingly, the hypothesis that high temperatures 
impeded potato tuber development in 2018 is strongly sup-
ported. Although not applicable in the present study, disease 
and low seed quality may also affect potato yield (Kooman 
and Haverkort 1995; Kooman 1995).

In both years, the improved soil CEC and SOM could 
explain the improved tuber yield observed in the soils 
amended with compost and biochar-compost mixes. 
Increased CEC and SOM are known to increase nutrient 
availability to plants, including potatoes (Porter et al. 1999). 
In 2017, the greater soil CEC and SOM under the com-
post and biochar mix  (BC1CP7.5 and  BC3CP7.5) treatments 
led to significantly improved tuber yields, compared to the 
 BC0CP0,  BC1CP0, and  BC3CP0 treatments. In 2018, tuber 
yields under  BC3CP7.5 were greater than those under the 
 BC1CP0 treatment, with the only other significant differ-
ence being between  BC1CP0 and  BC3CP0 treatments. On 
the basis of both years’ results, the treatment combination of 
 BC3CP7.5 improved yield the most. Our results are consistent 
with several other studies, where crop yield increased with 
biochar amendment (Barrow 2012; Blackwell et al. 2015; 
Chan et al. 2008) but was in contrast with the decrease in 
yield observed by Deenik et al. (2010).

The improvement of soil properties by biochar and bio-
char-compost amendment explains, to a large extent, the 
improved plant growth conditions observed in both years for 
the biochar treatments. Biochar amendment in 2017 had a 
significant positive effect on potato tuber yield, compared to 
the non-amended control  (BC0CP0), while in 2018, the tuber 
yield was significantly greater in the  BC3CP0 treatment than 
in either the  BC1CP0 or  BC0CP0 treatment. Therefore, we 
interpret this as showing that the impact of biochar amend-
ment on plant yield may increase over time as the biochar 
gets conditioned (Wang et al. 2016).

Both SPAD and NDVI values were consistent with 
those in the literature (Shamal and Weatherhead 2014), 
although they showed no significant response to amendment 

treatments. This lack of amendment treatment effect paral-
lels the results of Nzediegwu et al. (2019) and may be asso-
ciated with several factors, including the quality of irrigation 
water (Chartzoulakis and Klapaki 2000; Savvas et al. 2007) 
and/or water deficit (Dorji et al. 2005; Katerji et al. 1993), 
which adversely impact NDVI. As plant tolerance to water 
deficits in the root zone is limited, such deficits can nega-
tively affect canopy biomass, thereby lowering the NDVI 
value, which in such a case is representative of lower crop 
production and health (De Pascale et al. 2003). Patil et al. 
(2014) reported a similar impact of wastewater vs. freshwa-
ter on NDVI when used for irrigation.

While significant differences in growth parameters were 
noted when cannabis (Cannabis sativa L.) plants were grown 
in a biochar-amended (vs. non-amended) soil (Chandra et al. 
2008; Hussain et al. 2017), the same treatments applied to 
potato plants in the present study did not result in any sig-
nificant difference in growth parameters, likely because of 
the difference in crops. Potatoes, being a tuber crop, may 
respond differently to changes in soil conditions imposed 
by soil amendments.

Overall, potato tuber yield reflected changes in soil 
properties, but the crop’s above-ground growth parameters 
(e.g., SPAD) did not. The decline in SPAD parameter values 
during the potato plant’s growth and development (Fig. 4) 
reflects potato plants’ different nutrient requirements at dif-
ferent physiological stages. Higher SPAD values between 
days 44 and 57, compared to those recorded at the end of 
growing season (Fig. 4), were likely representative of the 
greater nutrient accumulation into biomass during the veg-
etative phase than during the maturation stages (Nzediegwu 
et al. 2019).

The similarity of potato yields achieved with wastewater 
irrigation in the present study and under freshwater irrigation 
(e.g., Bethke et al. 2014) indicates that wastewater had little 
or any negative impacts on potato yield, thus highlighting 
the viability of using wastewater for crop production. Under 
the present study’s wastewater irrigation regime, detectable 
levels of heavy metals were found in both the skin and flesh 
of potato tubers, as well as in potato roots and above-ground 
biomass, and this across all amendment combinations and in 

Table 5  Monthly mean daily 
minimum, maximum, and mean 
temperature for Sainte-Anne-
de-Bellevue, Quebec, for 2017 
and 2018 (Environment Canada, 
2021)

Temperature (°C) May June July August September October

2017
  Max 17.5 23.2 24.8 24.2 23.2 18.4
  Min 8.2 13.6 15.3 14.0 12.4 7.1
  Mean 12.9 18.4 20.1 20.1 17.8 12.8

2018
  Max 21.4 23.7 29.2 27.4 22.5 10.2
  Min 8.7 12.8 17.6 17.3 11.9 3.1
  Mean 15.1 18.4 23.4 22.3 17.2 6.6
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the non-amended control. However, heavy metal concentra-
tions were significantly lower (p ≤ 0.05) in the compost and 
biochar-amended treatments as compared to the control. The 
potatoes produced under the present treatment combinations 
would likely be safe for consumption based on their having 
hazard quotients (Sharma et al., 2016) inferior to 1.0 for 
heavy metals such as Cu, Fe, and Pb.

5  Conclusions

A 2-year field lysimeter study was carried out to investigate 
the use of biochar and compost soil amendments in pota-
toes grown under wastewater irrigation. Amending a sandy 
soil with biochar, compost, or biochar-compost mix signifi-
cantly improved soil physicochemical properties (e.g., cation 
exchange capacity, soil organic matter, and pH), and potato 
yield depending on biochar application rate and biochar-
compost mixing ratio. The change in soil physicochemical 
properties apparently led to improved nutrient uptake and 
greater yield. In two consecutive years, potato yield was 
greater under mixed biochar-compost soil amendments than 
under biochar or compost amendments applied singly. How-
ever, it is recommended to conduct such studies for longer 
periods to draw more concrete conclusions as to the potential 
benefits or constraints accruing from such amendments.
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