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Abstract
Despite the fact that the world has achieved adequate food grain production to fight the battle against caloric hunger, still, a
significant fraction of population is suffering with deficiency of micronutrients like Fe and Zn. However, the dietary intake of
these micronutrients could be sufficient to meet the nutritional demand if the bioavailability was not low due to the strong
inhibition by phytic acid and phenolics. Another cause behind inadequate intake is the scarcity of plant-available micronutrients
in soil and genetic makeup of plants impeding high accumulation. Postharvest fortification is the major strategy to enrich staple
food crops with micronutrients, but biofortification of food crops using breeding and agronomic strategies is also gaining
popularity. However, one important issue remained unaddressed as none of them could really increase the plant-available
micronutrients like Fe or Zn which otherwise remain insoluble in soil. Microorganisms due to their enormous metabolic diversity
are known to be key players in biogeochemical cycling. Their roles in improving the uptake of major nutrients by plants are well-
known and understood. Enrichment of edible crops with Fe and Zn can be achieved through microorganisms by any of the three
following strategies—(a) increased availability of micronutrients due to microbial activity such as production of acids, chelators,
and phytohormones; (b) microbe-mediated modulation of micronutrient transporters; and (c) de-complexation of micronutrients
from compounds like phytate through microbial activity during postharvest processing. Microbe-mediated biofortification can
potentially complement the agronomic and genetic biofortification of staple crops.
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1 Introduction

Since the inception of green revolution, productivity of cereal
crops increased more than double to sustain the growing pop-
ulation demand of food supply. Development of high-yielding
varieties with stress-tolerant traits had been the major means
to increase the crop productivity. However, most of the early
works on varietal development focused solely on productivity
instead of quality. Our aim to combat caloric malnutrition

(acute hunger) however undermined the so-called hidden hun-
ger caused due to deficiency of some minerals and vitamins.

Micronutrients are low in majority of the staple crops such
as rice, wheat, and potato on which more than half of the
global population are dependent. Bioavailability (uptake) of
Fe and Zn by the plant from the soil and bioavailability
(absorption) by humans from the plant food are limited. Due
to their involvement in multitude of biological functions, de-
ficiency of Fe and Zn are widely distributed especially in
developing nations. Apart from inherent low bioavailability
of Fe and Zn in cereals, postharvest processes, viz. polishing,
milling, and pearling, also lower the amount of these
micronutrients (Borg et al. 2009). Moreover, anti-nutritional
factors, for example, phytates and tannins, may further lower
the absorption of Fe and Zn by humans from plant foods
(White and Broadley 2005; Brinch-Pedersen et al. 2007;
Pfeiffer and McClafferty 2007). It is estimated that more than
2.6 billion people are iron-deficient (WHO 2019; Cacoub
et al. 2020) while approximately one-third of the world human

* Hillol Chakdar
hillol.chakdar@gmail.com

1 ICAR-National Bureau of Agriculturally Important Microorganisms
(NBAIM), Kushmaur, Mau, Uttar Pradesh 275103, India

2 Amity Institute of Microbial Technology, Amity University,
Noida, Uttar Pradesh 201313, India

https://doi.org/10.1007/s42729-021-00473-5

/ Published online: 19 April 2021

Journal of Soil Science and Plant Nutrition (2021) 21:1700–1717

http://crossmark.crossref.org/dialog/?doi=10.1007/s42729-021-00473-5&domain=pdf
http://orcid.org/0000-0001-8710-3990
mailto:hillol.chakdar@gmail.com


population are at risk of zinc deficiency (Lilay et al. 2020).
Application of specific micronutrient-bearing chemical fertil-
izers had been tried but was not effective as they form com-
plexes in soil which cannot be taken up by plants efficiently.
Among other interventions to combat micronutrient deficien-
cies in humans are supplementation with pharmacological
(high) doses for treatment of deficiencies (Fe, Zn, vit A and
D), and food fortification of cereals (Fe, folic acid) or oils, and
margarine (vit A, vit D) for prevention of deficiencies. These
strategies are frequently successful. Dietary diversification is
often recommended but has had little success because the low-
income populations usually cannot afford the recommended
foods (e.g., animal source foods for Fe and Zn) and lack of
robust distribution systems, and crop seasonality.
Biofortification has now emerged as an efficient strategy to
sustainably enhance the level of micronutrients in staple food
crops and is cost-effective and nutrient reaches the target peo-
ple in natural form. A number of strategies like conventional
and molecular breeding, genetic modification, and agronomic
and/or soil management have been applied to increase the
micronutrient levels in food crops. As most of the
micronutrients present in soil remain in inaccessible form,
breeding strategies may not always work to make them avail-
able for plants as a variety/line may not achieve its genetic
potential when the nutrients are not present in bioavailable
form in soil. Microorganisms which remain in close associa-
tion to the plants and key to the biogeochemical cycling hold
considerable promise for biofortification. Application of mi-
croorganisms as a part of soil management can make the un-
available nutrients available to plants and can also modulate
the specific transporters for enhanced uptake. However, the
validated and published reports in this area are very few which
warrant a significant emphasis to develop microbe-based ef-
fective strategies for micronutrient biofortification. In the
present review, we will discuss the status and prospects of
microbe-mediated biofortification in comparison to other
available strategies.

2 Iron and Zinc in Human Nutrition

Iron is an essential component of hemoglobin and myoglobin.
It is also required for a number of biochemical reactions and
enzyme systems including energy metabolism, cell division,
production of neurotransmitters, formation of collagen, and
immune system function (Edison et al. 2008). The recom-
mended dietary allowance (RDA) of iron among non-
vegetarians based on an estimated iron bioavailability of
18% for a mixed diet which includes animal products ranges
from 0.27 to 10 mg/day for children, 8 to 11 mg/day for adult
males, 8 to 18 mg/day for adult females, and 9 to 27 mg/day
for lactating and pregnant females (Institute of Medicine
2001). On the other hand, RDA for vegetarians is almost 1.8

times that of the non-vegetarians as meat-derived heme iron is
more bioavailable than non-heme iron from plant-based foods
due its lower (2–10%) absorption (Trumbo et al. 2001). RDA
of iron among vegetarians ranges from 11.5 to 13.7 mg/day
for children, 15.1 to 27 mg/day for teens, 16.3 to 18.2 mg/day
for adult males, 12.3 to 32.4 mg/day for adult females,
48.6 mg/day for pregnant women, and 16.2 mg/day for lactat-
ing women (U.S. Department of agriculture 2012). People
consuming a phytate-rich diet with little animal tissue food
or vitamin C from fruits and vegetables are at higher risk of
iron deficiency (ID). Pregnant women and children who have
higher requirements for growth are also at risk of ID. It has
been reported that almost 50% of the pregnant women world-
wide are anemic due to ID where in country like India, almost
88% of pregnant women are anemic (Lopez et al. 2016).

Like plants, human also require Zn for growth and
development. Kumssa et al. (2015) have reported that average
per capita Zn supply is ~ 16.3 mg/capita/day while more than
two billion people are at risk of Zn deficiency. Children and
pregnant and lactating women require higher amounts of Zn
and, hence, are at higher risk of zinc deficiency (Reeves and
Chaney 2008; Boonchuay et al. 2013). Along with Fe, and
vitamin A and I deficiencies, Zn deficiency was incorporated
as a major global risk in 2002 (WHO 2002). Zn deficiency in
human causes lack of taste, decreased fertility, impaired cog-
nitive function, decreased work capacity, and stunting of
growth and increases susceptibility to infections (Prasad
2009; Barnett et al. 2010; Cakmak et al. 2010).

3 Iron and Zinc in Crop Plants

Micronutrients are required in minute quantities by plants but
play a significant role in plant nutrition as they are necessary
as cofactors and involved in many metabolic functions. Iron is
essential for a number of cellular functions in plants, involving
in photosynthesis, respiration, biosynthesis of chlorophylls,
DNA, hormones etc. (Hansch and Mendel 2009; Kobayashi
and Nishizawa 2012). Ferric iron (Fe3+) and ferrous iron
(Fe2+) are the most common forms of iron found in the earth
crust (Hori et al. 2015). Fe3+ is insoluble and its uptake is
difficult; Fe2+ is soluble and readily available to plants. In
general, a neutral to alkaline soil pH (7.4–8.5) causes a low
solubility and slow dissolution of iron-bearing minerals.
Higher bicarbonate levels, which are prevalent in calcareous
soils, reduce the iron uptake by plants grown on alkaline soils.
Under aerated and alkaline soils, Fe is oxidized as insoluble
iron oxides, but in flooded soils where oxygen diffusion is
limited, pH decreases and ferric ions are reduced to ferrous
forms (Morrissey and Guerinot 2009). Besides low iron avail-
ability and uptake from soils, partitioning of iron in shoots and
seeds further reduces the Fe content in seeds especially in
cereals. The level of remobilization from shoot to seed varies
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from plant to plant; for example, in rice, only 4% of shoot Fe is
mobilized to the seeds.

Majority of the cereal staple crops are low to moderate in
iron content (Fig. 1a). In whole grains of wheat, Fe is present
in the range of 29–73 mg/kg (Rengel et al. 1999; Cakmak
et al. 2004). As only 25% of these nutrients are localized in
endosperm, major fraction of the nutrients present in other
parts is lost during milling (Slavin et al. 2001; Ozturk et al.
2006). Iron concentration in brown rice ranges from 6.3 to
24.4 mg/kg, and thus, the iron intake will be 3.78–14.64 mg
assuming a maximum of 600-g rice consumed daily while
polished rice contains only ~ 2 mg iron/kg; thus, the iron
intake will be 1.2 mg/day (Lichtenstein et al. 2006). The
amount needed in a country like India, with higher RDA
values, would likely be even higher, making postharvest for-
tification of rice a more potential strategy than biofortification.
Other cereal flours have a much higher Fe concentration than
rice which makes biofortification with plant breeding and ag-
ronomic techniques a more plausible strategy.

Zinc is essential for a number of metabolic functions in
plants such as oxidative reactions, structural and catalytic ac-
tivities, membrane stability, DNA replication, translation, and
energy transfer reactions (Broadley et al. 2011; Gurmani et al.
2012). A number of key enzymes, viz. hydrogenase, carbonic
anhydrase, Cu/Zn super oxide dismutase (SOD), and RNA
polymerase, also require Zn for their catalytic activity
(McCall et al. 2000). While Zn deficiency is quite common
in plants, Zn toxicity is rare. Zinc deficiency during plant
growth and development results in lower Zn content in fruits
and grains. To fulfill the human nutritional requirement, the
optimum grain Zn concentration should be 50 μg g−1 dry
weight; however, the current status is 20–30μg g−1 dry weight
(Cakmak 2008) (Fig. 1b). Therefore, biofortification strategies
are required to double the zinc concentration in the grains to
provide the daily amount of zinc needed. Low plant-available
Zn was reported for soils of various characteristics: extreme
pH, high and low organic matter, calcareous, sodic, sandy,
wetland or ill-drained, limed acid soils, etc. Reducing

Fig. 1 Diagrammatic representation of a iron and b zinc content in edible parts of different grains, leaf blades, roots/tubers, and fruits. Units are in
milligrams per kilogram dry weight. Numbers inside the parenthesis represent the iron and zinc content of that particular food product
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conditions as well as low pH favors conversion of non-
available (non-toxic) Fe3+ into plant-available Fe2+ ions
(Genon et al. 1994) that is toxic if present at high ionic activity
(Rengel 2002; Khabaz-Saberi and Rengel 2010).

4 Biofortification of Iron and Zinc Levels
in Crop Plants: Strategies and Issues

Different plants show differential ability to uptake Fe and Zn,
for example, rice, maize, and sorghum are known to be highly
susceptible to zinc deficiency while wheat, oat etc. have been
reported to be zinc-efficient. High phytic acid in food crops is
reported to inhibit the absorption of Fe and Zn by human from
these foods (Graham et al. 2001). Negatively charged phytic
acids strongly chelate with divalent micronutrients such as
Zn2+, Fe2+, Ca2+, and Mg2+ and reduce the bioavailability of
these micronutrients for humans due to the absence of phytase
enzyme in their digestive tract. Food processing can also de-
crease the level of iron and zinc in the grain when the outer
layers are removed. For example, in rice, Zn and Fe are local-
ized in aleurone layer and embryo of grains, which is removed
during polishing and milling, thus reducing the amount of
available Zn and Fe in the edible part of rice (endosperm)
(Haas et al. 2005; Zimmermann and Hurrell 2007).
However, this can also lead to better absorption of iron as
phytic acid is also localized in the outer layers. The most
economical approach to alleviate micronutrient deficiency in
crop plants is biofortification, a process through which the
content and bioavailability of essential nutrients in staple
crops are increased during plant growth through agronomic
approaches, conventional or molecular breeding, genetic en-
gineering, or any other means (Petry et al. 2010; Tiwari et al.
2010; Bouis et al. 2011; El-Mekser et al. 2014).
Biofortification has been mainly focused on starchy staple
crops (rice, wheat, maize, sorghum, millet, sweet potato etc.)
(Hussain et al. 2012; Saltzman et al. 2013). Agronomic
biofortification is achieved through soil or foliar application
of micronutrients in the form of chemical fertilizers while
genetic biofortification involves either conventional breeding
or genetic engineering to enhance micronutrient sequestration
or reduction in inhibitors (Saltzman et al. 2013). Agronomic
biofortification for Fe and Zn has been reviewed earlier in
detail by others (Cakmak 2008; Prasad et al. 2014; de
Valenca et al. 2017; Cakmak and Kutman 2018).

Crop biofortification by breeding has been a popular means
to develop biofortified varieties in developing countries
(Graham et al. 2007). Genotypic variation in major crops
showing broad range of Fe and Zn content has been exploited
through breeding programs to develop Fe- and Zn-rich crop
varieties. Different genotype of various crops have been re-
ported with varying concentration of micronutrients in grains,
for example, rice genotypes vary from 6 to 24 μg/g iron in

their grains (Gregorio et al. 2000; White and Broadley 2005)
while in wheat, iron concentration ranges from 25 to 56 μg/g
(Monasterio and Graham 2000). Table 1 presents a list of
some prominent biofortified crop varieties developed and re-
leased globally. Breeding for biofortification has made a sig-
nificant impact on alleviating micronutrient malnutrition in
many Asian and African countries. Globally coordinated ini-
tiatives like Harvest Plus have developed and released a large
number of biofortified (for Fe, Zn, and vitamin A) varieties of
13 different crops in Asia, Africa, and Latin America
(HarvestPlus 2019).

In the absence of genetic variation in micronutrient content
among varieties, breeding approaches are not successful.
Under such conditions, genetic engineering becomes more
apt for biofortification (Brinch-Pedersen et al. 2007).
However, this approach requires a deep understanding of met-
abolic pathways, enzymes, and genes involved in micronutri-
ent transport and sequestration. Introduction of novel genes of
prokaryotic or eukaryotic origin and engineering metabolic
pathways are the key approaches for genetic engineering–
guided biofortification. Genetic biofortification through
breeding or genetic engineering has been reviewed in details
by Rawat et al. (2013), Vasconcelos et al. (2017), and Cakmak
and Kutman (2018).

Plant breeding approach of biofortification is comparative-
ly a better approach for micronutrient fortification in grains,
but it still depends on soil factors such as soil pH, moisture,
and soil nutrient content. Although it is a sustainable and
economical approach, it is still labor- and time-intensive.
Stein (2006) estimated that breeding high Zn-accumulating
varieties would be three times more cost-effective than agro-
nomic fortification but the grain accumulation of Zn depends
on the amount plant-accessible Zn stores in the soil. Genetic
engineering may overcome the problem of low genetic varia-
tion but has low social acceptance. Different time taking reg-
ulatory processes in different countries have also hindered the
adoption of genetically engineered crops (Garg et al. 2018).

Although agronomic and genetic biofortification are still
the most practiced way for micronutrient enhancement in ed-
ible crops, they cannot be universally applied for all crops and
all geographical regions. For example, agronomic
biofortification using Zn- and Fe-containing fertilizers is high-
ly influenced by soil types and conditions (Cakmak 2008).
Low soil moisture, high pH, high CaCO3 content, and low
amount of organic matter severely decrease solubility and
availability of Zn and Fe in the soil. Most of the soil-applied
micronutrients are quickly fixed into plant unavailable form;
as a consequence, sufficient uptake of Zn or Fe is hindered and
grain mineral concentrations are significantly depressed
(Cakmak 2008). Use of iron fertilizer is complicated due to
low solubility of iron and low mobility through phloem.
However, this can be tackled through use in large quantities
or when expensively chelated to organic molecules. Many of
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Table 1 Some of the prominent Fe- and Zn-fortified crop varieties released globally

Biofortified crop Traits Level (mg/kg) Country Year of release Reference

Rice

DRR Dhan 45 High Zn 22.6 ppm India 2016 Yadava et al. (2017)

DRR Dhan 48 High Zn 24.0 ppm India 2018 Yadava et al. (2018)

DRR Dhan 49 High Zn 25.2 ppm India 2018 Yadava et al. (2019)

Zinco Rice MS High Zn 27.4 ppm India 2018 Yadava et al. (2020)

CR Dhan 311 High Zn 20.1 ppm India 2018 Yadava et al. (2020)

CR Dhan 315 High Zn 24.9 ppm India 2020 Yadava et al. (2020)

BRRI Dhan 64 High Zn 24 mg/kg Bangladesh 2014 Bashar (2018)

BRRI Dhan 62 High Zn 22 mg/kg Bangladesh 2013 Islam et al. (2016)

BRRI Dhan 72 High Zn 22.8 mg/kg Bangladesh 2015 Bashar (2018)

BRRI Dhan 74 High Zn 22.7 mg/kg Bangladesh 2015 Bashar (2018)

BU Hybrid Rice 1 High Zn High Fe Zn: 21.8 mg/kg
Fe: 9.75 mg/kg

Bangladesh 2016 Bashar (2018)

BU Dhan 2 High Zn
High Fe

Zn: 22.2 mg/kg
Fe: 11 mg/kg

Bangladesh 2016 Bashar (2018)

BRRI Dhan 84 High Zn 27.6 mg/kg Bangladesh 2017 Bashar (2018)

BINA Dhan 20 High Zn 27.5 mg/kg Bangladesh 2017 Bashar (2018)

Wheat

WB 02 High Zn High Fe Zn: 42.0 ppm
Fe: 40 ppm

India 2017 Yadava et al. (2017)

HPBW 01 High Zn High Fe Zn: 40.6 ppm
Fe: 40 ppm

India 2017 Yadava et al. (2017)

Pusa Tejas (HI 8759) durum High Fe
High Zn

Fe: 41.1 ppm
Zn: 42.8 ppm

India 2017 Yadava et al. (2018)

Pusa Ujala (HI 1605) High Fe 43.0 ppm India 2017 Yadava et al. (2020)

HD 3171 High Zn 47.1 ppm India 2017 Yadava et al. (2020)

HI 8777 (durum) High Fe
High Zn

Fe: 48.7 ppm
Zn: 43.6 ppm

India 2018 Yadava et al. (2020)

MACS 4028 (durum) High Fe
High Zn

Fe: 46.1 ppm
Zn: 40.3 ppm

India 2018 Yadava et al. (2020)

PBW 757 High Zn 42.3 ppm India 2018 Yadava et al. (2020)

Karan Vandana (DBW 187) High Fe 43.1 ppm India 2018 and 2020 Yadava et al. (2020)

DBW 173 High Fe 40.7 ppm India 2018 Yadava et al. (2020)

DDW 47 High Fe 40.1 ppm India 2020 Yadava et al. (2020)

PBW 771 High Zn 41.4 ppm India 2020 Yadava et al. (2020)

HI 8805 (durum) High Fe 40.4 ppm India 2020 Yadava et al. (2020)

HD 3249 High Fe 42.5 ppm India 2020 Yadava et al. (2020)

HI 1633 High Fe
High Zn

Fe: 41.6 ppm
Zn: 41.1 ppm

India 2020 Yadava et al. (2020)

Zincol-2016 High Zn 40 mg/kg Pakistan 2016 Baloch et al. (2018)

BARI Gom 33 High Zn 55 mg/kg Bangladesh 2017 BARI (2017); Mottaleb et al. (2019)

Pearl millet

HHB 299 High Zn High Fe Zn: 73.0 ppm
Fe: 41.0 ppm

India 2017 Yadava et al. (2017)

Dhanshakti High Fe
High Zn

Fe: 81 mg/ kg
Zn: 43.0 mg/kg

India 2013 Rai et al. (2014)

ICMH 1201 High Fe
High Zn

Fe: 75 mg/ kg
Zn: 40.0 mg/kg

India 2015 Govindaraj and Rai (2016)

AHB 1200Fe High Fe 73.0 ppm India 2017 Yadava et al. (2017)

AHB 1269Fe High Fe
High Zn

Fe: 91.0 ppm
Zn: 43.0 ppm

India 2018 Yadava et al. (2019)

ABV 04 High Fe Fe: 70.0 ppm India 2018 Yadava et al. (2019)
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Table 1 (continued)

Biofortified crop Traits Level (mg/kg) Country Year of release Reference

High Zn Zn: 63.0 ppm
Phule Mahashakti High Fe

High Zn
Fe: 87.0 ppm
Zn: 41.0 ppm

India 2018 Yadava et al. (2019)

RHB 233 High Fe
High Zn

Fe: 83.0 ppm
Zn: 46.0 ppm

India 2019 Yadava et al. (2020)

RHB 234 High Fe
High Zn

Fe: 84.0 ppm
Zn: 46.0 ppm

India 2019 Yadava et al. (2020)

HHB 311 High Fe 83.0 ppm India 2020 Yadava et al. (2020)

Finger millet

VR 929 (Vegavathi) High Fe 131.8 ppm India 2020 Yadava et al. (2020)

CFMV1 (Indravati) High Fe
High Zn

Fe: 58.0 ppm
Zn: 44.0 ppm

India 2020 Yadava et al. (2020)

CFMV 2 High Fe
High Zn

Fe: 39.0 ppm
Zn: 25.0 ppm

India 2020 Yadava et al. (2020)

Little millet

CFMV1 High Fe
High Zn

Fe: 59.0 ppm
Zn: 35.0 ppm

India 2020 Yadava et al. (2020)

Lentil

Pusa Ageti Masoor High Fe 65.0 ppm India 2017 Yadava et al. (2017)

IPL 220 High Fe
High Zn

Fe: 73.0 ppm
Zn: 51.0 ppm

India 2020 Yadava et al. (2020)

BRRI Mosur-6 High Fe
High Zn

Fe: 86.0 ppm
Zn: 63.0 ppm

Bangladesh - Bashar (2018)

BRRI Mosur-7 High Fe Fe: 81.0 ppm Bangladesh - Bashar (2018)

BRRI Mosur-8 High Fe
High Zn

Fe: 72–75 ppm
Zn: 58–60 ppm

Bangladesh - Bashar (2018)

Common bean

RWR 2245 High Fe 76.0 ppm Rwanda 2010 Mulambu et al. (2017)

RWR 2154 High Fe 71.0 ppm Rwanda 2010 Mulambu et al. (2017)

MAC 44 High Fe 78.0 ppm Rwanda 2010 Mulambu et al. (2017)

RWV 1129 High Fe 77.0 ppm Rwanda 2010 Mulambu et al. (2017)

RWV 3006 High Fe 78.0 ppm Rwanda 2012 Mulambu et al. (2017)

RWV 3316 High Fe 87.0 ppm Rwanda 2012 Mulambu et al. (2017)

RWV 3317 High Fe 74.0 ppm Rwanda 2012 Mulambu et al. (2017)

MAC 42 High Fe 91.0 ppm Rwanda 2012 Mulambu et al. (2017)

RWV 2887 High Fe 85.0 ppm Rwanda 2012 Mulambu et al. (2017)

Cowpea

Pant Lobia-1 High Zn High Fe Zn: 40.0 ppm
Fe: 82.0 ppm

India 2008 Singh (2014)

Pant Lobia-2 High Zn High Fe Zn: 37.0 ppm
Fe: 100.0 ppm

India 2010 Singh (2014)

Pant Lobia-3 High Zn High Fe Zn: 38.0 ppm
Fe: 67.0 ppm

India 2013 Singh (2014)

Pant Lobia-4 High Zn High Fe Zn: 36.0 ppm
Fe: 51.0 ppm

India 2014 Singh (2014)

Pomegranate

Solapur Lal High Fe
High Zn

Fe: 5.6–6.1 mg/100 g
Zn: 0.64–0.69 mg/100 g

India 2017 Yadava et al. (2018)

Greater yam

Sree Neelima High Zn 49.8 ppm India 2020 Yadava et al. (2020)

Da 340 High Fe 136.2 ppm India 2020 Yadava et al. (2020)
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the chelates are expensive while many are toxic and non-bio-
degradable. For iron, foliar applications have been reported to
be the most effective. But foliar application of micronutrients
is strongly influenced by factors such as wind (which may
cause variability in spray deposition) and soil moisture.
Furthermore, it is not always possible to target the micronu-
trient into fruits, seeds, or grains, and sometimes, they may
accumulate in other parts, for example, leaves; therefore, this
technique is only successful in certain minerals and specific
plant species (Cakmak et al. 1999).

5 Microorganisms—a Promising Option
for Micronutrient Biofortification

Due to their immense metabolic diversity, microorganisms are
present in any habitat we can imagine. Microbial activities
influence primary productivity, plant and animal diversity,
and Earth’s climate (Nazaries et al. 2013). In soil, microorgan-
isms are the key players in biogeochemical cycling of the
nutrients essential for the survival of any living entity on the
earth. The role of microorganisms in decomposition of organ-
ic matters, biological nitrogen fixation, denitrification, phos-
phate solubilization etc. is well-known. By virtue of their met-
abolic multiplicity, microorganisms can produce a number of
metabolites such as phytohormone, antibiotics, organic acids,
and siderophores, helping in plant growth directly or
indirectly.

Rhizospheric soil harbors more number of microorganisms
in comparison to the bulk soil due to secretion of sugars,
amino acids, vitamins etc. in the root zone. The microorgan-
isms colonizing the rhizosphere help in nutrient mobilization,
root growth, protection from abiotic, and biotic stresses.
Microbial production of organic acids and siderophores has
been implicated as major means of nutrient solubilization in
soil. Reduction of pH in microhabitats due to secretion of
organic acids by microorganisms helps to solubilize nutrients
such as P, K, and Zn which are complexed with other metals
or ions. Siderophores produced by microorganisms can in-
crease the solubility of Fe by chelation to form siderophore-
Fe complex, and this process has been regarded as the key
microbial process involved in Fe uptake by plants (Desai
and Archana 2011). Production of phytohormones, for exam-
ple, IAA and cytokinin, by microorganisms can significantly
influence root architecture and anatomy, thereby enabling the
plants to uptake nutrients efficiently. Apart from the
rhizospheric microorganisms, endophytes also play similar
functions which can help to enhance the uptake of nutrients
in plants. Since last one decade, there are increasing numbers
of reports on microbe-mediated Zn and Fe biofortification
(Table 2). In comparison to other biofortification strategies,
microbe-mediated biofortification is an environment-friendly,
cheaper, and sustainable alternative to enrich food crops with

micronutrients. Moreover, microbe-mediated fortification
strategies can offer additional advantages like overall im-
provement in growth and protection from stresses.

The following sections will discuss the potential of
microbe-mediated biofortification with specific examples
along with their possible mechanisms. Figure 2 presents dif-
ferent mechanisms employed by microorganisms to improve
uptake of Fe and Zn in plants. The major mechanisms related
to microbe-mediated Fe and Zn uptake are presented below.

5.1 Production of Siderophores and Other Chelators

Under iron-depleted conditions, microorganisms produce
siderophores which are low molecular weight organic
compounds with strong affinity to Fe. At first, the
siderophores form complex with Fe3+, and then, this
complex moves into the cell through specific receptors
located in cell membrane. Siderophore-iron complex
transport in the cell membranes of gram-positive bacte-
ria is assisted by siderophore-binding proteins, perme-
ases, and ATPases while in gram-negative bacteria, the
same is mediated by an outer membrane receptor, a
periplasmic binding protein, and a cytoplasmic ABC-
transporter (Ahmed and Holmstrom 2014). Once this
siderophore-iron reaches the cytoplasm, the ferric iron
gets reduced to ferrous form and released from the
siderophore. Siderophores of microbial origin have con-
clusively been shown to be an important factor in iron
nutrition of plants (Bar-Ness et al. 1992; Desai and
Archana 2011). Fe-siderophore complex can be reduced
by the plants using strategy I for Fe uptake and thus the
released Fe2+ becomes accessible to plant transport sys-
tem. The Fe-Siderophore complex can directly be taken
up by the plants and afterwards reduced by extracellular
reductases (Wang et al. 1993). In some cases, the Fe-
siderophore complex may be taken up directly and
transported to the shoot (Manthey et al. 1996). Reports
also suggested that some plants may have specific trans-
porters for such siderophore complexes. It has also been
reported that the Fe-siderophore complex may enter to
the plant system through the cracks developed due to
lateral root emergence. In strategy II plants where
phytosiderophores are produced by plants, it has been
suggested that microbial siderophores can also exchange
the bound ligand with the phytosiderophores. Rasouli-
Sadaghiani et al. (2014) reported that Pseudomonades
could enhance the iron nutrition of wheat either by in-
creasing the Fe supply on root surface or ligand ex-
change with wheat siderophores. Similarly, Scagliola
et al. (2016) reported that siderophores produced by
Enterobacter sp. BFD160 and Pseudomonas sp.
TFD26, complex ferric ion, and via a ligand exchange
with plant siderophores, make it available to the plasma
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membrane FCR. Sah et al. (2017) reported increased
accumulation of iron in maize grains upon inoculation

with siderogenic Pseudomonas aeruginosa which could
enhance the amount of plant-available Fe in soil through

Table 2 Potential of microorganisms to enrich food crops with Fe and Zn

Sl.
no.

Crop Scientific name of crop Inoculant Isolation source
of inoculant

Enhancement level of
Fe/Zn

Reference

1 Wheat Triticum aestivum var.
WR 544

Rhizospheric bacteria: Providencia
sp. PW5

Wheat
(T. aestivum)

106% increase in Fe
content

Rana et al.
(2012)

2 Wheat T. aestivum var. PBW373 Rhizospheric bacteria: Pseudomonas
sp.

Rice (Oryza
sativa)

31% increase in Zn Joshi et al.
(2013)

3 Japonica rice O. sativa L. var.
Nipponbare

Endophytes: Sphingomonas sp.
SaMR12, Enterobacter sp.
SaCS20

Sedum alfredii 21.9% increase in Zn
content in brown rice

Wang et al.
(2014)

4 Durum wheat T. turgidum var. cv.
durum HI 8691

Rhizospheric bacteria:
E. cloacae subsp. dissolvens

MDSR9

Soybean
(Glycine
max) var.
PK1024

36.56% and 21.11%
increase in grain Zn
and Fe content,
respectively

Ramesh et al.
(2014a)

5 Soybean G. max var. cv. JS 95-60 Rhizospheric bacteria:
E. cloacae subsp. dissolvens

MDSR9

Soybean
(G. max) var.
PK1024

32.78% and 25.03%
increase in grain Zn
and Fe content,
respectively

Ramesh et al.
(2014a)

6 Chickpea Cicer arietinum L. var. cv.
Sultano

Arbuscular mycorrhizal fungi Agricultural
field

Fe: 5%
Zn: 16%

Pellegrino and
Bedini (2014)

7 Wheat T. turgidum durum var.
cv. HI 8691

Rhizospheric bacteria: Bacillus
aryabhattai MDSR 7

Soybean
(G. max L.
merrrill) var.
PK472

45% increase in Zn
content in grain

Ramesh et al.
(2014b)

8 Soybean G. max var. cv. JS 95-60 Rhizospheric bacteria:
B. aryabhattai MDSR 14

Soybean
(G. max L.
merrrill) var.
NRC 7

36% in increase in seed
Zn content

Ramesh et al.
(2014b)

9 Maize Zea mays L. var. COMH5 Arbuscular mycorrhizal fungi:
Glomus intraradices
TNAU-11-08

Not available Increased grain Zn
content by ~30%

Subramanian
et al. (2013)

10 Rice O. sativa var. Basmati Rhizospheric bacteria: Bacillus sp.
SH10 and B. cereus SH17

O. sativa var.
Super
Basmati and
Basmati 385

22–49% increase in Zn
translocation to grain

Shakeel et al.
(2015)

11 Wheat T. aestivum var. HD2851 Rhizospheric bacteria:
P. fluorescens strain Psd

Mung bean
(Vigna
mungo)

85% increase grain zinc
content

Sirohi et al.
(2015)

12 Chickpea and
pigeonpea

C. arietinum var. ICCV 2
and Canjanus cajan
var. ICPL 88039

Rhizospheric bacteria:
P. plecoglossicida, B. antiquum,
E. ludwigii, Acinetobacter
tandoii, P. monteilii

Rice (O. sativa) Zn: 5–23%
Fe: 12–18%

Gopalakrishnan
et al. (2016)

13 Wheat T. aestivum var.
4HPYT-414,
4HPYT-404

Endophytes: B. subtilis,
Arthrobacter sp.

Wheat
(T. aestivum)

2-fold increase of Zn
content in grain

Singh et al.
(2017)

14 Wheat T. aestivum var.
Faisalabad-2008

Rhizospheric bacteria: P. fragi EPS1 Wheat
(T. aestivum)

More than twofold
increase in grain Zn
content

Kamran et al.
(2017)

15 Wheat T. aestivum var. Gw-366
and LK-1

Rhizospheric bacteria:
Exiguobacterium aurantiacum
MS-ZT10

Agricultural
field

Sixfold enhancement in
grain iron and zinc

Shaikh and
Saraf (2017)

16 Maize Z. mays var. Monsanto
DK-6142

Rhizospheric bacteria: B. subtilis
ZM63 and B. aryabhattai ZM31

Maize (Z. mays) 68% and 78% increase in
grain Zn and Fe,
respectively

Mumtaz et al.
(2017)

17 Bread wheat T. aestivum cv.
Lasani-2008 (LS-2008)
and Faisalabad 2008
(FSD-2008)

Endophytes: Pseudomonas sp.
MN12

Maize (Z. mays) - Rehman et al.
(2018)
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produc t ion o f s ide rophores . R ice endophy t i c
Streptomyces sp. has also been reported to be involved

in the iron nutrition of rice (Rungin et al. 2012).
Gopalakr i shnan e t a l . (2016) a l so impl ica ted

Fig. 2 Diagrammatic representation of various mechanisms used by microorganisms present inside or outside the plants to improve Fe and Zn uptake
and translocation
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siderophore-mediated Fe solubilization in Fe fortification
in chickpea and pigeon pea upon inoculation with plant
growth-promoting bacteria.

Apart from siderophores, microbes are known to pro-
duce other metal chelators which can increase the avail-
ability of certain metal ions. Whiting et al. (2001) sug-
gested that many bacteria produce Zn-chelating
metal lophores for increas ing water-soluble Zn
(bioavailable) in soil. Mastropasqua et al. (2017) report-
e d t h a t Pseudomonas ae rug i no sa p roduce a
metallophore which is released outside the cell and
mediates zinc uptake through a receptor. Lhospice
et al. (2017) implicated pseupaline metallophore as pri-
mary mediator of Zn uptake in chelating environment.
Chelators have also been attributed towards increased
mobilization and bioavailability of Zn in rice by
Azospir i l lum lipoferum , Pseudomonas sp. , and
Agrobacterium sp. (Tariq et al. 2007).

5.2 Zinc Solubilization

In soil, Zn is present in the form of sulfates, oxides, carbon-
ates, silicates, sulfides etc. pH is an important factor which
governs the proportion of plant-available zinc forms in soil.
In general, Zn solubility increases with a reduction in soil pH.
At alkaline pH, Zn becomes fixed in the form of insoluble
carbonates, sulfides, phosphates etc. and proportion of the
bioavailable zinc pool decreases. Microbe-mediated solubili-
zation of Zn can be accomplished by a range of mechanisms
such as excretion of organic acids, proton extrusion, or pro-
duction of chelators (Goteti et al. 2013). Additionally, inor-
ganic acids, viz. sulfuric acid, nitric acid, and carbonic acid,
can also facilitate the solubilization process. Microorganisms
can produce an array of organic acids which can reduce the
soil pH in and around the rhizosphere, thereby releasing the
Zn to make it bioavailable to plants (Table 3). Mostly,
gluconic and ketogluconic acid has been reported to be asso-
ciated with Zn solubilization (Fasim et al. 2002; Saravanan
et al. 2007a; Saravanan et al. 2007b; Sunithakumari et al.
2016). Gluconic acid has been reported to be produced by
bacteria across various phyla like Firmicutes, Protobacteria,
and Actinobacteria (Table 3). However, production of citric
acid, malic acid, oxalic acid, tartaric acid, formic acid, and
acetic acid has also been reported to be associated with Zn
solubilization by bacteria from different phyla (Martino et al.
2003; Li et al. 2010; Sah et al. 2017). Increased zinc uptake by
plants can lead to enhancement in grain zinc accumulation.
For example, organic acid production has been implicated in
enhanced uptake and accumulation of zinc by Enterobacter
cloaceae MDSR9 in soybean (Ramesh et al. 2014a); by
Pseudomonas fluorescens strain Psd in wheat (Sirohi et al.
2015); and by Exiguobacterium aurantiacum in wheat
(Shaikh and Saraf 2017).

5.3 Modulation of Plant Nutrient Uptake Systems

Microorganisms can produce an array of signals which can
modulate the expression of the genes involved in nutrient
uptake and transport. A number microorganisms including
endophytes and mycorrhiza have been reported to possess
the capability to modulate the uptake systems for a variety
of plant nutrients especially N, P, and Na (Zhang et al. 2009;
Saia et al. 2015; Liu et al. 2018). There are reports on micro-
bial influence on plant transporters of micronutrients like Zn
and Fe which are, however, lesser in number as compared toN
and P. Zhang et al. (2009) showed that activation of iron-
induced transcriptional regulator (FIT) by Bacillus subtilis
GB03 in Arabidopsis resulted in upregulation of ferric chelate
reductase (FRO) and iron-regulated transporter (IRT1), there-
by increasing the iron absorption. Similar observations were
also made by Zhou et al. (2016) in Arabidopsis plants when
inoculated with Paenibacillus polymyxa BFKC01, which ac-
tivated FIT leading to upregulation of FRO and IRT1. Pii et al.
(2016) reported upregulation of CsFRO (ferric chelate reduc-
tase) and CsHA1 (PM H+ ATPase) in cucumber upon inocu-
lation with Azospirrilum brasiliense which resulted in in-
creased Fe uptake through iron reduction on root surface and
rhizosphere acidification. Krithika and Balachandar (2016)
reported that inoculation of Zn-solubilizing bacteria,
Enterobacter cloaceae, resulted in modulation of ZIP (ZRT,
IRT-like proteins) genes in rice. Likewise, endophytes have
also been reported to potentially modulate the metal trans-
porters in crop plants. For example, over expression of
TaZIP (Zn-Fe transporter like protein in wheat) genes was
implicated in endophytic Arthrobacter-mediated Fe and Zn
uptake in wheat (Singh et al. 2017). Endophytic fungi
Phomopsis liquidambari has been reported to upregulate
FRO and IRT1 genes which was also associated with signif-
icant increase in Fe accumulation in the roots, stems, and
leaves of groundnut (Su et al. 2019).

5.4 Microbe-Mediated Dephytinization of Food Crops

Phytates vary from ~ 0.4 to 2.0% in cereals and legumes
(Reddy et al. 1982). Six phosphate groups of phytates carry
twelve negative charges which can bind to cations such as Ca,
Mg, Fe, Zn, Cu, and Mn to form stable complexes resulting in
low bioavailability of these minerals to humans. Phytases can
be used to remove the phosphate groups from phytic acid
which prevents binding of Fe and Zn in the digestive tract of
humans and thus making these minerals available for
absorption.

Diverse microorganisms produce diverse phytases, viz.
cysteine phytases (CPhy), histidine acid phosphatases
(HAP), beta propeller phytases (BBP), and purple acid phos-
phatases (PAP). HAPs are more predominant in filamentous
fungi while BBPs are most prevalent in bacteria (Jorquera
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et al. 2008; Singh and Satyanarayana 2015). Among bacteria,
Proteobacteria have been reported to possess all different
types of phytases. A number of studies have reported exoge-
nous application of microbial phytases in feeds for enhancing
mineral availability in animals, fish, and birds (Mohanna and
Nys 1999; Brenes et al. 2003; Baruah et al. 2005; Nwanna
et al. 2008). Similarly, it has also been used in human foods
for improving mineral absorptions (Troesch et al. 2013).
Hurrell et al. (2003) reported that dephytinization using
Finase (a commercial phytase from Trichoderma reesei) in
various cereal porridges increased iron absorption from rice,
oat, maize, and wheat porridge by ~ 3-, ~ 8-, ~ 5-, and ~ 11-
folds. Dephytinization of wheat- and soy-based foods also
resulted in higher zinc absorption in adult human subject from
Switzerland (Egli et al. 2004). However, in all of these studies,
microbial phytase have been used either during food process-
ing or as an ingredient of the food. Microorganisms such as
Lactobacillus pentosus have been successfully used to remove
phytates from seed coat matter (SCM) of finger millets ulti-
mately resulting in increased bioavailability of Zn (Amritha
et al. 2018). Phytate-degrading microorganisms have been
reported as endophytes in different plant parts including seeds
(Mehdipour-Moghaddam et al. 2010; Costa et al. 2018; Zhu
et al. 2019). Especially, phytate-degrading seed endophytes

can be very useful in dephytinization. Phytase activity has
been reported by endophytic bacteria isolated from seeds of
bean (Rhizobium endophyticum) and maize (Pantoea
stewartii) (Lopez-Lopez et al. 2010; Hafsan et al. 2018).
However, adequate studies have still not been carried out with
specific focus on microbe (especially endophytes)-mediated
dephytinization of food grains despite sufficient scientific ev-
idences suggesting their significant potential.

5.5 Modification of Root Architecture

Root is the main nutrient-absorbing part of the plants, and
mineral nutrition is a function of root growth. Higher numbers
of fine roots is very important for mineral absorption. Plants
with more fine roots can explore a large volume of soil to
efficiently take up small amounts of immobile micronutrients.
Longer and finer root systems in early growth stage have been
reported as the two characters associated with Zn-efficient
genotypes (Dong et al. 1995).

It is a well-known fact that microbial activity can greatly
influence the root growth and development through
production of phytohormones and other metabolites.
Moreover, mycorrhizal infection of roots is also known to
enhance the nutrient uptake capacity of the plants. Wang

Table 3 Production of organic acids by different bacteria for solubilization of Zn

Group of bacteria Name of bacteria Organic acids Reference

Firmicutes Bacillus sp. Gluconic acid Dinesh et al. (2018)

Bacillus sp. AZ6 Cinamic acid, ferulic acid, caffeic acid, chlorgenic acid,
syrirgic acid, gallic acid

Hussain et al. (2015)

B. megaterium Gluconic acid Dinesh et al. (2018)

Exiguobacterium aurantiacum 2-Ketogluconic acid Shaikh and Saraf (2017)

Lysinibacillus sp. Gluconic acid Dinesh et al. (2018)

Proteobacteria Acinetobacter sp. SG2 Gluconic acid Vaid et al. (2014)

Burkholderia sp. SG1 Gluconic acid Vaid et al. (2014)

Burkholderia lata Gluconic acid Dinesh et al. (2018)

Burkholderia latens Gluconic acid Dinesh et al. (2018)

Pseudomonas sp. Acetic acid, gluconic acid Jaivel et al. (2017)

P. aeruginosa 2-Ketogluconic acid Fasim et al. (2002)

P. fluorescens Gluconic acid Di Simine et al. (1998)

P. chlororaphis Gluconic acid, malonic acid, oxalic acid Costerousse et al. (2018)

P. moraviensis Gluconic acid, malonic acid, oxalic acid Costerousse et al. (2018)

P. syringae Gluconic acid, malonic acid, oxalic acid Costerousse et al. (2018)

Gluconacetobacter diazotrophicus 5-Ketogluconic acid Saravanan et al. (2007b)

Gluconacetobacter diazotrophicus Gluconic acid Intorne et al. (2009)

Stetnotrophomonas rhizophila Gluconic acid, malonic acid, oxalic acid Costerousse et al. (2018)

Actinobacteria Plantibacter flavus Gluconic acid, glutamic acid, oxalic acid Costerousse et al. (2018)

Streptomyces narbonensis Citric acid, malic acid, 2-oxoglutaric acid, succinic acid Costerousse et al. (2018)

Curtobacterium ocenosedimentum Citric acid, malonic acid, 2-oxoglutaric acid, succinic acid Costerousse et al. (2018)
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et al. (2014) reported modulation of root morphology as one
of the mechanisms involved in endophyte-enhanced metal
uptake and accumulation in rice plants which was evident
from the improved architecture of rice roots in presence of
endophytic bacteria. In this study, the Zn content in brown
rice from inoculated plants ranged from 30.0 to 31.0 mg/kg
which is ~ 25% improvement over normal Zn content (6.3–
24.0 mg/kg) in brown rice. Singh et al. (2017) observed that
inoculation of endophytic bacteria, viz. B. subtilis and
Arthrobacter sp., resulted in significant improvement in root
length, surface area, volume, and diameter which might have
helped the wheat plants to accumulate more zinc in grains.
They reported that the grain Zn content in inoculated plants
ranged from 50.0 to 66.2 mg/kg which was well beyond the
target of 50 mg Zn/kg.

Mycorrhizal association with plants and their contribution
in plant nutrition are well-known. Ninety percent of plant
species are known to establish a mycorrhizal association
(Smith and Read 2008). The most common type of mycorrhi-
za is the arbuscular mycorrhiza with fungal members of
Glomeromycota. The fungus forms an appressorium penetrat-
ing the root cortex where it moves through the intercellular
spaces and develops a network with formation of arbuscules.
Nutrients are exchanged across the periarbuscular and host
cell membranes, with which arbuscules make a close contact
(Rausch et al. 2001; Javot et al. 2007a; Javot et al. 2007b). It is
estimated that mycorrhiza can transfer more than 90% of the P
and more than 50% of the fixed N to their host in exchange of
photosynthates (Smith and Smith 2011). Besides translocation
of major nutrients, arbuscular mycorrhizal roots are also
known to help in micronutrient transportation in plants. For
instance, zinc content in tomato fruits was 50% higher in
mycorrhiza-colonized plants (Cavagnaro et al. 2006).
Furthermore, it has been reported that during mycorrhiza-
mediated micronutrient delivery, expression of nutrient trans-
porter genes in plant decreases. For example, cortical ZIP in
Medicago trunca tu la ge t s downregu la ted upon
mycorrhization (Burleigh et al. 2003). The contribution of
the mycorrhiza in plant metal nutrition may range from 20 to
50% (Ortas 2012; Lehmann et al. 2014). In addition, AMF
genome encodes several metal transporters (Tamayo et al.
2014), some of which could be involved in metal uptake.
Piriformospora indica (belonging to order Sebacinales of
family Serandipitaceae) which resembles AM fungi, owing
to its ability to colonize and interact with a wide variety of
unrelated host plants, holds a tremendous practical application
as nutrient mobilizer. It offers multiple benefits to its host
plants such as nutrient uptake, growth promotion, abiotic
stress alleviation, growth promotion, and disease resistance
(Unnikumar et al. 2013). Inoculation withP. indica under zinc
supplementation has been shown to increase Zn concentration
in lettuce plants (Padash et al. 2016). Improved iron uptake
has been observed in a medicinal herb Chlorophytum sp.

inoculated with P. indica and Pseudomonas fluorescens
(Gosal et al. 2010). Although there are only two reports on
biofortification using P. indica, the beneficial roles played by
this endophyte such as root development and nutrient uptake
indicate that P. indica can be a potential candidate to be used
for biofortification.

5.6 Improving Overall Plant Growth and Nutrition

Microorganisms are well-known for their role in biogeochem-
ical cycling of nutrients and improvement of plant growth
through various direct and indirect mechanisms. Microbes
are the key mediators of nutrient cycling in soil and responsi-
ble for maintaining the soil fertility. In soil, the macro- and
micronutrients interact in a complex way interfering with each
other’s uptake by plant. It is known that level of nitrogen in
soil can significantly influence the uptake of micronutrients
such as Fe and Zn. Kutman et al. (2011) reported that nitrogen
nutrition was critical for uptake and allocation of Fe and Zn in
wheat. Similar findings were also reported by Xue et al.
(2014). Excessive application of phosphorus can reduce the
micronutrient uptake and allocation (Nyoki and Ndakidemi
2014; Zhang et al. 2017). Zribi et al. (2015) showed that sym-
biosis of Sinorhizobium meliloti withMedicago sativa result-
ed in higher accumulation of zinc in roots. Studies carried out
by Kumar et al. (2014) revealed that inoculation of
siderogenic bacteria along with diazotrophic Arthrobacter re-
sulted higher gain accumulation of iron in wheat as compared
to inoculation only with siderogenic bacteria. Praburaman
et al. (2017) showed that N2-fixing plant growth-promoting
Herbaspirillum sp. GW103 can enhance Zn accumulation in
maize. Rana et al. (2012) reported grain Fe content of
271.93 mg/kg in wheat upon inoculation of Providencia sp.
PW5 and attributed this improvement towards better N nutri-
tion due to inoculation. It is evident from such studies that
microbial inoculation can achieve the micronutrient levels in
grains well beyond the desired level.

6 Future Prospects

Deficiency of micronutrients particularly Fe and Zn is a grave
concern for the entire world, especially for the Asian and
African countries. Efforts are being made to enrich the foods
including the staple crops with iron and zinc through agro-
nomic or genetic biofortification. Agronomic biofortification
is not any permanent solution to this problem while genetic
methods including breeding strategies are time- and cost-in-
tensive. Microorganisms due to their huge metabolic diversi-
ty, known role in biogeochemical cycling, and intricate inter-
action with plant and soil can be a better choice to mobilize
micronutrients to the plants. From various reports of microbe-
mediated biofortification around the globe, it is clear that
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microbial inoculation can improve grain Zn content in a range
of 20–50% in rice, 30–80% in wheat, and 80–100% increase
in grain Fe content in wheat depending on type of soil and
plant. This level of enhancement of Fe and Zn can definitely
help to combat deficiency. If we assume a conservative 30%
increase in Zn content of brown rice achieved by microbial
inoculation, then it can supply additional 1.05–4.35 mg Zn
daily assuming consumption of 600-g rice.

Enrichment of edible crops with Fe and Zn can be achieved
through microorganisms by any of the three following strate-
gies—(a) increased availability of micronutrients due to mi-
crobial activity like production of acids, chelators, and phyto-
hormones; (b) microbe-mediated modulation of micronutrient
transporters; and (c) de-complexation of micronutrients from
compounds such as phytate through microbial activity during
postharvest processing. However, higher micronutrient avail-
ability alone may not be effective enough to fortify the edible
parts as the activity of specific transporters should be modu-
lated to accumulate higher amounts of micronutrients. Soil or
rhizosphere inhabiting microorganisms seem to be more po-
tent to increase the soil availability of micronutrients and their
uptake by plant roots while the endophytic microorganisms
may be more suitable to influence the uptake and transporta-
tion. Furthermore, endophytes can also be helpful for degra-
dation of anti-nutritional factors like phytate in seeds/grains
and thus improving the bioavailability upon consumption.
Endophytes from wild plants having high Fe and Zn content
need to be explored for such activities. Application of micro-
organisms for biofortification should be carried out after thor-
ough examination of interaction among potential microbes,
crop genotypes with varying accumulation pattern, and soils
with differing micronutrient status. Breeding approaches can
also be focused on selecting genotypes preferentially harbor-
ing higher population of potential endophytes or
rhizobacteria with micronutrient-mobilizing capability.
However, the application of microorganism cannot be the
sole solution for combating the hidden hunger. Integration
of genetic as well as agronomic biofortification should be
explored to work out a viable, economical, and sustainable
option for biofortification.
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