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Abstract
In order to evaluate the potential responses of deep-burying and mulching on soil bacteria community abundance and soil fertility
in the same cropping systems, we designed a field experiment as follows: (1) no straw residue (CK), (2) straw mulching (M); (3)
straw residue placed in 20–40 cm (DS); and (4) straw residue placed in 20–40 cm with decomposing agent plus (DSP). The
results showed that straw deep placement could increase soil organic matter and improve soil microbial community by Illumina
HiSeq high-throughput sequencing approach and real-time quantitative PCR (qPCR). Straw deep-burying reduced soil pH (2%)
and increased soil total organic carbon (TOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) by 27–
339%, as well as soil enzyme activities (urease, dehydrogenase, and cellulase) by over 7%. Thereafter, we found that the deep
buried straw residue increased the soil bacteria abundance by 175%, especially Proteobacteria, Bacteroidetes, and
Acidobacteria. The family of Xanthomonadaceae and Chitinophagaceae had achieved remarkable growth. In canonical corre-
spondence analysis (CAA), soil organic matter increasing and pH reducing were the main reasons to shift soil bacterial com-
munity. A positive correlation was found between straw deep-burying and soil bacteria community (P < 0.01). Therefore, our
results highlight that deep-buried maize straw residue changes soil bacteria community abundance and improves soil fertility.
Deep placement could potentially be an effective use of straw residues for the future sustainable cropping systems.

Keywords Straw mulching . Deep burying . Soil physicochemical properties . Bacteria community . Illumina HiSeq
high-throughput sequencing

1 Introduction

As a side product of an increasing worldwide production of
corn to meet the ever-growing human demands, a large num-
ber of straw residues are expected. According to China
Ministry of Agriculture, China produces more than 0.8 billion
tons of crop residue per year, of which only 14% are returned

to the soil. How to effectively manage those corn residues has
become an important issue for the government. In order to
resource reuse the increasing crop straw, now we are used to
place them in field by mulching or deep-burying. However,
straw is difficult to decompose in cold winters in the northeast
of China; the soil microbial community develop into a limiting
factor in straw retention farming land. Straw mulching and
deep-burying play different roles in affecting soil bacteria
community abundance and soil fertility. We should evaluate
the effect to soil bacteria between straw mulching and deep-
burying, and then pick the better method to support sustain-
able farming systems. But the information of effect to soil
bacteria between straw mulching and deep-burying is lacked.
The aim of this study was therefore to evaluate the effects of
straw deep-burying on the soil fertility and the potential re-
sponses of bacteria community to such a residue addition.

Based on past practice experience, we hypothesize that
deep-burying is the better way to return straw. Firstly, straw
is difficult to decompose in cold winters in the northeast of
China. Mulching straw as a kind of solid obstacle would
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disturb next spring’s seeding. In addition, some pests and
diseases would remain in the leaving straw and contract the
plants. The production after leaving stubble or mulching were
always dropped (Thorburn et al. 2012). Secondly, straw bur-
ied in 0–20-m layer soil would harm plant root growth. Straw
mulching or returning in a shallow layer may form obstructer
to scramble for soil N (Ndegwa and Thompson 2000). In
addition, the fermented residue could release some small mo-
lecular weight organic acids, like oxalate (Li et al. 2011). So
the soil pH would be altered around plant root when we are
mulching or burying straw in 0–20-cm layer. It is unfavorable
for crop farming (Ma et al. 2016). Thus, aiming to separate
seed and root from straw residue in soil space, burying straw
in a depth of 20–40 cm becomes a vital way of straw returning
to the field (Wang et al. 2015a). Some straw-decomposing
agents were used to accelerate residue decomposition when
deep-burying straw, so the yield after straw deep-burying was
always higher than mulching (Li et al. 2014).

The main reason of corn yield increased after straw returning
was the soil fertility improvement (Lueders et al. 2006). The
nutrients from straw decomposed by soil microbial increased
soil total organic carbon (TOC) and total nitrogen (TN), which
control soil degradation and promoted crop yield (Wang et al.
2019; Yin et al. 2018). In this straw retention farming biochem-
ical process, soil bacteria is pivotal constituent of soil character-
istics (Berg 2009; Sharma et al. 2011). The more rich soil mi-
crobial biomass and more active soil enzymes reflect the better
function of soil microorganism in organic matters transforma-
tion (Burns et al. 2013; Dariusz et al. 2004). The previous stud-
ies of microbiology mechanism on straw mulching have been
conducted widely, while straw deep-burying was short. Straw
mulching could increase soil enzyme activities and growth of
soil bacteria (Grandy et al. 2013; Zhao et al. 2016). It is soil
bacteria which dominates in the initial phase of crop residues
decomposition and increases soil carbon stocks (Hao et al.
2019). The abundances of Proteobacteria were increased after
straw mulching, especially Actinobacteria, Betaproteobacteria,
and Gammaproteobacteria (Li et al. 2015). In straw deep-
burying studies, we have preliminary knowledge that straw
deep-burying could obtain higher soil organic carbon and mi-
crobial biomass (Wang et al. 2015b). But the information on
how deep-buried straw residue affects soil microorganisms is
limited, the shift of soil bacteria after straw deep-burying is a
confusion.

Up to now, real-time quantitative PCR (qPCR) and high-
throughput sequencing techniques take a study for soil micro-
bial species, community, function, and genetic diversity to
elucidate the microbiology mechanism of biogeochemical cy-
cling (Lou et al. 2014). We inferred residue deep-burying
could shift soil microbial community abundance by soil mi-
crobial biomass carbon (MBC) increased in a deep-buried
straw experiment (Zou et al. 2016). qPCR and high-
throughput sequencing techniques can bring insight into soil

bacteria community. We suspected straw deep-burying may
promote soil enzyme activities and bacteria abundance. It will
be important to decrease straw wasting and inorganic fertili-
zation using to sustain the development of ecological
agriculture.

2 Materials and Methods

2.1 Experiment Design

This straw placement experiment was conducted in the
Agricultural Science and Technology Test Station, in the
northeast of China (119° 32′ E, 41° 20′ N). The soil typical
there was carbonate cinnamon soil of loam, pH 7.8, contain
TOC 7.06 g kg−1, TN 108 g kg−1, available phosphorus
(AP) 17.3 mg kg−1, and available potassium (AK)
130 mg kg−1. The annually average rainfall is 450 mm,
frost-free period is 135 days, and effective accumulated
temperature is 3200 °C.

Maize variety of Liaodan565 was plant in blocks, keeping
25-cm row spacing and 66,000–67,500 plants per hectare.
Every block designed 4.8 m in width and 24 m in length with
management as normal. Four treatments and three replicates
were designed: (1) No straw residue control (CK); (2) Straw
mulching (M); (3) Straw residue placed under 40 cm in soil
(DS); and (4) Straw residue and decomposing agent (30 Kg
ha−1) placed under 40 cm in soil together (DSP). The amount
of returned straw was 12,000 Kg ha−1. We evenly spread 31
Kg ha−1 urea in the blocks ofM, DS, and DSP to control straw
residue C/N ratio of 25:1 at the same time of straw returning
(Ndegwa and Thompson 2000). When seedlings are planted,
every treatments contain the same fertilization amount of total
N 3600 Kg ha−1, total P (P2O5) 1800 Kg ha−1, and total K
(K2O) 1350 Kg ha−1.

The decomposing agent was granular materials as the
promotion to accelerate straw decomposition. Thirty kilo-
grams per hectare of decomposing agent was sprinkled
evenly on straw of DSP block by manual when we put
straw in ditch and then bury soil. We select a production
of Henglongtai Biological Engineering Company in Henan
Province named HM Straw Decomposing Agent. It con-
tains a lot of bacteria to decompose protein, cellulose,
hemicellulose, and lignin. The effective number of viable
cells of the decomposing agent was more than 0.5 ×
109 N g−1 with standard plate counting method (r ≥ 0.99).
The detailed information was in Appendix.

After the harvest in 2013, we furrowed and buried straw
residue by a self-developed agricultural straw return machin-
ery (Zou et al. 2014). Two rows corn as a team, we put two
rows straw into the medial of their growth land, as shown in
Fig. 1a. In 2014 spring, we took no-till farming, and in autumn
returned the obtained straw into the other side of their growth
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land, as shown in Fig. 1b. Farming repeated as this cycle. It
takes a long-term farm management as this method. Soil sam-
ples and corncob of this paper were collected after harvest in
2015 by “S”method with 5 places of 0–40-cm layer to further
analyze. Dry weight of maize grain was used to calculate
yield.

2.2 Soil Analyses

Soil pH was measured with a glass electrode using a soil-to-
water ratio of 1:2.5. Soil TOC, TN, MBN, and MBC were
determined by routine methods (Xiangui Lin 2009).

In this study, we determined soil cellulase, dehydrogenase,
invertase, and urease activities respectively by using 3,5-
dinitrosalicylic acid method (Zhao et al. 2008), the reduction
of 2,3,5-triphenyltetrazolium (Serra-Wittling et al. 1995), 3,5-
dinitrosalicylic acid method (Frankenberger and Johanson
1983), and indophenol blue colorimetr ic method
(Gosewinkel and Broadbent 1984).

2.3 DNA Extraction

DNAwas extracted from 0.5 g of each individual replicate soil
using a FastDNA® SPIN Kit (MP Biomedicals, Santa Ana,
CA) following the manufacturer’s instructions.

2.4 Real-Time Quantitative PCR of Bacterial 16 S rDNA
Genes

SYBR Premix Ex Tap Perfect Real-Time Kit of TaKaRa with
Bio-Rad CFX96 Real-Time PCR System (Bio-Rad, CA,
USA) recommended primer sets 519F/907R (519F: 5′-
GTGCCAGCMGCCGCGG-3 ′ , 9 07R : 5 ′ -CCGT
CAATTCMTTTRAGTTT-3′) in qPCR of bacterial 16 s
rDNA genes analysis (Biddle et al. 2008). In brief, 25-μl re-
action mixtures contained 12.5-μl of SYBR® Premix

ExTaq™, 0.5 μM of each primer, and 1.0 μl template con-
taining 2–9 ng DNA, and the details were observed in the
study of Xu et al. (2013).

2.5 PCR and Preparation of the Amplicon Libraries

The brief DNA of purification was the template for PCR copy
16SV4 gene fragment. And then, common bacteria primer
with Barcode (519F/907R) could identify bacteria diversity
by Phusion® High-Fidelity PCR Master Mix with GC Buffer
of New England Biolabs Company. The production of PCR
was detected by lipid sugar gel electrophoresis in 2% and
construct the library with TruSeq® DNA PCR-Free Sample
Preparation Kit. The qualified library was sequenced by
Qubit and qPCR with HiSeq2500 PE250.

2.6 Processing of Pyrosequencing Data

The 16-s data, Raw Tags was PE Reads jointed after split
through FLASH (Lozupone et al. 2011) and filtered by
Qiime (Caporaso et al. 2010) according to quality. At last,
we got the effective tags through length filtering and chimera
deleting. (Bokulich et al. 2013). Using a 97% identity thresh-
old, the most abundant sequence from each operational taxo-
nomic units (OUTs) was selected as a representative sequence
for that OTUs. Simpson and Shannon index has been figured
out by Qiime (Version 1.7.0), as well as Rarefaction Curve,
ACE, and Chao1 index to richness between different treat-
ments (Amato et al. 2013; Sun et al. 2013).

2.7 Statistics Method

IBM SPSS Statistic 22, R, andOrigin Lab 9.0were carried out
to calculate standard deviation, Tukey’s multiple range test
and do some figures. The differences of each mean at
P < 0.05 were considered statistically significant.

Fig. 1 The method of straw returning
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3 Results

3.1 The Soil Fertility and Crop Yield

Compared to the no-straw control (CK), straw residue signif-
icantly got an increased yield of maize crop (P < 0.05,
Table 1). It is the phenomenon that the straw has been hidden
underground in a valid way. The yield of straw deep applica-
tion (DS and DSP) is higher than mulching; DSP was higher
than DS by 8%.

From the soil characters, straw addition could reduce soil
pH; mulching dropped 1%; DS and DSP dropped 2%. Straw
deep application (DS and DSP) got a significant increased
value of TN (27%), TOC (23%), and MBN (48%), MBC (>
200%). There is no difference between CK and M. Further
statistical tests revealed a positive correlation between soil
characters and crop yield. Especially the differences among
M, DS, and DSP were highlighted in MBC and MBN; the
MBC of DSP and DSP were higher than M by 36% and
182%; MBN was higher than by 17% and 33%. It is a strong
evidence of soil microbial community changed.

3.2 The Effect to Soil Enzyme Activity

Among the four tested soil enzyme activities, except invertase,
activities of urease, dehydrogenase, and cellulase were gener-
ally significantly increased under the addition of either
mulching or deep placement of straw residue (P < 0.05,
Fig. 2), compared to the no-straw control. The activities of
invertase decreased after straw amendment.

The trend of dehydrogenase and urease activity is consis-
tent. Mulching increased urease by 12%, dehydrogenase by
360%, and cellulose 66%. DS and DSP were more active than
M, urease 7%, dehydrogenase 16%, and cellulose more than
58%. Activities of urease and dehydrogenase were similar
between DS and DSP. It showed the same trend as maize
production and soil TOC. The urease activity significantly
correlates with MBN (P < 0.05, R2 = 0.93) and qPCR
(P < 0.01, R2 = 0.98); cellulose activity has a linear correlation

with MBC (P < 0.01, R2 = 0.99). Therefore, this nutrition
came from straw decomposition can stimulate soil bacteria
growth to promote more enzyme release. Straw cellulose
decomposing and organics release must be the result of the
more active enzyme. It was further corroborated the responses
of soil enzyme activities that straw deep-burying developed
richer bacteria biomass than mulching.

3.3 Copy Number of Bacterial 16 s rDNA Genes

Gene copy number refers to a gene or a specific segment of the
DNA sequence in the haploid genome. The result of copy
number of dry weight (DW) soil bacteria 16 s rDNA is
showed as Fig. 3 (P < 0.05). Compared to the CK, the gene
copy number in soil samples from the straw return by deep
ditching treatments, DS (142%) and DSP (208%) increased
significantly. DSP was significantly higher than M by 56%.
By contrast, the copy number of mulching (M) was no differ-
ence greater than CK. From the copy number, soil enzyme
activities were enhanced along with bacteria growth in
quantity.

3.4 Pyrosequencing Information and Overall
Taxonomic Richness

The rationality of sequencing data would be reflected as rea-
sonable directly when the curve tends to flat, and the richness
of simple species as well (Appendix). As in Fig. 4a, the dis-
tribution of 16S sequence number at each classification level
obtained is shown in Fig. 4b. Compared with the CK, se-
quence numbers decreased for all levels of classification in
M; by contrast, numbers increased for all levels in DSP.

In phylum, the maximum abundance of the top 10 in spe-
cies relative abundance cylindrical cumulative graph was
shown in Fig. 4c. Compared to the CK, Proteobacteria,
Bacteroidetes, and Acidobacteria have an obvious shift and
increased by fluctuation in deep burying treatments (DS and
DSP). Simultaneously, the abundance of Bacteroidetes,
Crenarchaeota, and Firmicutes also shifted.

Table 1 The soil character and
yield of different treatments Sample CK M DS DSP

Yield Kg ha-1

(dry weight of grain)

10,897±4.37d 11,708±4.59c 13,305±4.65b 14,380±4.76a

pH 8.16±0.04a 8.10±0.01b 8.03±0.03c 8.02±0.05c

TN g kg-1 1.29±0.02b 1.35±0.04b 1.65±0.09a 1.63±0.02a

TOC g kg-1 9.54±0.58b 10.17±0.31b 11.54±0.74a 11.88±0.68a

MBN mg kg-1 6.15±0.92c 7.30±0.59c 8.52±0.64b 9.73±0.05a

MBC mg kg-1 35.28±0.21d 54.91±0.10c 74.53±0.58b 154.9±0.07a

Values are means ± standard error (n = 3). Different letters in each horizontal row indicate significant differences
(P < 0.05; Fisher’s LSD Test)
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In Venn diagrams (Fig. 5), a mean of 5530 bacterial OTUs
was observed in the group of CK, M, DS, and DSP; the num-
ber of shared OTUs was 1955 (35.35% of the total). Straw
deep-burying either DS or DSP owned the relative lower
unique OTUs numbers in contrast to CK and M treatments.
From Table 2, bacterial α-diversity of DS and DSP waslower
than M and CK; this further evidenced that the bacteria com-
munity after straw deep-burying will not be increased species
number or richness. Some local dominant bacteria may devel-
op well and increased in quantity. There was no significant
difference among different treatments in Simpson index. The
diversity index indicated that no significant differences were
potentially related to straw mulching, deep-burying, and de-
composition agent.

3.5 The Relative Abundance of Bacteroidetes,
Acidobacteria, and Proteobacteria

The abundance of each sample in Class classification level
was showed as (Fig. 6) Acidobacteria, Acidobateria-6, and
[Chloracidobacteria] got obviously changes. Straw mulching
stay a same abundance with CK. Acidobacteria increased in
the treatments of straw deep placement. For DS, sequences
decreased significantly but an equal relative abundance to
CK. Within the Proteobacteria, straw deep applied (DS and
DSP) increased sequences of Alphaproteobacteria,
Deltaproteobacteria, and Gammaproteobacteria, while rela-
tive abundance in contrast. Mulching did not get a significant
shift and almost was same as CK.

Fig. 2 The activity of urease,
dehydrogenase, cellulase, and
invertase. Different letters in each
row indicate significant
differences (P < 0.05)
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Fig. 3 The copy number of bacterial 16 s rDNA genes. Different letters in each row indicate significant differences (P < 0.05)
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In further analysis, the family level classification within
Proteobacteria and Bacteroideteswas conducted to determine
whether sequences were different among treatments (Fig. 7).
Within the Proteobacteria in the CK, the families
Xanthomonadaceae and Sinobacteraceae in the order
Xanthomonadales contained the dominant indigenous bacte-
ria. The sequence number and relative abundance of
Xanthomonadaceae increased significantly in straw deep
placement. The treatment with the decomposing agent
(DSP) supported a homogeneous propagation rate of
Xanthomonadaceae and Sinobacteraceae. The shift within
Bacteroidetes was more complex than that within
Proteobacteria.

The shift of Bacteroidetes was more complex than
Proteobacteria. First, straw amendment (M, DS, and DSP) got
an increased sequence number of Cyclobacteriaceae. Second,

mulching (M) decreased the sequences and relative abundance
of Chitinophagaceae and Sphingobacteriaceae. However, deep
placement (DS) increased Sphingobacteriaceae and supported a
homogeneous propagation rate of Chitinophagaceae. Third, the
decomposing agent (DSP) got a significant stimulated to S24–7
compared to others.

3.6 Relationship Between Soil Environmental Factors
and Bacterial Community

Maize yield was positively correlated with bacterial α-diver-
sity (Shannon index, R2 = 0.737, P < 0.01), richness (Chao1
index, R2 = 0.811, P < 0.01) as well as gene abundance (R2 =
0.858, P < 0.01), as Fig. 8. This suggests that the bacterial
community plays an important role in improving yield after
straw amendment.

CCAwas used to reveal what environmental factors shifted
bacteria assemblages in soils (Fig. 9). The four treatments
resulted in different distributions. Dehydrogenase activity
was positively associated with straw deep-burying and soil
C or N. The shifts in OTUs of bacteria in different treatments
were correlated with environmental variables. Compared to
CK, straw amendment led to clear differences. The bacteria
shift of straw deep placement treatments shows positive cor-
relation with soil MBC,MBN, TOC, and TN. Strawmulching
and no - straw tillage could not promote soil bacteria growth
via increasing soil TOC and microbial biomass, whereas the
dominant change was in pH. DSP had a significant difference
with DS in more obvious positive correlation with MBC,
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Table 2 Richness and diversities of 16S rRNA gene at the similarity
level of 97%

Sample Observed
species

Shannon Chao1 ACE

CK 3598±89bc 9.96±0.1a 4092±99a 4192±105ab

M 3634±94a 9.97±0.06a 4179±77a 4303±142a

DS 3508±70b 9.87±0.1b 3845±214b 3978±207b

DSP 3482±97c 9.89±0.04b 3900±173b 4008±194b

Values are means ± standard error (n = 3). Different letters in each vertical
row indicate significant differences (P < 0.05; Fisher’s LSD Test)
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TOC, and dehydrogenase activity. The straw decomposition
agent accelerated residue carbon translation into soil
microorganisms.

4 Discussion

Soil organic matter is the representative of soil fertility and it
could be stocked by straw returning (Laird and Chang 2013).
Straw residue retains crude fiber, trace element, and essential
amino acid like lysine, methionine, and cysteine. These resi-
dues as a kind of organic fertilization could enhance soil TN,
TOC, MBC, and MBN; reduced soil pH; and promote plant
growth (Sun et al. 2015; Wang et al. 2015a, b). According to
some reports, straw deep-burying could more effectively mod-
ify soil physical and increase soil organic carbon stock, among

other ways of returning straw to the field (Ludwig et al. 2011;
Malhi et al. 2011; Schneider et al. 2017). On the one hand,
straw deep-burying increases the plant availability of subsoil
nutrients, which does not come at the cost of impaired topsoil
fertility (Schneider et al. 2017). On the other hand, the 40-cm
depth was conducive to the straw anaerobic decomposition
and fixed more C in soil than straw mulching (Olk et al.
2007). In the same experiment condition, straw deep-
burying would keep the better soil situation than straw
mulching, where the soil temperature is more constant, soil
moisture is more sufficient. Straw mineralization is thus in-
creased (Dan et al. 2015; Li et al. 2006; Wang et al. 2011). In
this paper, straw deep-burying got the highest TN and TOC
among mulching and no-straw, so it got the biggest gains.

The affluent bacteria community was the key factor to re-
lease straw nutrient and then promote corn growth. After

Fig. 5 Venn diagrams of bacterial OTUs richness
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returning straw, soil organic matter and pHwere changed. Soil
pH is a powerful driving factor for bacterial diversity cation
(Griffths et al. 2011; Bartram et al. 2014), and straw became
the culture medium of bacteria (Chaudhry et al. 2012). This
study found that straw deep-burying with lowest pH value
could promote bacterial growth. Furthermore, the straw of
mulching was on the dry surface of soil, while the straw of
deep-burying was in the wet soil. Microbial activity of straw
mulching was limited by temperature and moisture (Cao et al.
2015; Cao et al. 2016). The increased soil enzyme activities
after straw deep-burying further evidenced a more active soil
bacteria community. Dehydrogenase activity has been consid-
ered as an indicator of the overall soil microbial activity, ure-
ase and cellulase activities characterize soil microorganism’s
ecological function involved in soil N, and C cycles (Xu et al.
2013). Cellulase and urease are hydrolytic enzymes, which are
responsible for the acquisition of C and N by degrading cel-
lulose (Bowles et al. 2014). More cellulose from straw can
promote fiber hydrolization into reducing sugars, and com-
bined with other production, like protein and amino acids, to

be consumed by microbes easily. However, the invertase is
the enzyme to hydrolyze sucrose. It was measured as potential
enzyme activity rather than real enzyme activity (Nannipieri
et al. 2012). In addition, the application of chemical fertilizer
can decrease the enzyme activity for retarding the enzyme
synthesis (Nannipieri et al. 2008).

Straw amendment has been able to enhance soil bacteria
community (Huang et al. 2015; Sun et al. 2015) by the chang-
es in nutrient substrates (Yuan et al. 2013; Zhao et al. 2014).
Usually, straw made bacterial richness increased without new
bacterial species emerging (He et al. 2008; Börjesson et al.
2012). Based on the further results from high-throughput se-
quencing, clear shifts were observed in Proteobacteria,
Bacteroidetes, and Acidobacteria. Proteobacteria is the bac-
teria which includes many aerobic or facultative bacteria, and
usually has a strong degradation capacity (Timothy et al.
2011). Proteobacteria relative abundance has been significant
increased after straw deep-burying (Fig. 4). The phylum of
Proteobacteria contains a variety of metabolic types; the class
Gamma-Proteobacteria currently contains the best known
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Fig. 8 The correlations between maize yield and soil bacteria community diversity (Shannon), richness (Chao1), and abundance (Copy number). “**”
means P < 0.01
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types of bacteria and includes important model organisms,
such as Colibacillus. Most nitrogen-fixing bacteria are within
the Proteobacteria, and with soil microbial activity, soil nu-
trition is promoted by the processes of nitrification and oxida-
tion and increases in the concentrations of nitrogen, sulfide,
and ammonia (Coleman et al. 1996). Many species within
Bacteroidetes can degrade cel lu lose , especia l ly
Chitinophaga, which can efficiently degrade organic matters
(Weilandbräuer et al. 2017). Straw deep-burying creates better
conditions for bacteria to decompose organic matter than
straw mulching or no straw. Within Acidobacteria, returned
straw decreased the abundance of Acidobacteria-6 and
[Chloracidobacteria], unlike the treatment with the
decomposing agent. It is similar to a study who displayed a
negative correlation between Acidobacteria and soil total car-
bon (Sun et al. 2015). Because Acidobacteria was negatively
related with soil carbon availability (Fierer et al. 2007), we
always found that the highest abundances are present in the
lowest pH soils (Lauber et al. 2009; Chu et al. 2010; Shen
et al. 2013). The effects of decomposing agents are
compounded by the inclusion of some complex bacteria like
Acidobacteria; it may help to maintain a stable and balanced
increasing in bacteria abundance rather than affecting diversi-
ty. But the further effect of decomposing agents to soil bacte-
ria remained to be solved.

5 Conclusions

In this study, straw mulching almost did not change the bac-
teria community of soil. Straw deep-burying could not affect
the soil bacterial community. The decomposing agents

maintain a balance in the abundance of soil bacteria.
Therefore, straw deep-burying with decomposing agents is
the better straw retention or returning method than mulching,
from the perspective of soil bacteria. It will help the problem
of too much straw wasted in north of China.
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