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Abstract
This research investigated alterations to and the interdependency of nitrogen-fixing bacteria, 16S ribosomal ribonucleic acid gene
(16S rRNA) and nitrogenase reductase gene (nifH) gene abundance, and chemical properties of water hyacinth compost when
using cellulolytic bacteria isolated from soil and leaf litter (CSL) inoculum. The un- and inoculated treatments in the compost
were designed with three replications. Microbiological analysis involved examination of the total number of bacteria and gene
abundance in the compost based on quantitative real-time polymerase chain reaction (qPCR). Some chemical properties of the
compost were also analyzed. The results indicated that applying cellulolytic bacteria into compost could increase the amounts of
bacteria, especially nitrogen-fixing bacteria. The pH of the compost increased slightly for the first 4 weeks. The amount of
nitrogen and organic matter (OM) in the compost increased continuously during the composting period. The concentration of
ammonium changed markedly in the range 1.5–2 times at the 4th and 10th weeks of the composting process, which was
consistent with an increase of nitrogen-fixing bacteria. The concentration of nitrate doubled at the 12th week. The abundance
of 16S rRNA and nifH genes was significantly correlated with the number of bacteria, total nitrogen, ammonium, nitrate, and
OM. The inoculated cellulolytic bacteria not only accelerated the nitrogen mineralization process but also promoted bacterial
numbers in the compost. These bacteria also affected the transformation of nutrients and correlated positively with gene
abundance.
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Abbreviations
CSL Cellulolytic bacteria isolated from soil

and leaf litter
CMC Carboxyl methyl cellulose
CFU Colony-forming unit
NF Number of nitrogen-fixing bacteria
Cel Number of cellulolytic bacteria
TB Number of total bacteria
PCR Polymerase chain reaction

qPCR Quantitative real-time
polymerase chain reaction

Dw Dry weight
OM Organic matter
nifH Nitrogenase reductase gene
16S rRNA 16S ribosomal ribonucleic acid gene
DNA Deoxyribonucleic acid
TISTR Thailand Institute of Scientific and

Technological Research

1 Introduction

Water hyacinth (Eichhornia crassipes) is one of the most
widespread aquatic plants in the world. However, in the last
century, it has become a water weed problem in many coun-
tries, including Thailand. The amount of water hyacinth in
Thailand reportedly amounted to roughly 4.52 million t, caus-
ing a budget loss of USD 0.27 million per year to eliminate
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477,000 t using a water hyacinth harvester (Ayuttaya 2015).
In 2016, the Department of Public Works and Town &
Country Planning surveyed the spread of water hyacinth in
five regions of Thailand: North, Central, Eastern, Southern,
and Northeastern, with the amounts being 0.25, 2.78, 0.25,
0.61, and 2.42 million t, respectively (Ministry of Interior
2016). Nakhon Pathom province previously suffered from
thick mats of water hyacinth that blocked the water flow and
air-water interface, thus turning the water putrid and toxic
(Ministry of Foreign Affairs 2017). The Department used sat-
ellite images in 2020 to estimate that there were up to 42,000 t
of water hyacinth in the period February–June each year in the
Tha Chin River of Sam Phran district, Nakhon Pathom prov-
ince (Geo-Informatics and Space Technology Development
Agency 2020). Water hyacinth is composed of a high percent-
age of cellulose and hemicellulose, accounting for 44–66.9%
of dry weight (Dw), and a low lignin content (Kumar et al.
2009). The cellulose content of the water hyacinth was report-
ed in the range 18–35% (Rezania et al. 2017) and at 25%
(Istirokhatun et al. 2015). Analysis of the composition of cel-
lulose in parts such as the roots, stems, and leaves of water
hyacinth from the Tunal River in México indicated values of
16, 8.4, and 8.7%, respectively (Lara-Serrano et al. 2016).
Cellulose is a polysaccharide of D-glucose that is linked by
β-1, 4 glycosidic bonds, which consist of more than 12,000
glucose units (Himmel et al. 2007). The cellulose-containing
materials are decomposed by a complex cellulase activities
including (1) endoglucanase activity, (2) exoglucanase activ-
ity (also called cellodextrinase or cellobiohydrolase), and (3)
β-glucosidase activity (Lakhundi et al. 2015). These cellulase
systems act with or without carbohydrate-binding modules
and dissolve the β-1, 4 glycosidic bond to release glucose in
the metabolic process (Lynd et al. 2002). Many cellulolytic
bacteria with cellulase activities have been reported belonging
to several different phyla such as Proteobacteria,
Actinobacteria, Firmicutes, Bacteroidetes, and Chloroflexi
(Koeck et al. 2014). Using cellulolytic bacteria is an alterna-
tive to accelerate the water hyacinth removal for producing the
compost. The cellulolytic bacteria can decompose cellulose in
the municipal solid waste and water hyacinth (Parveen and
Padmaja 2010), which resulted in higher contents of nitrogen,
phosphorus, and potassium with reducing the composing pe-
riod (Mahanta et al. 2014).

In cellulose degradation process, cellulose was degraded
by the cellulolytic bacteria (primary microorganisms),
resulting in cellobiose and glucose under aerobic condition,
and propionate, butylate, lactate, and acetate under anaerobic
condition (Leschine 1995; Schellenberger et al. 2012). All of
these products can be used as substrates or energy sources for
other bacteria. The nitrogen-fixing bacteria are one of second-
ary microorganisms, which can utilize these substrates to sur-
vive through the nitrogen cycle (Emmyrafedziawati and Stella
2018) as they cannot directly use cellulose in nitrogen fixation

process (Ladha and Peoples 1995). Furthermore, the nitrogen-
fixing bacteria community can be studied based on the nitro-
genase reductase gene (nifH) gene, using quantitative real-
time polymerase chain reaction (qPCR) to compare the fluc-
tuations with 16S ribosomal ribonucleic acid gene (16S
rRNA; (Silva et al. 2013).

The objective of the current study was to test the hypothesis
that the cellulolytic bacteria will release nutrients in water
hyacinth decomposition. Thereafter, other microorganisms
will utilize these nutrients (especially nitrogen-fixing bacte-
ria), resulting in the alteration of the chemical properties in
the water hyacinth compost. Furthermore, interdependency
microbes, chemical properties, and nifH gene abundance with-
in the compost pile have never been investigated. This re-
search was carried out to better understand the changes in
the chemical and biological properties of water hyacinth com-
post when using cellulolytic bacteria isolated from soil and
leaf litter (CSL) inoculum, as well to investigate the correla-
tion of nitrogen-fixing bacteria and gene abundance with cel-
lulolytic bacteria.

2 Material and Methods

2.1 Inoculum Preparation

The CSL inoculum obtained from 17.408871° N and
101.432435° E (Loei province, Thailand) was used, and it
was isolated using carboxyl methyl cellulose (CMC) agar
(Yodying et al. 2019). The CSL inoculum contained mixed
cultures and was kept at the culture collection of Thailand
Institute of Scientific and Technological Research (TISTR)
as TISTR 2970 and TISTR 2971. Both isolates were classified
as Bacillus cereus phu01 and phu02 accession number
LC582804 and LC582805, respectively. Cellulase activity
was detected by the appearance of transparent zones on the
CMC agar after staining with 0.3% Congo red for 20min and
washing with 1-MNaCl. The average values for the clear zone
width per colony and the width ratio of each isolate were 2.80
and 2.33 cm, respectively. At 50 °C, cellulase activity using
water hyacinth substrate was 138.37 and 107.26 mg ml−1, re-
spectively. The mixed culture had a highest decomposition
rate of 27.22 mg day−1. The cultures were stored in nutrient
broth with 20% glycerol at − 20 °C. Each isolate was cultured
in a CMC broth medium and diluted to a cell concentration of
108 colony-forming unit (CFU) ml−1. The cultures were
mixed with 100-g peat moss as a carrier. The CSL inoculum
was determined at 108 CFU g−1 peat moss for this experiment.

2.2 Composting Process and Sampling

A completely randomized design was used involving 3 repli-
cations and 2 treatments: the control or un-inoculated
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treatment (without the CSL inoculum) and inoculated treat-
ment (with the CSL inoculum). The water hyacinth compost
pile was prepared by making 4 layers of water hyacinth, corn-
cob, rice husk, and coconut coir with a ratio of 5:3:1:1, respec-
tively, by fresh weight. The dimensions of each pile were
approximately 100 cm (width) × 100 cm (length) × 50 cm
(height). A sample of 100 g of the CSL inoculum was used
with 1 t of water hyacinth compost using peat instead of the
CSL inoculum for the control. The compost piles were left
outside under a rainproof material. The moisture content of
the compost was controlled at 60% and turned every 7 days
(for aeration) for 3 months. Samples were collected from each
treatment every 2 weeks during the composting for chemical,
microbiological, and molecular biology analysis.

2.3 Chemical Analysis of Water Hyacinth Compost
Samples

Samples (each 10 g) of the compost were put into separate
250-ml beakers, after which 100 ml of distilled water was
added and then shaken for 5 min before being left to stand
for another 30 min. The pH of the supernatant was measured
using a pH meter (Cao et al. 2013). The Kjeldahl method was
used to determine total nitrogen, as described in the ASTM
D2973-16 (2016), as well as ammonium and nitrate
(Thompson et al. 2002). Organic carbon was analyzed using
the Degtjareff method (Walkley and Black 1934). Oxidation
involved heating with a potassium dichromate solution in sul-
furic acid, which was determined using titration with ferrous
sulfate.

2.4 Microbiological Analysis of Water Hyacinth
Compost Samples

The number of bacteria in the compost pile was calculated
using the dilution plate count method. Briefly, 10 g of com-
post was transferred to a 250-ml Erlenmeyer flask containing
90 ml of sterile distilled water and shaken. Serial dilutions
were made and 0.1-ml aliquots (103–106 dilution) were spread
on plates with each specific medium containing Burk’s N-free
medium, pH 7.0 (Park et al. 2005) for the nitrogen-fixing
bacteria, CMC agar, pH 7.0 (Behera et al. 2014) for the cellu-
lolytic bacteria, and nutrient agar, pH 7.0 for total bacteria
determination. The plates were incubated for 7 days at room
temperature and then counted using 30–300 colonies.

2.5 Sample Extraction and qPCR

For molecular biology analysis, deoxyribonucleic acid (DNA)
was extracted from 0.25 g of the compost using a
NucleoSpin® soil kit (Macherey-Nagel, Germany) and was
purified using NucleoSpin® gDNA Clean-up (Macherey-
Nagel, Germany) according to the manufacturer’s

instructions. The quality of the extracted DNA was deter-
mined by the ratio of A260/A280 nm using a nanophotometer.
The electrophoresis was prepared with 1% agarose gel solu-
tion containing 4 μl of RedSafe™ nucleic acid staining solu-
tion (iNtRONBiotechnology, Sangdaewon-Dong, Korea) and
then monitoring the bands under UV illumination at 50 V for
40 min; then, the DNA was stored at − 20 °C before use.

The qPCR used primer sets for nifH gene and 16S rRNA
gene amplification (Table 1). The nifH gene qPCR used a
nested protocol, whereas the 16S rRNA used a single ampli-
fication step. The first (non-qPCR) of the PCR reactions was
performed in a total volume of 50 μl at a final concentration
containing a 2-μl DNA template (10 ng), 5 μl of 1 × reaction
buffer, 1.25 μl of 2.5 mM MgCl2, 4 μl of 200 μM dNTP
mixture, 0.5 μl of 1 μM each primer (nifH-Fv, nifH-Rv),
0.2μl (1 U) of Taq DNA polymerase, and some distilled water
make up to the final volume. For the first polymerase chain
reaction (PCR), the PCR conditions consisted of initial dena-
turation for 6 min at 94 °C, pre-denaturation for 11 s at 94 °C,
and 30 amplification cycles performed for 15 s at 92 °C (de-
naturation), 8 s at 54 °C, and 30 s at 56 °C for the first reaction
and 25 s at 72 °C (extension). For the nested reaction (anneal-
ing of qPCR), the conditions were 8 s at 51 °C and 30 s at
53 °C (Levy-Booth andWinder 2010). The qPCR was carried
out using MyGo Pro equipment (iScience Technology Co.,
Ltd.). The reaction mixture was prepared in a total volume
of 20 μl at a final concentration using 5 μl of the first PCR
product (only for the nifH gene), 10 μl of Sygreen, 1.5 μl of
0.75 μM each primer (nifH-B-F, nifH-B-R), and 2 μl of dis-
tilled water. For the 16SrRNA gene, the reaction mixture
contained 2 μl of DNA template, 10 μl of Sygreen, 1 μl of
μM each primer (338F-518R-F, 338F-518R-R), and 6 μl of
distilled water. The nifH and 16S rRNA qPCR conditions are
shown in Table 2.

2.6 Standard Curve Preparation

Genomic DNA from bacterial pure cultures of Azospirillum
brasilense Sp7 (ATCC 29729) was used to develop the univer-
sal nifH standard curve. It has been used quantitatively with
success to detect the nifH gene (Levy-Booth and Winder
2010; Widmer et al. 1999). This bacterium was cultured on
spirillum nitrogen-fixing (ATCC® medium 838) broth for
48 h. DNA was extracted from cultures using a NucleoSpin®
tissue kit (Macherey-Nagel, Germany). The DNAwas stored at
− 20 °C prior to qPCR. For quantification of the target gene, A.
brasilense (ATCC 29729) was used to develop the nifH gene
and the 16S rRNA standard curve (Levy-Booth and Winder
2010) by serially diluting genomic DNA in the range 109 to
1013 gene copies for both the 16S rRNA and the nifH genes.
The standard curves were generated by plotting the logarithm of
each gene target copy number and the averages of the threshold
cycle. The gene copy number was determined using the
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regression equation: y = − 2.8801x + 51.366 (r2 = 0.998) for the
16SrRNA gene and using y = − 2.4958x + 52.627 (r2 = 0.997)
for the nifH gene. The gene copy number was calculated as-
suming an average base pair weight of 650 Da and Avogadro’s
number (6.022 × 1023) using the following equation: gene copy
number = (DNA ng amount × 6.022 × 1023 molecules mol−1)/
(length of DNA in base pairs × 1 × 109 ng g−1 × 650 g mol−1).
The DNA amplicon size was approximately 180 bp for the 16S
rRNA gene (Fierer et al. 2005) and 370 bp for the nifH gene
(Widmer et al. 1999). Gene abundance was determined using
logarithm gene copy number gDw−1.

2.7 Correlation and Statistical Analysis

Analysis of variance was carried out using the SPSS version
16.0 software package with difference comparisons between
mean values using Duncan’s new multiple range test. The
difference between treatments was indicated as either signifi-
cant (P < 0.05) or highly significant (P < 0.01). The correla-
tion coefficient was used to test the relationships between
quantitative variables with the Minitab (version 16.2.0) statis-
tical software.

3 Results

3.1 Alteration of Chemical Properties in Inoculated
Water Hyacinth Compost

The properties during the composting process are shown in
Table 3. Both the un-inoculated and inoculated treatments

were slightly acidic at the beginning of the compost process.
At the 8th week, the highest pH (slightly alkaline at 7.63) was
recorded and then the pH decreased slightly at the end of the
composting process in the un-inoculated treatment, while the
maximum pH in the inoculated treatment increased to slightly
alkaline (7.53) at the 6th week, and then the pH gradually
reduced to neutral. The initial total nitrogen content of both
treatments was 0.56%. In the inoculated treatment, the per-
centage of total nitrogen was 2 times higher for 2–
12th weeks than that in the control and was the highest at
the 12th week. There were significant differences compared
with the control. The ammonium concentrations in the inocu-
lated treatment were markedly different from the control being
17.46 and 26.17 ppm at the 4th and 10th weeks, respectively.
The nitrate concentrations of both treatments remained con-
stant throughout the composting period. There were no signif-
icant differences except with the inoculated treatment, where
the value of 17.44 ppm at the 12th week was greater than the
nitrate concentration of the control. The OM in the compost
pile changed in the starting stage to 25.09 and 26.62% for un-
inoculated and inoculated treatments, respectively. The inoc-
ulated treatment was significantly different from the control
from weeks 2–12; the greatest OM content was 66.65% at the
12th week.

3.2 Alteration of Bacterial Numbers in Inoculated
Water Hyacinth Compost

The bacterial numbers during composting of the water hya-
cinth are shown (Fig. 1). Initially, there were higher numbers
of bacteria in the inoculated treatment than in the un-

Table 1 Primer sets used in quantitative real-time PCR analysis of water hyacinth compost

Gene target Sequence (5′-3′) Primer name Reference

nifH gene ForA, GCI WTI TAY GGN AAR GGN GG nifH-Fv Widmer et al. 1999
Rev, GCR TAI ABN GCC ATC ATY TC nifH-Rv

ForB, GGI TGY GAY CCN AAV GCN GA nifH-B-F Bürgmann et al. 2003
Rev, GCR TAI ABN GCC ATC ATY TC nifH-B-R

16S rRNA gene For, ACT CCT ACG GGA GGC AGC AG 338F-518R-F Muyzer et al. 1993
Rev, ATT ACC GCG GCT GCT GG 338F-518R-R

Table 2 Conditions used in quantitative real-time PCR analysis of water hyacinth compost

Gene target Conditions Reference

nifH gene Initial denaturation step: 6 min at 94 °C Modified from Levy-Booth and Winder 2010
Pre-denaturation: 11 s at 94 °C

30 cycles: 15 s at 92 °C, 10 s at 51 °C, 30 s at 53 °C

Extension: 25 s at 72 °C

16S rRNA gene Initial denaturation step: 5 min 94 °C Zhou and Wu 2013
40 cycles: 45 s at 94 °C, 45 s at 56 °C, 90 s at 72 °C

Extension: 10 min at 72 °C
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inoculated treatment. During the composting process, the total
numbers of bacteria, cellulolytic bacteria, and nitrogen-fixing
bacteria (Fig. 1a, b, and c, respectively) increased significant-
ly. It was clear that the total bacterial numbers (Fig. 1a) in the
inoculated treatment were larger than in the un-inoculated
treatment between weeks 6 and 12. The numbers of cellulo-
lytic bacteria (Fig. 1b) and nitrogen-fixing bacteria (Fig. 1c)
constantly increased between weeks 4 and 12. The highest
numbers of total bacteria, cellulolytic bacteria, and nitrogen-
fixing bacteria were 286, 47.7, and 39.1 (× 105) CFU gDw−1,
respectively, at the 12th week in the inoculated treatment,
while in the un-inoculated treatment, they were 95.4, 24.3,
and 3.1 (× 105) CFU gDw−1, respectively. This research indi-
cated that the CSL inoculum affected the population of bacte-
ria in the compost pile.

3.3 Alteration of Gene Abundance in InoculatedWater
Hyacinth Compost

The abundance of genes in the compost piles decomposed by
cellulolytic bacteria was evaluated using qPCR. The abun-
dance of the 16S rRNA and nifH genes in the compost piles
during the experimental period is shown (Fig. 2). The 16S
rRNA gene abundance presented a range of 6.72–7.20 log
gene copies gDw−1 in the un-inoculated treatment, while of-
fering a range of 6.73–7.40 log gene copies gDw−1 in the
inoculated treatment. The differences between the 16S

rRNA gene abundance were compared with the un-
inoculated treatment with 6.85 and 7.40 log gene copies
gDw−1 at the 8th and 10th weeks, respectively (Fig. 2a). The
nifH gene abundance of the inoculated treatment was not sig-
nificant (Fig. 2b). The number of nifH gene copies ranged
between 2.97–3.20 and 2.93–3.38 log gene copies gDw−1 in
the un-inoculated and inoculated treatments, respectively.
These results showed that the CSL inoculum caused the in-
crease 16S rRNA gene abundance in the compost pile.

3.4 Correlation of Various Parameters in Water
Hyacinth Compost

The criteria for separating correlation levels determined
followed (Hinkle et al. 2003). The correlation coefficients
are presented in Table 4. In the un-inoculated treatment,
nitrogen-fixing bacteria numbers (NF) had a highly significant
positive correlation with cellulolytic bacteria numbers (Cel),
total bacteria numbers (TB), ammonium, and OM in the range
0.77–0.86. On the contrary, the NF showed low and very low
correlations to nitrate, total nitrogen, and nifH gene abun-
dance. There were moderate correlations of NF with pH and
16S rRNA gene abundance. There were high levels of corre-
lation for Cel with TB, ammonium, and OM in the range
0.74–0.86. In contrast, there was a negative correlation be-
tween Cel and total nitrogen. Cel had low and very low cor-
relations with nitrate, 16S rRNA, and nifH gene abundance.

Table 3 Effects of cellulolytic Bacillus cereus phu01 (LC582804) and phu02 (LC582805) on altering chemical properties of water hyacinth compost

Treatment pH every 2 weeks

0 2 4 6 8 10 12

T1 6.35 ± 0.01 7.22 ± 0.05 7.33 ± 0.03 7.54 ± 0.03 7.63 ± 0.02** 7.54 ± 0.05* 7.42 ± 0.04**

T2 6.42 ± 0.02** 7.36 ± 0.03* 7.45 ± 0.05* 7.53 ± 0.02 7.49 ± 0.01 7.36 ± 0.06 7.22 ± 0.03

Treatment Total nitrogen (%) every 2 weeks

0 2 4 6 8 10 12

T1 0.56 ± 0.02 0.62 ± 0.04 0.64 ± 0.04 0.65 ± 0.04 0.62 ± 0.06 0.64 ± 0.06 0.61 ± 0.08

T2 0.56 ± 0.04 0.66 ± 0.06** 0.69 ± 0.04** 0.70 ± 0.06** 0.66 ± 0.03** 0.74 ± 0.07** 0.77 ± 0.04**

Treatment Ammonium concentration (ppm) every 2 weeks

0 2 4 6 8 10 12

T1 0.00 ± 0.00 8.73 ± 0.00 8.73 ± 0.00 17.46 ± 0.00 17.45 ± 0.00 17.45 ± 0.01 26.19 ± 0.02

T2 0.00 ± 0.00 8.73 ± 0.00 17.46 ± 0.01** 17.45 ± 0.01 17.45 ± 0.01 26.17 ± 0.01** 26.16 ± 0.01

Treatment Nitrate concentration (ppm) every 2 weeks

0 2 4 6 8 10 12

T1 0.00 ± 0.00 8.73 ± 0.00 8.73 ± 0.00 8.73 ± 0.00 8.72 ± 0.00 8.73 ± 0.00 8.73 ± 0.01

T2 0.00 ± 0.00 8.73 ± 0.00 8.73 ± 0.00 8.72 ± 0.00 8.73 ± 0.00 8.72 ± 0.00 17.44 ± 0.01**

Treatment Organic matter (%) every 2 weeks

0 2 4 6 8 10 12

T1 25.09 ± 4.17 41.14 ± 2.54 40.05 ± 2.67 41.97 ± 2.73 45.26 ± 2.06 46.87 ± 5.47 56.61 ± 7.18

T2 26.62 ± 2.24 50.11 ± 2.15** 48.48 ± 3.01** 52.01 ± 3.76** 54.83 ± 2.83** 62.90 ± 5.56** 66.65 ± 6.15**

T1: un-inoculated; T2: inoculated. Significant difference is indicated by *, P < 0.05, and **, P < 0.01, between treatments according to Duncan’s
multiple range test
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TB had high correlations to ammonium (0.79) and OM (0.83).
In contrast, the abundance of both genes was slightly correlat-
ed with TB. The pH values with nitrate, ammonium, and OM
were correlated at very high (0.94), high (0.79), and moderate

(0.67) levels, respectively. The total nitrogen was highly cor-
related with nitrate (0.81) and pH (0.87), while it was associ-
ated moderately with ammonium (0.51). The ammonium had
a very high correlation with OM (0.90) and a high correlation
with nitrate (0.71). There was a moderate link between nitrate
and OM. The abundance of the 16S rRNA and nifH genes had
low and very low correlations with ammonium, OM, pH, total
nitrogen, and nitrate in the range 0.15–0.34. The abundance of
the 16S rRNA gene had a negative correlation with the nifH
gene (− 0.36).

In the inoculated treatment (Table 5), NF had a very high
level of correlation with TB (0.92) followed by high levels
with Cel, total nitrogen, ammonium, and nitrate in the range

Fig. 1 Changes of bacterial number of total bacteria (a), cellulolytic bacteria
(b), and nitrogen-fixing bacteria (c) in water hyacinth compost. The black
bars (■) represent an un-inoculated treatment, whereas the gray bars ( )
represent an inoculated treatment with cellulolytic Bacillus cereus phu01
(LC582804) and phu02 (LC582805). Significant differences are indicated
as * (P< 0.05) and ns non-significant

Fig. 2 Changes of 16S rRNA (a) and nifH (b) gene abundance in water
hyacinth compost. The black bars (■) represent an un-inoculated treat-
ment, whereas the gray bars ( ) represent an inoculated treatment with
cellulolytic Bacillus cereus phu01 (LC582804) and phu02 (LC582805).
Significant differences are indicated as * (P < 0.05) and ns non-significant
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0.70–0.83. Moderate levels of OM and 16S rRNA and nifH
gene abundance with NF were apparent. Cel had a very high
correlation with TB (0.93). There were high levels of correla-
tion of Cel with total nitrogen, ammonium, nitrate, and OM.
The nifH gene abundance was moderately correlated with Cel.
There were high correlations of TB with total nitrogen, am-
monium, and nitrate (0.72–0.75). The highest correlation for
TB was the moderate relation with the OM and nifH gene
abundance. The correlations of total nitrogen with ammonium
andOMwere at very high levels and total nitrogenwas related
to nitrate and pH at a high level and connected to nifH gene
abundance at a moderate level. Ammonium had a high level of
correlation with nitrate (0.81) and OM (0.88). A moderate
relationship was shown for ammonium with pH and gene
abundance. There was a high association between nitrate
and OM (0.88), while there was a moderate correlation of
nitrate with pH (0.60) and nifH gene abundance (0.63).
There were low and very low correlations of 16S rRNA gene
abundance with Cel, total nitrogen, nitrate, OM, pH, and nifH
gene abundance (0.2–0.38). There was a low correlation
(0.26) between the abundance of the nifH gene with pH. In
addition, pH had a negative correlation with the abundance of
the 16S rRNA gene (− 0.03).

These results indicated that NF was more positively related
to the chemical properties of the compost in the inoculated
treatment. The 16S rRNA gene abundance correlated with
NF, TB, and ammonium more than that of the un-inoculated

treatment. The nifH gene abundance was more closely related
to NF, Cel, TB, total nitrogen, ammonium, nitrate, and OM
that of the un-inoculated treatment. However, the correlations
of ammonium and pH in the inoculated treatment were lower.

4 Discussion

The effect was investigated of CSL inoculum on changes of
chemical properties, bacterial numbers, and gene abundance.
The pH changes were in the ranges 6.35–7.63 and 6.42–7.53
for the un-inoculated and inoculated treatments, respectively.
Both treatments clearly increased pH during the water hya-
cinth composting process. This also was apparent from the pH
increase from 6.5–7.5, 6.2–7.2, 6.4–7.2, and 7.1–7.8 in the
compost pile of the water hyacinth collected from four differ-
ent locations in Guwahati, India (Singh and Kalamdhad
2015). The range of pH values suitable for bacterial develop-
ment is 6.0–7.5, while fungi prefer an environment in the pH
range 5.5–8.0 (Gajalakshmi and Abbasi 2008). The current
results identified the highest pH of the inoculated treatment
was earlier than for the un-inoculated treatment. This was due
to the intensive decomposition from the higher microbial ac-
tivity with increased aeration resulting in a much higher pH
(Sundberg and Jönsson 2008). The release of ammonia
through ammonification due to the initiation of the proteolytic
process also caused a rise in the pH values (Batham et al.

Table 4 Correlation coefficients of biological and chemical properties of water hyacinth compost in un-inoculated treatment of cellulolytic Bacillus
cereus phu01 (LC582804) and phu02 (LC582805) during the composting period

Parameter Un-inoculated

NF Cel TB Total N NH4
+ NO3

− OM pH 16S rRNA nifH

NFa

Celb 0.86**

TBc 0.86** 0.86**

Total Nd 0.25 − 0.00 0.02

NH4
+ 0.80** 0.74** 0.79** 0.51*

NO3
− 0.39 0.30 0.29 0.81** 0.71**

OMe 0.77** 0.78** 0.83** 0.32 0.90** 0.69**

pH 0.53* 0.35 0.34 0.87** 0.79** 0.95** 0.67*

16S rRNA 0.52* 0.26 0.36 0.17 0.31 0.15 0.34 0.29

nifH 0.15 0.22 0.29 0.21 0.30 0.23 0.23 0.18 − 0.36

aNF number of nitrogen-fixing bacteria
bCel number of cellulolytic bacteria
c TB number of total bacteria
d Total N total nitrogen
eOM organic matter
f 16S rRNA 16S ribosomal ribonucleic acid gene
g nifH nitrogenase reductase gene

Minitab (version 16.2.0) statistical software was used for correlation testing and significant differences are indicated as * (P < 0.05) and ** (P < 0.01)
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2014; De Nobili and Petrussi 1988). The production of organ-
ic compost from water hyacinth in Lake Victoria Basin also
resulted in an alkaline pH between 7.38 and 8.13 (John and
Kakamega 2016). Subsequently, we found that the pH de-
creased gradually until the 12th week. The pH decreased dur-
ing the decomposition process due to acid production by mi-
crobial metabolic activity (Elvira et al. 1996).

Our results showed an increased total nitrogen throughout
the composting process except in the 8th week. The increased
total nitrogen was consistent with dry matter loss due to the
loss of organic carbon as carbon dioxide during composting
through organic decomposition and N-mineralization (Jusoh
et al. 2013; Viel et al. 1987). The result was the same for the
various formulas of water hyacinth compost with increased N
content in the composting process (John and Kakamega 2016;
Singh and Kalamdhad 2015). The decreased N in the 8th week
was due to N assimilation through glutamine synthetase and
the glutamate synthase pathways of the microbes (Wang et al.
2020). They also transformed N to gas such as ammonia,
nitrous oxide, and dinitrogen (Guo et al. 2020; Zainudin
et al. 2020).

Our experiment indicated that the amount of ammoni-
um released from the compost with the CSL inoculum
was 4–5 times higher than that of a report on compost
of water hyacinth + cattle manure and water hyacinth +
effective microorganisms at 60 days (John and Kakamega
2016). Ammonification is the conversion of organic N

(including proteins, amino acids, and nucleic acids) into
ammonium, which is released into the ecosystem
(Bernhard 2010). On the other hand, the N also increased
due to the activity of nitrogen-fixing bacteria commonly
found in compost piles (Bishop and Godfrey 1983)
through nitrogen fixation, which converts atmospheric N
into ammonia. The ammonium cation is formed by the
protonation of ammonia, which is available for plant up-
take. Rotary drum composting of water hyacinth is
enriched with numerous microbial groups such as
Enterobacter, Bacillus subtilis, Bacillus cereus, Bacillus
badius, and Bacillus thuringiensis (Vishan et al. 2017).
Some cellulolytic bacteria, including Bacillus cereus, also
can fix N (Harindintwali et al. 2020). Later in our
composting process, the ammonium content decreased in
the 8th week while the amount of nitrate increased due to
N transformation during co-composting (Wu et al. 2010).
This resulted from nitrification, converting ammonium to
nitrate by nitrifying bacteria (Li et al. 2018). The peak
levels of nitrate concentration occurred in the 3rd week for
water hyacinth composted with molasses at 25% or 50% total
sugar content, in the 4th week for water hyacinth co-composted
with cattle manure, and in the 5th week for water hyacinth co-
composted with poultry manure (Beesigamukama et al. 2018).
These results were the opposite of our experiment in which the
nitrates were released slowly at the 12thweek due to differences
in the types of organic materials mixed in the compost.

Table 5 Correlation coefficients of biological and chemical properties of water hyacinth compost in inoculated treatment of cellulolyticBacillus cereus
phu01 (LC582804) and phu02 (LC582805) during the composting period

Parameter Inoculated

NF Cel TB Total N NH4
+ NO3

− OM pH 16S rRNA nifH

NFa

Celb 0.83**

TBc 0.92** 0.93**

Total Nd 0.70** 0.78** 0.72**

NH4
+ 0.74** 0.82** 0.74** 0.95**

NO3
− 0.75** 0.72** 0.75** 0.88** 0.81**

OMe 0.64** 0.73** 0.67** 0.93** 0.88** 0.88**

pH 0.08 0.34 0.17 0.72** 0.67** 0.60** 0.78**

16S rRNAf 0.58** 0.38 0.46* 0.33 0.50* 0.20 0.26 −0.03
nifHg 0.60** 0.56** 0.63** 0.57** 0.58** 0.63** 0.55* 0.26 0.21

aNF number of nitrogen-fixing bacteria
bCel number of cellulolytic bacteria
c TB number of total bacteria
d Total N total nitrogen
eOM organic matter
f 16S rRNA 16S ribosomal ribonucleic acid gene
g nifH nitrogenase reductase gene

Minitab (version 16.2.0) statistical software was used for correlation testing and significant differences are indicated as * (P < 0.05) and ** (P < 0.01)
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Our results showed that the breakdown of cellulose from
plant residues by the CSL inoculum throughout the composting
process resulted in a continuous increase in the OM. The OM
was higher than that in the un-inoculated treatment. Similarly,
maize straw decomposition resulted in C and N release by de-
composers (Tian et al. 2019). Similarly, mulched water hyacinth
compost (WHCM) throughout the cropping period resulted in
soil OM being in the range 0.64–3.57% higher than that without
composting (Balasubramanian et al. 2013). Nevertheless, in our
experiment, the OM reduced at the 4th week during composting
due to organic C assimilation by the heterotrophic communities
as a source of energy (Purkamo et al. 2015).

The applied CSL inoculum in our study of water hyacinth
compost promoted the numbers of total bacteria, cellulolytic,
and nitrogen-fixing bacteria. The organic carbon composition
was important leading to shifts in the bacterial community
structure (Liu et al. 2020). The observation of microbial diver-
sity during the composting of municipal solid waste, agro-
industrial waste, and organic materials includingwater hyacinth
was studied (Umsakul et al. 2010; Vishan et al. 2017; Yan et al.
2015). Mesophilic and thermophilic microorganisms appeared
and were the dominant bacteria in the compost followed by
actinomycetes and fungi. There are several diverse groups of
bacteria such as ammonia-oxidizing bacteria (AOB), ominant
bacteria in the compost, followed by actinomycetes and fungi.
There are several diverse groups of bacteria such as AOB and
nitrogen-fixing bacteria bearing pectinolytic, amylolytic, and
cellulolytic microorganisms. Microbial enrichment with nitro-
gen fixers, phosphorus solubilizers, and cellulose decomposers
is one of the possible ways of increasing the nutrient content of
the final compost product (Manna et al. 1997). The nitrogen-
fixing bacteria are important in decomposition processes and
nutrient cycling. It is possible that synergistic relationships of
cellulolytic, nitrogen-fixing, and other bacteria occur in the
compost pile ecosystem. The cellulolytic bacteria supply me-
tabolites (glucose or cellobiose). The source of carbohydrate is
important to allow for nitrogen fixation activity, which requires
large amounts of energy and reducing equivalents (Chan et al.
1994) whilst the nitrogen-fixing bacteria supply ammonia or
ammonium as a nitrogen source for other bacteria. Beneficial
microorganisms can enhance plant growth, protected patho-
gens, and improve the biochemical properties of the soil solu-
tion (Przemieniecki et al. 2019). The compost applied into soil
can improve the chemical and microbiological properties of the
soil in the rhizosphere.

The bacterial diversity in the compost pile can be predicted
based onmonitoring the 16S rRNAgene, while the abundance
of one-in-seven nitrogen-cycling genes using nifH gene as a
marker gene can be used to identify nitrogen-fixing bacteria
and archaea (Gaby and Buckley 2012; Henry et al. 2006;
Wang et al. 2014; Zhang et al. 2013). The 16S rRNA gene
abundance changed at weeks 8 and 10 in our experiment. This
suggested that total microbial biomass increased, similar to

increasing 16S rRNA gene abundance during incubation in
both pig manure and manure + biochar (Ngigi et al. 2020).
We found that the nifH gene abundance was linked with the
number of nitrogen-fixing bacteria and the nitrogen nutrients.
This indicated that genes can lead to plant-beneficial functions
such as promoting plant growth and improving soil fertility
(Bruto et al. 2014). The nifH-g1 gene copy number was re-
ported to be stronger with soil carbon and nitrogen in the
organic horizon, indicating that the asymbiotic nitrogen-
fixing bacteria are greatly influenced by their habitat (Levy-
Booth andWinder 2010). No research report has directly iden-
tified the abundance of genes in water hyacinth compost.
However, the compost used in agricultural management pro-
moted gene abundance and microbial diversity as well as im-
proved soil quality (Li et al. 2017; Nelson et al. 2015; Schmidt
et al. 2019). Genes related to the nitrogen cycle were found in
soil amended with compost (Pereg et al. 2016). The average
number of copies of the 16S rRNA gene increased and often
had positive effects on nifH gene diversity and activity (Orr
et al. 2011). The abundance of nifH copies decreased in the
rhizosphere of two sorghum cultivars when a high amount of
chemical fertilizer was used (Coelho et al. 2009). That result
was different from our research because the water hyacinth
compost did not contain chemical fertilizers. The natural rela-
tionships between the nitrogen-cycling functional gene abun-
dance and soil nutrient status were apparent.

The correlation coefficient is a measure of the linear rela-
tionship between two variables (Ratner 2009). Notably, the Cel
of inoculated treatment was high related to NF, total nitrogen,
and nitrate. These increased more than for the un-inoculated
treatment. This suggested that the inoculation of compost by
cellulolytic bacteria encouraged an increase in nitrogen-fixing
bacteria and other bacteria as well as promoting the decompo-
sition of OM through the mineralization process. The results
were consistent with Azotobacter bioinoculant (a nitrogen-
fixing bacteria) being synergistic to the growth of Pleurotus
eous that had cellulolytic enzyme activity (Eyini et al. 2005). In
particular, the nifH gene had moderately positive correlations
with NF, Cel, TB, total nitrogen, ammonium, nitrate, and OM
for the inoculated treatment. This revealed that the abundance
of the nifH gene was linked to the increasing amount of
nitrogen-fixing bacteria. These bacteria are vital in the nitrogen
cycle in an ecosystem. Thus, the nitrogen can be transformed
within the compost pile. N transformation is one of the factors
that determine the correlation with the nitrogen-fixing gene
during chicken manure composting (Liu et al. 2019). The in-
creasing total nitrogen and nitrate concentrations were in ac-
cordance with Keshri et al. (2015), who studied the abundance
of functional genes in soil. Nutrient types and concentrations
impacted on the biodegradation of microcystin in water bodies
of cyanobacteria and influenced the dynamics of gene abun-
dance (Li et al. 2011). Log nifH gene copies were correlated to
total nitrogen at very high levels (0.92).
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5 Conclusions

The cellulolytic bacteria isolated from soil and leaf litter
(CSL) inoculum (Bacillus cereus phu01 and phu02) influ-
enced the changes in the chemical and biological properties
of water hyacinth compost. The degradation of cellulose in
water hyacinth was considered to be the main function of
cellulolytic bacteria responsible for releasing contents of car-
bon and nitrogen in the compost. Their activity also had an
impact on other microorganisms, which were associated with
the nitrogen cycle. In addition, the synergy was observed be-
tween the CSL inoculum and nitrogen-fixing bacteria. This
confirmed by the increased amounts of nitrogen-fixing bacte-
ria, which was correlated to the nitrogenase reductase (nifH)
gene abundance. Therefore, the CSL inoculum can release
nutrient contents in water hyacinth with promoting nitrogen-
fixing bacteria, resulting in the increased beneficial substances
for plant production.
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