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Abstract
Irrigation of Salicornia europaea with heavy metal–polluted wastewater is a promising alternative method for risk mitigation of
the Urmia Lake ecosystem from uncontrolled sewage. The objective of the study was to evaluate morphological and physico-
chemical responses of Salicornia europaea under wastewater irrigation at different growth stages. A field experiment was
conducted in a split-plot experiment based on randomized complete block design with four replications. Treatments included
control and wastewater irrigation (containing zinc (Zn), iron (Fe), copper (Cu), cadmium (Cd), lead (Pb), and nickel (Ni)) at three
stages (vegetative, flowering, and reproductive) of plant growth and two times (two and 4 days in each stage). The result showed
that the wastewater application at reproductive stage resulted in higher biomass production than that of the control plants.
Wastewater irrigation at the flowering stage caused a significant increase in the amount of total chlorophyll and chlorophyll-a,
while chlorophyll-b content was decreased at both flowering and reproductive stages. The amount of the total soluble protein was
also affected, with wastewater irrigation showing the most significant increase at the reproductive stage. There was significant
enhancement of osmolytes in leaves of plant under heavy metal stress, and the increased rate of proline was higher than soluble
sugar at the flowering stage. Relative water content in Salicornia was not duration- and time-dependent. A 154% increase in
catalase activity, 32% increase in peroxidase activity, and 57% increase in polyphenol oxidase activity were observed in the plant
exposed to long-term wastewater duration. Based on the observed positive effect of wastewater on shoot length and weight, total
soluble protein, proline, soluble sugar, enzyme activities, and plant biomass of Salicornia europaea, long-term effect of heavy
metal–polluted wastewater irrigation can be approved for Salicornia crops in coastal areas.
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1 Introduction

Pollution of irrigation water may affect both the biotic and
abiotic components of the ecosystem (Qadir et al. 2010).

Farmers in developing countries who require water for irriga-
tion often have no other choice than using wastewater (Keraita
et al. 2008; Liu et al. 2005). The wastewater irrigation pro-
vides a valuable source of plant nutrients and organic matter
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needed for maintaining fertility and productivity levels of the
soil (Qadir et al. 2010). High concentrations of heavy metals
inhibit plant growth and development and cause various mor-
phological, physiological, and biochemical responses (Song
et al. 2014; Ahmed and Slima 2018). The degree of plant
damage depends on the plant species, the concentration of
toxic ion, its stage of growth, climate, and soil conditions
(Qadir et al. 2010). It was reported that high concentrations
of heavy metals in wastewater affect many physiological and
biochemical processes and inhibit plant growth and develop-
ment (John et al. 2009).

Most of the peri-urban lands are contaminated with pollut-
ants, including copper (Cu), zinc (Zn), lead (Pb), cadmium
(Cd), nickel (Ni), and mercury (Hg) (Singh and Kumar
2006) especially in the arid and semi-arid regions (Mojid
et al. 2019). The discharges of wastewater is the most hazard-
ous when the heavy metals exceed allowable concentration
limits (Barakat 2011). The toxic effects, environmental stabil-
ity (Esmaeilzadeh et al. 2016), and high potential for being
absorbed and bio-accumulated in many aquatic species are
important aspects of heavy metals (Esmaeilzadeh et al.
2017). Long-term irrigation with sewage effluent was shown
to increase the amount and availability of heavy metals in soils
(Liu et al. 2005). Soil fertility and plant growth can be en-
hanced with properly managed wastewater irrigation through
increasing levels of soil organic matter and plant nutrients
which may eliminate the need for commercial fertilizers in
cropland (Mojid et al. 2019; Eid 2019). To alleviate the prob-
lems of land salinization and the contamination of soils with
heavy metals, a group of plants has been identified such as
halophytes, salt-tolerant plants, and heavy metal
hyperaccumulators which can extract heavy metals from the
soil (Moray et al. 2015). In coastal saline areas, heavy metal
pollution could only be remediated by using halophytes that
are probably the only candidate for phytoremediation of heavy
metal–polluted saline soils (Sharma et al. 2010; Kumari et al.
2019). Halophytes and hyperaccumulators are found in a di-
verse range of angiosperm families and use similar mecha-
nisms to combat the salt and heavy metal–borne stresses
(Moray et al. 2015).

Salicornia europaea L. is an annual halophyte from the
Chenopodiaceae family (Piernik et al. 2017) and one of the
plants that has the highest salt tolerance (greater than 1 M
NaCl) in the world (Rozema and Schat 2013; Zare-Maivan
et al. 2015) and therefore well adapted in an environment
where the level of soil salinity is as high as half-strength of
seawater (Ebadi et al. 2018). It is widespread in Urmia Lake,
Iran (Zare-Maivan et al. 2015), Europe, South Africa, South
Asia, and North America and prevalent in salt-affected areas
near coastlines, tidal floodways, salt lakes, and brine springs
(Piernik et al. 2017). Since S. europaea dominates arid and
saline soils of retreated Urmia Lake, its cell membrane integ-
rity and antioxidant potential to acclimated to such conditions

(Zare-Maivan et al. 2015). These species can survive in saline
environments due to physiological and biochemical adapta-
tions (Smillie 2015). Enzymatic and non-enzymatic antioxi-
dants are important in plant defense under heavy metal stress
(Kandziora-Ciupa et al. 2013). Previous reports have shown
that the content of free proline depends on the type of metal
and its concentration (Sharma and Dietz 2006) and plant spe-
cies and varies between organs (Kandziora-Ciupa et al. 2013).

Long-term heavy metal exposure can enhance ethylene pro-
duction and induce oxidative stress in plants (Thao et al. 2015).
Higher ethylene production is due to the peaked expression of
ethylene-responsive genes (Sharma et al. 2020). Higher pro-
duction of reactive oxygen species (ROS), induced by some
heavy metals, causes oxidative stress (Mittler 2002; Sytar
et al. 2018). Heavy metals lead to damaging effects such as
photochemical reactions, chlorophyll degradation, enzyme in-
hibition, disruption of membranes integrity, and reduction in
metabolic efficiency and carbon fixation (Liu et al. 2005;
Seregin and Ivanov 2001). Antioxidant enzymes like superox-
ide dismutase (SOD), catalase (CAT), peroxidase (POD), and
polyphenol oxidase (PPO) along with the non-enzymatic anti-
oxidant are the major components of ROS-scavenging system
(Babaei et al. 2017; Seyed Sharifi et al. 2017). In non-
hyperaccumulator plants, heavy metals at high concentration
like Zn in wheat (Li et al. 2013) and Cu in Solanum nigrum
(Fidalgo et al. 2013) led to an inhibition of the antioxidant
enzyme. Halophytes are expected to be more capable to cope
with heavy metal stress than common plants (Wu et al. 2017)
due to a more efficient antioxidant system (Perez-Romero et al.
2016). For example, halophyte Salicornia brachiata can upreg-
ulate the activity of CAT and SOD and have lower damage to
lipid membrane from ROS in response to heavy metals such as
Cd, Ni, and arsenic (As) (Sharma et al. 2010;Wang et al. 2014).

There has been a continuing interest in searching for
tolerant native plants to heavy metals. It remains to be
further investigated how these metal ions affect plant
growth at different developmental stages. Recently, the
responses of plants to individual metal were extensively
studied (Pedro et al. 2013; Perez-Romero et al. 2016).
However, in natural soil-plant systems, they often have
to face multiple metal stresses, and the interactive effects
of more elements should be studied (An et al. 2004).
Consequently, the present study aimed to evaluate the
effects of time and duration of heavy metal–polluted
wastewater application on the growth parameters (nodes
on the main stem, number of pairs of side branches, di-
ameter of the branched area, the plant biomass), enzyme
activities, proline, soluble sugars, chlorophyll, and protein
contents of Salicornia europaea in coastal areas of Urmia
Lake. We hypothesized that the native S. europaea ex-
hibits optimum growth and physiological parameters in
urban and industrialized areas with respect to effectively
reduce pollution of irrigation water.
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2 Materials and Methods

2.1 Study Area

The study site is in the Urmia region (37°42′ N, 45° 19′ E),
located in the north west of Iran (Fig. 1). The area is charac-
terized by average annual rainfall of 300–700 mm; average
annual temperature is −5 °C to 10 °C and has cold winters and
hot summers. This study was conducted at coastal areas of
Urmia Lake irrigated with the water contaminated by domes-
tic and industrial effluent.

2.2 Treatments and Experimental Design

The experiment was conducted in a split-plot design with four
replications for each treatment. The main-plot factor of the
experiment includes control (freshwater irrigation) and waste-
water irrigation, and sub-plot factors include the irrigation
with sewage at three stages, i.e., short term (20 days after
transplanting, up to the vegetative growth stage in 14
August 2019), average term (30 days after transplanting, up
to the flowering stage in 24 August 2019), and long term
(40 days after sowing up to the reproductive stage), and two
sampling times, i.e., 2 days and 4 days after irrigation with
sewage. Indeed, wastewater quality parameters change over
time due to floating/settling according to the type of media
(Sirianuntapiboon and Kongchum 2006; Cortes-esquivel et al.
2012). Each plot consisted of 3 rows with 100-m long. Seeds
were sown in 10 July and transplanted in 24 July 2019.
Irrigation was done to maintain soil moisture above 80% field
capacity. The amount of irrigation water was obtained based
on Benami and Ofen (1984).

2.3 Soil and Water Analysis

The soil of the site was clay loam soil (21% sand, 48% silt, and
31% clay) with EC 33.8 dS m−1, pH 8.81, phosphorus
3.7 mg kg−1, and nitrogen 0.01%. Minimum and maximum
values of heavy metals in sewage water during the 2019 are
shown in Table 1. Farmers in these areas who require water
for irrigation often use sewage, and the process is going on for
about 30 years.

2.4 Plant Analysis

The number of pairs of side branches, nodes on the main stem,
stem elongation, diameter of the branched area, and root
length was recorded during the growth period. The
concentrations of chlorophyll and carotenoids were
calculated using the Arnon (1949) method. The total soluble
protein content was determined by the method of Bradford
(1976). To extract protein, 0.2 g of the plant fresh tissue was
crushed by using liquid nitrogen, followed by adding 1 mL of

buffer Tris-HCl (0.05M, pH = 7.5). The obtainedmixture was
centrifuged for 20 min at 16000×g (13,000 rpm) at 4 °C, and
then, the supernatant was utilized for enzyme activity mea-
surements. Further, CAT, POD, and PPO activities were
assayed according to Kar and Mishra (1976). Soluble sugars
were measured according to Dubois et al. (1956). Leaf proline
content was determined based on Bates et al. (1973). Relative
water content (RWC) was calculated based on Tambussi et al.
(2005). Electrical conductivity was estimated by the method
of Jodeh et al. (2015).

2.5 Statistical Analysis

Analysis of variance (ANOVA) and means comparison on
data were performed using the SAS 9.1 statistical package
program. The least significant difference (LSD) method was
used to test the significant differences between means com-
parison of main effects and interactions.

3 Results

3.1 Morphological Traits

Increasing the time exposure to wastewater improves the di-
ameter of the branched area, but did not present a significant
change in response to heavy metals at flowering and repro-
ductive stages (Table 2). The nodes on the main stem and the
number of pairs were lower in the reproductive stage than the
flowering stage. Time had a significant effect on a number of
pairs and the diameter of the branched area.

3.2 Biomass Components

As presented in Table 3, with wastewater irrigation, up to 16%
increase in shoot length is observed, and the longest shoot is
recorded at the reproductive stage. Root length was not sig-
nificantly affected by wastewater irrigation, whereas it signif-
icantly decreased at reproductive stage. The highest plant bio-
mass is found in plants irrigated with sewage at the reproduc-
tive stage (Table 3). Under the long-term duration of waste-
water, aboveground dry biomass of S. europaea reached to
780 mg per plant. At the reproductive growth stage, root bio-
mass of Salicornia reached to the highest weight per plant.

3.3 Photosynthetic Pigments and Total Soluble
Protein

This study shows that the application of wastewater caused a
significant increase in chlorophyll-a, chlorophyll-b, and total
chlorophyll compared with the control but 40 days after sow-
ing (reproductive stage) produced a severe reduction in chlo-
rophyll-a, total chlorophyll, and carotenoid by 49%, 44%, and
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153%, respectively, than the flowering stage (Table 4).
Chlorophyll-a and total chlorophyll increased significantly at
30 days after sowing in plants exposed to wastewater but, at
the reproductive stage, 19 to 37% and 14 to 43% reduction
was noted in chlorophyll-a and total chlorophyll, respectively,
in comparison with the control. The reduction of total chloro-
phyll was less pronounced in chlorophyll-b than in chloro-
phyll-a. Chlorophyll-b was 37% lower than the control for
longer time (40 days after sowing) of wastewater exposure.
A significant increase in leaf total soluble protein was
obtained from wastewater-irrigated Salicornia at the re-
productive stage. The content of soluble protein was the
lowest in untreated control plants after 20 days of sow-
ing (vegetative growth stage).

3.4 Soil Electrical Conductivity

In the present study, although there was no significant effect of
time on electrical conductivity (EC), a significant interaction be-
tween time and irrigation is observed when wastewater treatment
is applied (Table 4). During a growth period of plants, the level of
lipid peroxides improves with an increase in the time of exposure
to wastewater (Table 4). Long-term expose to wastewater led to
11% increase in EC level compared with the control.

3.5 Proline and Soluble Sugars

The results presented in Fig. 2 show that proline and soluble
sugars were significantly increased in leaves of Salicornia
plants exposed to wastewater, and they were higher in the
reproductive stage within 4 days after irrigation with sewage.
Under wastewater irrigation, proline content at the flowering
and reproductive stage increases by 33% and 59%, respective-
ly, compared with the control, but at vegetative stage, proline
content increases to 5% compared with the control (Fig. 2A).

In control plants, the level of soluble sugars is markedly
decreased, in 4 days after irrigation (Fig. 2B). The accumula-
tion of soluble sugars in the leaves was observed as a
response to the long-term effect of wastewater, and
maximum level was reached at 4 days after irrigation
which was 63% higher than at control.

3.6 The Activity of Catalase, Peroxidase, and
Polyphenol Oxidase Enzymes

Activities of antioxidant enzymes are determined over an
experimental period in control and wastewater-treated
leaves (Figs. 3 and 4). In control plants, the tendency of
PPO activity ascended at flowering stage and then declined

Fig. 1 Location of the sampling sites
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in 4 days after irrigation of reproductive stage, while POD
activity fluctuated in different time and duration, and CAT
activity was dropped slightly. In plants growing in the
wastewater with excessive heavy metals, the lowest level
of CAT, POD, and PPO was observed for the first time in
the vegetative stage, but they were still higher than in con-
trols. The data showed that CAT activity increased be-
tween 5.5 and 155% in plants treated with wastewaters.
The highest CAT activity was observed at the reproductive
stage. At this time, CAT activity is approximately 154%
higher than in the control plants (Fig. 3A).

Plants exposed to short- and long-term duration did not
show significant changes in POD, indicating that the high
metal concentrations did not affect the activity of POD at

any time (Fig. 3B). At 4 days after irrigation of the flowering
and reproductive stages, a 15–56% higher than control of
POD was obtained. The maximum increase in POD activity
was 32.4% during 4 days after irrigation at the reproductive
stage, 16.7% during 4 days after irrigation, and 16.2% during
2 days after irrigation at the flowering stage. The activity of
PPO was increased with the wastewater irrigation, but signif-
icant changes were not observed at the vegetative stages
(Fig. 4A). The enzymatic activity observed at 4 days of irri-
gation was higher than 2 days of irrigation.

3.7 Relative Water Content

Irrigation with wastewater results in considerable negative
water potential within 4 days after irrigation of flowering stage
when compared with the untreated control (Fig. 4B). In con-
trol plants, RWC was high and then remained unaltered when
the plants were irrigated with wastewater for the first time.
Long-term exposure to wastewater caused only minor alter-
ations in RWC. RWC in Salicornia was not duration- and
time-dependent in wastewater irrigated plants, and there is a
gradual decrease in RWC in plant exposed to wastewater at
the vegetative and flowering stage. At the 4 days after irriga-
tion of the reproductive stage, RWC considerably decreased
by 5.4% in comparison with the control.

Table 2 Growth parameters of Salicornia europaea as affected by time and duration of wastewater application

Irrigation Duration Time (days) Nodes on the main stem Number of pairs
of side branches

Diameter of the
branched area (cm)

Control Short term 2 1.75 ± 0.50b 1.00 ± 0.00d 7.87 ± 2.57b

4 1.75 ± 0.50b 1.50 ± 0.57d 9.20 ± 2.54b

Average term 2 4.25 ± 0.95a 3.00 ± 1.41bc 19.42 ± 6.31a

4 5.25 ± 0.95a 4.50 ± 1.29a 21.17 ± 6.51a

Long term 2 4.75 ± 1.50a 3.50 ± 1.29ab 20.62 ± 3.08a

4 5.50 ± 0.57a 4.00 ± 1.15ab 21.30 ± 3.58a

Wastewater Short term 2 2.00 ± 0.00b 1.00 ± 0.00d 8.90 ± 2.47b

4 2.50 ± 0.57b 1.75 ± 0.50 cd 10.10 ± 2.32b

Average term 2 4.50 ± 1.29a 4.25 ± 0.95ab 20.50 ± 6.26a

4 4.75 ± 1.25a 4.25 ± 1.50ab 23.10 ± 5.77a

Long term 2 4.75 ± 1.50a 3.75 ± 1.50ab 20.70 ± 3.69a

4 4.25 ± 2.06a 3.75 ± 1.50ab 22.60 ± 5.98a

ANOVA Irrigation (I) ns ns *

Duration (D) ** ** **

Time (T) ns * **

I × D ns ns ns

I × T ns ns ns

D × T ns ns ns

D × T × I ns ns ns

ns, *, ** show non-significant and significant differences at 0.05, 0.01 probability level, respectively. Short term, 20 days after sowing (at vegetative stage);
average, 30 days after sowing (at flowering stage); long term, 40 days after sowing (at reproductive stage)

Table 1 Mean, minimum, and maximum values and standard deviation
of heavy metal concentrations in sewage (n = 4)

Metals Mean Minimum Maximum St. dev.

Zn (mg L−1) 2.45 0.158 3.8 2

Fe (mg L−1) 3.60 0.61 5.4 3

Cu (mg L−1) 0.44 0.058 0.90 0.2

Cd (mg L−1) 0.096 0.028 0.17 0.05

Pb (mg L−1) 2.54 0.174 3.82 1

Ni (mg L−1) 2.77 0.074 4.62 2
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4 Discussions

Salicornia plants exposed to time and different duration of
heavy metals exhibited morphological, physiological, and
biochemical changes. The metal iron (Fe), Cu, Ni, and Zn
are essential for plants but are also toxic when found in high
concentrations (Kranner and Colville 2011; Yang et al. 2012).
The presence of unbalance nutrients can disturb the uptake of
necessary elements and consequently plant growth (Mallick
2004).Wastewater-treated plants show a healthy morphology,
indicating the non-toxic concentrations of the metals. Based
on observed results in response to higher concentrations of
Cu-, Cd-, Pb-, and Ni-treated plant, the higher diameter of
the branched area, shoot length, and shoot weight may be
due to the sufficiency of Fe and Zn in the wastewater. In
general, the root-shoot transfer of Zn and Cu was higher than
that of Cd, Pb, and Ni (Eissa and Negim 2018). The gradual
supply of plants with Zn, Fe, and other heavy metals occurred
when plants exposed to the average term duration of
wastewater at the flowering stage. Reduction in dry matter
yield of Salicornia plants at a higher concentration of heavy
metals was observed by Sharma et al. (2011) due to Ni, Ozawa
et al. (2009) due to Cd, and by Sharma et al. (2010) due to Cd
and Ni. Hatata and Abdel-aal (2008) stated that a high ratio of

dry mass to fresh mass is a criterion for stress response, which
is indicative of the whole-plant level. Some researchers have
shown that biomass estimations have been confined to above-
ground biomass and the root system biomass can comprise
30–80% of the total plant biomass (Eltaher et al. 2019). It is
interesting to note that higher shoot to root growth ratio oc-
curred in plants that had been treated with Pb (Nicholls and
Mal 2003). With the development of plant roots during the
growing season, Pb and Cd were uptake much more by
Salicornia plants. These above adaptions and improvements
make the soil suitable for the growth of healthy plants (Farid
et al. 2013). The inhibitory effect of heavy metals on root
length seems mainly due to the reduced water uptake (Farid
et al. 2013) and reduction in mitotic cells in the meristematic
zone of the root (Kabir et al. 2010). Also, it may be correlated
with the metal-induced inhibition of the photosynthetic pro-
cess (Hatata and Abdel-aal 2008) and the respiration in the
shoot system and protein synthesis in the root (Drazkiewicz
and Baszyński 2005). Due to the presence of large quantities
of Ni and Cd in the wastewater (Table 1), only minor amounts
of Fe and Zn are translocated to the shoots, and the excess of
Fe in roots of plants hinders the development of cells and
causes higher plant biomass (Adamski et al. 2012). Nicholls
and Mal (2003) also observed that the cells of roots are

Table 3 Root and shoot length and plant biomass (dry weight) of Salicornia europaea as affected by time and duration of wastewater application

Irrigation Duration Time (days) Shoot length (cm) Root length
(cm)

Shoot weight
(mg)

Root weight
(mg)

Plant biomass
(mg)

Control Short term 2 7.6 ± 1.06f 3.80 ± 1.06e 270 ± 60e 14 ± 3.0d 284 ± 60.7e

4 9.0 ± 1.29ef 4.70 ± 1.06de 380 ± 85de 53 ± 75ab 433 ± 154.1d

Average term 2 23.9 ± 3.24d 12.30 ± 1.16c 590 ± 69c 41 ± 6.6a-d 631 ± 99.7c

4 25.1 ± 3.70 cd 13.10 ± 1.52bc 600 ± 95bc 47 ± 6.9abc 647 ± 93.77bc

Long term 2 24.3 ± 2.93d 14.40 ± 1.21ab 750 ± 54a 54 ± 6.3ab 804 ± 40.2a

4 25.4 ± 4.04bcd 14.72 ± 0.68a 710 ± 120ab 52 ± 10.0ab 762 ± 123.46ab

Wastewater Short term 2 10.4 ± 2.68ef 4.42 ± 0.75de 350 ± 69de 17 ± 0.81 cd 367 ± 68.9de

4 11.7 ± 2.34e 5.30 ± 1.29d 460 ± 47d 23 ± 3.1bcd 483 ± 47.5d

Average term 2 27.9 ± 2.68abc 12.62 ± 1.83c 670 ± 86abc 46 ± 7.5abc 716 ± 93.2abc

4 28.5 ± 2.89ab 13.47 ± 2.05abc 690 ± 95bc 54 ± 2.1ab 744 ± 132abc

Long term 2 27.5 ± 2.67bc 13.37 ± 1.89abc 740 ± 41a 57 ± 9.8a 797 ± 51.91ab

4 29.5 ± 2.85a 13.47 ± 2.03abc 780 ± 40a 56 ± 10.0a 836 ± 29.72a

Irrigation (I) ** ns ** ns **

Duration (D) ** ** ** ** **

ANOVA Time (T) ** ** * ns *

I × D ns ** * ns *

I × T ns ns ns ns ns

D × T ns ns * ns *

D × T × I ns ns ns ns ns

ns and *, ** show non-significant and significant differences at 0.05, 0.01 probability level, respectively

Short term, 20 days after sowing (at vegetative stage); average, 30 days after sowing (at flowering stage); long term, 40 days after sowing (at reproductive
stage)
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affected more severely by the exposure to Cu than are other
parts of the plant. Thus, if Cu damaged the roots of the treated
plants more severely, the roots may not have been able to
support the growth of the shoot.

Heavy metals observed in irrigation treatments (Table 1),
as micronutrients essential for the plant growth and develop-
ment, could lead to inhibition of photosynthesis when they
were greater in the reproductive stage. It seems that during
the flowering stage in Salicornia, the optimum of the metal
uptake occurs, causing increased chlorophyll content. During
the reproductive stage, where the heavy metals were the stron-
gest inducer, a content of chlorophyll-a, chlorophyll-b, and
total chlorophyll was decreased in the leaves of plants.
However, the negative effect of heavy metals on chloro-
phyll-a fluorescence, electron transport, and light-dependent
reactions of photosynthesis depend on metal concentrations
and exposure time (Hajihashemi et al. 2020). Moreover, the
long-term exposure of heavy metals inhibited the activity of
PSI (Sharma et al. 2020). In this study, a high concentration of
heavy metals at the end of growing stage inhibits uptake and
transportation of other metal elements such as Zn and Fe by
antagonistic effects, and therefore, the leaves lose the capacity
of synthesis of pigments (Zengin and Kirbag 2007; Hatata and
Abdel-aal 2008). The higher concentrations of Ni caused

serious damage to chloroplasts, carotenoids, and chlorophyll
and caused CO2 deficiency due to reduced enzyme activity in
the Calvin cycle, as well as changes in the thylakoid mem-
brane that affected the photosynthesis process (Pandey and
Sharma 2002). Many studies have shown the influences of a
positive effect of Zn and Cd metals on chlorophyll content,
but high concentration of Zn in wastewater could be one of the
main reasons for the decline in chlorophyll (Hajihashemi et al.
2020). Farid et al. (2013) stated that in Cd-treated wheat
plants, increased leaf photosynthesis was observed due to
the smaller leaf area. However, the results of this study could
be interpreted as the effect of strong oxidation due to the
metabolic perturbations and accelerated senescence (Zhou
and Qiu, 2018), presence of Cd on the photochemical appara-
tus (Hatata and Abdel-aal 2008; Singh et al. 2012), and re-
placed Zn in chlorophylls (Mukhopadhyay et al. 2013) and
probably due to the effect of interference of Cu with Fe uptake
(Zengin and Kirbag 2007) and interaction of Pb to –SH group
of enzymes of chlorophyll biosynthesis (Shu et al. 2012).
Zengin and Kirbag (2007) reported that 0.4 mg L−1 of Cu
resulted in a significant decrease of chlorophyll, and the min-
imum value of chlorophyll was observed when plants were
exposed to 0.6 mg L−1 copper. The severe effects of Cu on the
chloroplast in Salicornia were also reported from other plants
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(Andosch et al. 2012; Bazihizina et al. 2015). Moreover, nu-
merous studies have reported a direct effect of Cu on the
photosynthetic electron transport chain (Li et al. 2015), which
may be associated with substantial stress response. Bibi and
Hussain (2005) reported that Pb despite of low concentration
proved more toxic in effecting photosynthetic pigments com-
pared with Cu- and Cd-treated plants.

Visible symptoms of excessive heavy metals were accom-
panied by an increased total soluble protein, as an important
indicator of the biochemical status of plants (Kandziora-Ciupa
et al. 2013). This observation does not exclude the possibility
of increased degradation of protein under excess heavy
metals. Long-term exposure to wastewater irrigation showed
significant increasing either enzyme activity or protein as well
as inhibiting the production of H2O2 (El-Amier et al. 2019) to
acclimate heavy metal toxicity through metal binding
(Kandziora-Ciupa et al. 2013). In this respect, increasing the
soluble protein contents was correlated with Zn concentration
inMelia azedarach (Doganlar and Atmaca 2011), Pb concen-
trations in wheat and lentil (Mesmar and Jaber 1991), and Cd
concentration in Oryza sativa (Singh et al. 2006).

The treatment with heavy metals can lead to the interruption
of activities of several essential enzymes, various aspects of the

photosynthetic processes, and water content of cells (Kabir et al.
2010; Verma and Dubey 2003). Heavy metal at high concen-
trations is a major factor that enhances membrane damage and
cell structures (Ekmekçi et al. 2008), which in turn could ex-
plain a higher value of EC (Table 1). Deleterious effects of Cu
(Nicholls and Mal 2003; Demirevska-kepova et al. 2004), Cd
(Hatata and Abdel-aal 2008), and Pb (Kabir et al. 2010) on
membrane permeability have been reported. Hatata and
Abdel-aal (2008) reported that Cd treatment caused a declined
in the efflux of sodium (Na), potassium (K), calcium (Ca), mag-
nesium (Mg), and Fe from roots and leaves of plants. In this
respect, Nicholls and Mal (2003) stated that Cu could damage
the permeability of plasma membranes, which can lead to the
leakage of potassium ions and other substances dissolved in the
cell. These damaging membrane effects could explain, in part,
the reduction of water content in sewage-treated plants affecting
cellular turgor; it seems that such damages could be mitigated
and repaired by antioxidative enzymes like CAT, POD, and
PPO and after that increasing cell enlargement and plant growth.
To impose environmental stresses, it is a general strategy to
overcome oxidative stress (Verma and Dubey 2003).

The accumulation of proline and total soluble sugars is a
well-known biochemical response in plant to HMs-induced
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stress conditions (Moghaieb et al. 2004; Li et al. 2013). The
Cd may bind to the carbohydrates of cell walls and the thiol
groups of enzymes that exchanges metal ion concentrations
such asMg, Zn, and Fe (Iannelli et al. 2002). Proline increases
the tolerance of plants to heavymetals throughmetal chelation
in the cytoplasm (Zengin and Kirbag 2007), scavenging hy-
droxyl radicals (Xing et al. 2010), inhibit lipid peroxidation
(Li et al. 2013), maintaining the water balance (Mallick 2004),
and the protection and stabilization of protein synthesis (El-
Amier et al. 2019). According to Tripathi and Gaur (2004),
proline reduced the uptake of Cu by plant cells, and probably
stabilized the plasma membrane, thus mitigating the toxic ef-
fects of Cu to the plant. Induction or activation of proline
biosynthesis enzymes along with decreasing proline oxidation
under stress conditionsmay be caused by decreased utilization
of proline in protein synthesis and enhanced protein turnover
(Li et al. 2013; Xing et al. 2010). Protein degradation contrib-
utes to Ni- or Cu-induced proline accumulation (Lin and Kao
2007). Mehta and Gaur (1999) reported that the hierarchy of
metal toxicity to Chlorella vulgaris was Cu > Cr > Ni > Zn.
They suggested that the intracellular concentration of
proline followed by a slow and steady increase with

increasing concentration of Zn, Cu andchromium (Cr).
The increase in proline in plants may be due to a de-
crease in the electron transport system activity leading
to the accumulation of NADH and H+ (Sharma et al.
2010). Proline accumulation is related to the activation
of the gene encoding the OAT in response to stress
(ornithine d-aminotransferase) (Thompson et al. 1997),
which is catalyzed by the PDH (proline dehydrogenase)
in plant cells (Kavi Kishor et al. 2005), and it may be
caused by diminished consumption of proline in protein
synthesis and higher protein turnover (Delauney and
Verma 1993). A previous investigation suggests that
the OAT activity, rather than the PDH activity, is asso-
ciated with the proline accumulation in Ni- (Lin and
Kao 2007), Cu- (Ku et al. 2011), and Zn-treated (Li
et al. 2013) plants.

Exposure to HMs has been shown to induce the dis-
placement of nutritional elements (Rocha et al. 2014) and
oxidative stress in plant cells due to the enhancement in
ROS production, such as singlet oxygen (1O2), hydroxyl
radical (HO•), hydrogen peroxide (H2O2), and superoxide
radical (O−

2 ). Increased enzyme activity, as observed in

de
cde cde cde

ab ab

de

bc

e
cd

ab a

0

20

40

60

80

100

120

140

160

Fast Average Long-term Fast Average Long-term

Control Wastewater

PP
O

 a
ct

iv
ity

(µ
g 

pr
ot

ei
n 

m
in

- 1
)

2 Days 4 Days

bc bc b bc bc bcbc
a

bc c bc c

0

20

40

60

80

100

120

Fast Average Long-term Fast Average Long-term

Control Wastewater

R
W

C
(%

)
2 Days 4 Days

a

b

Fig. 4 Polyphenol oxidase
enzymes (PPO, A) and RWC (B)
of Salicornia europaea as
affected by time and duration of
wastewater application. Fast,
20 days after sowing (at
vegetative stage); average,
30 days after sowing (at flowering
stage); long term, 40 days after
sowing (at reproductive stage).
Each bar indicates mean (n = 4) ±
standard error. The different
alphabets on bars indicate
significant difference (P ≤ 0.05)
using LSD

1583J Soil Sci Plant Nutr  (2020) 20:1574–1587



our studies, was either due to the protective measure
adopted by Salicornia plants against oxidative damage
and/or could be an increased production of ROS (Yan
et al. 2008). The change in the activity of antioxidative
enzymes is depended on the plant species, age, and dura-
tion of the stress (Demirevska-kepova et al. 2004). At the
reproductive stage, the activity of the CAT that was ap-
proximately four-fold increases than the controls
(Fig. 3A). It can be explained by an increase in its sub-
strate to maintain the level of H2O2 as an adaptive mech-
anism of the plants (Shu et al. 2012) and was related to
increased synthesis of glucocorticoid receptor (GR pro-
tein) after Cd exposure (Hatata and Abdel-aal 2008).
The increase in CAT activity due to Fe (Xing et al.
2010), Pb (Shu et al. 2012), Cd (Singh et al. 2012), Ni,
and Cd (Pandey and Sharma 2002) stresses has been ob-
served in other plant species. Higher activities of enzymes
in Zn and Fe supplemented wastewater-irrigated plants
indicate the specific role of Zn-Fe in promoting ROS de-
toxification through CAT and PPO enzymes. Cadmium
toxicity is moderated trough Zn antioxidant properties
(Aravind and Prasad 2005). Induction in peroxidase activ-
ity, as stress enzymes (Verma and Dubey 2003), has been
documented under toxic levels of Pb, Cu, Cd, Zn, and Fe
(John et al. 2009; Jucoski et al. 2013; Shu et al. 2012).
Enhancement in the enzyme activity of CAT and PPO
suggests that these enzymes serve as an essential defense
tool to resist heavy metal–induced oxidative damage in
Salicornia plants. Therefore, this also indicates that
Salicornia may be more efficient in avoiding damage
from heavy metals (Shu et al. 2012). So, under metal
toxicity, the level of peroxidase activity has been used
as the potential biomarker to evaluate the intensity of
stress (Verma and Dubey 2003). The effects on CAT
and PPO were similar. CAT eliminates H2O2 by breaking
it down directly to form water and oxygen, however, less
efficient than POD in H2O2 scavenging because of its low
substrate affinity. Therefore, as long as the stress is not
too intense for the plant’s defense capacity, the main re-
sponse to heavy metals is an increase in POD activity
(Zhang et al. 2007). On the contrary, the non-significant
increase in POD activity in this study might be due to the
increasing rate of ROS scavenging by other antioxidative
enzymes (CAT, PPO) and the increased H2O2 due to the
inactivation of POD. The binding of Cd metal with thiol
groups could inactivate these enzymes (Hatata and Abdel-
aal 2008). Delay in the elimination of H2O2 and toxic
peroxides is mediated by POD and in turn an enhance-
ment in the free radical-mediated lipid peroxidation under
Pb toxicity (Verma and Dubey 2003). Enhancement of
POD activity under Ni stress was explained by its role
in building up a physical barrier against toxic metals

entering the cell (Hegedüs et al. 2001) as well as in scav-
enging H2O2 (Yan et al. 2008). Therefore, PODs serve as
a parameter of metabolism activity against metal toxicity.

This study suggested that heavy metals could disturb the
plant-water relationships in Salicornia europaea at flowering
stage. When proline and soluble sugar contents in the plant
leaf reached their highest level, the water content of leaves
decreased by 5.12% compared with the control. According
to Pedro et al. (2013), Cd decreases the turgor potential and
cell wall elasticity, which might result in a smaller of leaf cells
with smaller intercellular spaces (Ghnaya et al. 2005). The
reduction of xylem vessel area can lead to the reduction of
water flow to the leaves (Hajihashemi et al. 2020). The de-
crease of weight observed at reproductive stage may support
the depressive action of Cd on cellular turgor.

5 Conclusions

Based on these results, the tolerance of Salicornia
europaea to heavy metal stress relies on physio-chemical
mechanisms. Increasing heavy metal exposure at the repro-
ductive stage significantly increases the development of
plant biomass of plants, which experience destruction of
photosynthetic apparatus. Additionally, the accumulation
of total soluble protein, proline, and soluble sugar was also
observed at the reproductive stage. The increased activities
of antioxidant enzymes and proline may be attributed to
the adaptive defense system of S. europaea against the
toxic effect imposed by cadmium, copper, nickel, and lead.
However, the protection of Salicornia against reactive ox-
ygen species was insufficient, especially at the reproduc-
tive stage. The level of electrical conductivity and relative
water content explained the greater tolerance of plants to
heavy metal stress at the flowering than the reproductive
stage. In S. europaea, catalase activity was much higher
indicating that it is the most important reactive oxygen
species (ROS)-scavenging enzyme. It can be concluded
that proper management of wastewater irrigation and qual-
ity parameters is required to ensure the successful and
long-term use of wastewater for irrigation. These plants
grown in sewage-irrigated soils would be an environmen-
tally friendly solution for disposal problems and effective-
ly reduce food chain contamination and risks to human
health.

Since roots are the first organ for the hyperaccumulation of
different heavy metal ions, therefore, the changes of enzyme
activities and metal accumulation in root system need to be
determined, and intermittent use of clean water between
wastewater irrigation will not only reduce the heavy metal
load but could also enhance the soil fertility.
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