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Abstract
Although silicon (Si) is ubiquitous in the earth’s crust, its essentiality for growth of higher plants is still under discussion. By
recognising the overwhelming potential of Si in alleviating a wide range of biotic and abiotic stresses, the Association of
American Plant Food Control Officials and the International Plant Nutrition Institute, Georgia, USA, have designated Si as a
plant ‘beneficial substance’ in 2014 and 2015, respectively. Sugarcane is a Si-accumulating crop which strongly responds to Si
fertilisation especially in Si-deficient soil. Due to intensive weathering prevailing in humid and sub-humid regions, most of the
soil-available Si, taken up by plants in the form of monosilicic acid (H4SiO4), is lost through leaching. If the concentration of
monosilicic acid is being maintained at a fixed level by soil reserves, the highly weathered soils of humid and sub-humid regions
tend to become depleted in Si if continuously cultivated with sugarcane. Hence, leaching of Si from the soil coupled with plant
uptake is an important factor in determining Si concentrations in soil. Consequently, it can be said that the intensive cultivation of
sugarcane depletes the existing low available Si content in soil, resulting in necessity for Si fertilisation. Moreover, the uptake of
Si by sugarcane (500–700 kg Si ha−1) sometimes surpasses those of the macronutrients (especially N, P and K). At the same time,
due to change in global climate and monoculture system followed in sugarcane, it is affected by a wide range of biotic and abiotic
stresses in field condition which calls for external Si supplementation to achieve sustainable growth and yield of sugarcane. The
beneficial effects of Si in sugarcane include improvement of photosynthesis and lodging, enhancement of growth and develop-
ment, regulation of reactive oxygen species, protection from soil salinity, reduction in metal toxicity, alleviation of freeze
damage, mitigation of water stress and suppression of diseases and pests. In this review, we made an effort to compile the
existing literature describing the potential of Si in promoting defence against various biotic and abiotic stresses in sugarcane and
suggested possible future research perspectives.
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Highlights
• Continuous sugarcane cultivation depletes plant-available Si content in
soil.
• Sugarcane production is affected by various biotic and abiotic stresses
under field condition.
• Silicon fertilisation has overwhelming importance in sugarcane cultiva-
tion.
•Application of Si in sugarcane production could be a productive strategy
to cope up with various environmental stresses.
• Evaluation of different sources of Si needs to be explored with higher
profitability and nutrient use efficiency in sugarcane.
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1 Introduction

Out of the 92 known elements in the periodic table, only
seventeen elements are recognised as essential for the growth
and development of higher plants (Arnon and Stout 1939).
Among these, there are three skeleton elements, six macronu-
trients and eight micronutrients (Table 1). However, there are
some elements which stimulate plant growth but are essential
only for specific plant species or under specific conditions or
do not meet the criteria of essentiality of nutrients advocated
by Arnon and Stout (1939) to be considered as beneficial
elements (Kaur et al. 2016; Marschner 1995). Some of the
elements found to be beneficial (Table 1) are as follows: sili-
con (Si), sodium (Na), aluminium (Al), cobalt (Co), selenium
(Se) and vanadium (V) (Kaur et al. 2016; Marschner 1995).
Nicholas (1961) and Mengel and Kirkby (1982) called them
functional nutrients. The term functional nutrient introduced

byNicholas (1961) is defined as an element that plays a role in
plant metabolism, whether or not that role is specific or indis-
pensable. According toMarschner (2012), beneficial elements
may play an overwhelming role in improving biomass and
yield, but may not be needed for the survival of higher plants.
Thus, essential elements represent the universality of the nu-
tritional requirement in higher plants, while beneficial ele-
ments reflect the diversity of nutritional requirement
(Marschner 1995). It has been documented in the existing
literature that sodium (Na), rubidium (Rb) and potassium
(K), selenium (Se) and sulphur (S), cobalt (Co) and nickel
(Ni), and silicon (Si) and carbon (C) often replace each other
in certain non-specific metabolic processes. Hence, the ele-
ments which have the capacity to replace the essential element
may be more efficient compared to other elements (Kaur et al.
2016). Moreover, only Si has known to form stable polymers
similar to carbon (Iler 1979). In a recent review paper, Katz

Table 1 Information on discoveries of essential and beneficial elements in relation to plant growth

Elements Discoverer Year of discovery Plant usable form Average concentration
in plant tissue

Essential Discoverer of essentiality

Skeletal

Carbon (C) Priestly et al. 1800 CO2 45%

Hydrogen (H) Since time immemorial – H2O 6%

Oxygen (O) Since time immemorial – H2O, O2 45%

Macro

Nitrogen (N) Theodore de Saussure 1804 NO3
−, NH4

+ 1.5%

Phosphorus (P) Sprengel, C. 1839 H2PO4
−, HPO4

2− 0.2%

Potassium (K) Sprengel, C. 1839 K+ 1.0%

Calcium (Ca) Sprengel, C. 1839 Ca2+ 0.5%

Magnesium (Mg) Sprengel, C. 1839 Mg2+ 0.2%

Sulphur (S) Sachs and Knop 1860 SO4
2− 0.1%

Micro

Iron (Fe) Gris, E. 1843 Fe2+ 100 mg kg−1

Manganese (Mn) McHargue, J. S. 1922 Mn2+ 20 mg kg−1

Zinc (Zn) Sommer, A. L. and Lipman, C. P. 1926 Zn2+ 20 mg kg−1

Cupper (Cu) Sommer, A. L., Lipman, C. P. and McKinney, G. 1931 Cu2+ 6 mg kg−1

Boron (B) Warington, K. 1923 H3BO3, H2BO3
−,

HBO3
2−, BO3

3−
20 mg kg−1

Molybdenum (Mo) Arnon, D. I. and Stout, P. R. 1939 MoO4
2− 0.1 mg kg−1

Chlorine (Cl) Broyer, T. C., Carlton, A. B., Johnson,
C. M. and Stout, P. R.

1954 Cl− 100 mg kg−1

Nickel (Ni) Brown, P. H., Welch, R. M. and Cary, E. E. 1987 Ni2+ 0.1 mg kg−1

Beneficial Discoverer (only)

Silicon (Si) Berzelius, J. J. 1824 Si(OH)4 0.1–10.0%

Sodium (Na) Davy, H. 1807 Na+ 0.001–8.0%

Aluminium (Al) Oersted, H. 1825 Al3+ 0.1–500%

Cobalt (Co) Brandt, G. 1739 Co2+ 0.05–10.0%

Selenium (Se) Berzelius, J. J. 1817 Se2−, Se4+, Se6+ –

Vanadium (V) Del Rio, A. M. 1801 V2O5 –

Source: modified after Epstein (1994) and Tisdale et al. (1997)
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(2019) provided enormous evidence to consider plant Si con-
tent to be a plant functional trait based on its effect on growth
and survival of crops under both biotic and abiotic stress
conditions.

Silicon (Si) is the second most ubiquitous element in the
earth’s surface (Table 2) after oxygen (Epstein 1994). The
concentration of Si in the form of silicic acid (H4SiO4) in soil
solution commonly varies from 0.1 to 0.6 mM (Epstein 1994)
which is almost equal to potassium, calcium and sulphate
(Epstein 1972) and approximately twice the concentrations
of phosphorus in soil solutions (Epstein 1994, 1999).

In spite of the abundance of Si in soils and plants, it is
extremely difficult to corroborate its essentiality for higher
plants (Meyer and Keeping 2001) which is mainly due to
the incompetence in exclusion of Si from highly purified wa-
ter (Werner and Roth 1983). Consequently, Epstein (1999)
deliberated Si a ‘quasi-essential’ element for many plant spe-
cies for which its absolute essentiality has not been
recognised. Based on the modified definition of essentiality
of nutrients (Epstein and Bloom 2005), Si can be certainly
considered as an essential element for higher plants. Based
on this modified definition, an element is essential if it fulfils
either one or both of the two following criteria: (1) the element
is part of a molecule that is an intrinsic component of the
structure or metabolism of the plant, and (2) the plant can be
so severely deficient in the element that it exhibits abnormal-
ities in growth, development or reproduction, i.e. ‘perfor-
mance’, compared to plants with lower deficiency.
Consequently, by recognising the tremendous importance of
Si in providing resistance to various biotic and abiotic stresses
(Guntzer et al. 2012a; Liang et al. 2015; Meena et al. 2014;
Prakash et al. 2018), the Association of American Plant Food
Control Officials (AAPFCO) and the International Plant
Nutrition Institute (IPNI) have designated Si as ‘beneficial
substance’ in 2014 and 2015, respectively (AAPFCO 2014;
IPNI 2015).

Savant et al. (1999) reported that crops belonging to the
Poaceae family such as rice (Oryza sativa L.) and sugarcane
(Saccharum officinarum L.) are considered as Si accumulators
based on shoot Si (> 1%) content. Ma and Yamaji (2006)
revealed that sugarcane is a typical Si-accumulating
graminaceous species. Nearly two decades back, a critical
review by Savant et al. (1999) emphasised the importance of

Si nutrition in sugarcane production in an extensive manner.
They cautioned that declining fertility in sugarcane field is
caused by continuous absorption of Si by sugarcane ratoon
without replenishing with Si fertiliser. Although critical limits
for many nutrient elements are available for Indian soils, very
limited information is available with respect to Si content for
Indian rice soils (Narayanaswamy and Prakash 2009, 2010).
However, the quantification of plant-available Si in sugarcane
growing soils of India has not yet been studied in detail with
the exception of Phonde et al. (2014).

Sugarcane is the leading crop for worldwide sugar and
bioenergy production (Camargo et al. 2017). Apart from eco-
nomic and social value, sugarcane can be used as a renewable
and a clean energy source (Camargo et al. 2013). Sugarcane
positively responds to Si fertilisation and capable of removing
substantial quantum of Si from the soil under specific conditions
(Meyer and Keeping 2000). It is the second most Si-responsive
crop after rice (Liang et al. 2015). Ross et al. (1974) observed
that after removing around 408 kg ha−1 of total Si from soil,
sugarcane produced a yield of 74 t ha−1. Additionally, crop
uptake of Si by sugarcane surpasses the N, P and K and usually
removes 500 to 700 kg Si ha−1 (Anderson 1991) and 200 to
500 kg Si ha−1 (Camargo et al. 2010). As a result, Si deficiency
in soils could be a yield-declining factor in sugarcane, resulting
in symptoms such as twisted leaves and leaf freckling (Wang
et al. 2001). Hence, it can be correctly assumed that depletion of
Si from soil could be overwhelming in intensively cultivated
sugarcane growing areas coupled with tropical climatic condi-
tion (Savant et al. 1999). Studies have also confirmed regular Si
deficiencies noticed in the dryland areas compared to irrigated
areas which emphasise the necessity of Si application in dryland
regions (Van der Laan and Miles 2010).

The first discovery that Si nutrition may benefit sugarcane
growth can be dated back to 1947 by D’Hotman De Villiers
(Meyer and Keeping 2001). Since then, several field investi-
gations have demonstrated the increase in yield of sugarcane
with Si fertilisation in Hawaii (Ayres 1966; Clements 1965a;
Fox et al. 1967), Mauritius (Ross et al. 1974), Puerto Rico
(Samuels 1969), Florida (Gascho and Andries 1974), South
Africa (Keeping et al. 2017; Meyer and Keeping 2001), Brazil
(Camargo et al. 2010, 2014; Crusciol et al. 2014; Korndorfer
and Lepsch 2001), Australia (Berthelsen et al. 2001a; Haysom
and Chapman 1975; Kingston et al. 2005) and the USA
(Anderson et al. 1991; Elawad et al. 1982; Gascho 1976,
1978; Gascho and Andries 1974). Similar results were obtain-
ed in Asia including Malaysia (Pan et al. 1979), Pakistan
(Ashraf et al. 2009), China (Bokhtiar et al. 2012a; Huang
et al. 2011; Wang et al. 2001), Indonesia (Djajadi et al.
2016) and India (Jain et al. 2018; Singh et al. 2020).
Moreover, Si has the potential to improve photosynthetic ca-
pacity (Epstein 2009) and recognised as an important enzyme
regulator in sugar synthesis, storage and retention in sugar-
cane (Meyer and Keeping 2000).

Table 2 Elemental composition of the earth’s crust

Element Weight (%) Volume (%)

Oxygen (O) 47 94

Silicon (Si) 28 1

Aluminium (Al) + iron (Fe) 13 1

Others 12 4

Source: Singer and Munns (1999)
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Sugarcane, which typically follows a mono-cultural sys-
tem, is susceptible to a varied range of abiotic and biotic
stresses (Nikpay 2016). One of the beneficial advantages of
Si to sugarcane is the probable potential of declining damage
caused by insects and pathogens as well as mitigating various
abiotic stresses (Ashraf et al. 2010a, b; Camargo et al. 2010,
2017; Oliveira et al. 2010). Hence, the main aim of this paper
is to compile available literature on the role of Si in mitigating
various biotic and abiotic stresses in sugarcane which has not
yet been reviewed extensively.

2 Status of Sugarcane Production in Top 10
Countries in the World

Sugarcane, one of the world’s major C4 crops, is mainly
grown in the tropical and sub-tropical regions (Shukla et al.
2019), and being a long duration crop, it requires 10 to 15 and
even 18 months to mature. Conab (2011) indicated that the
harvested sugarcane is primarily used for the production of
sugar and ethanol, which generated US$ 11 billion and 1.3
million jobs in 2008. Area wise, Brazil still remains on the top
followed by India, China and Thailand (Table 3). Brazil is the
world’s largest sugarcane producer (Crusciol et al. 2018). The
top 10 sugarcane producing countries in the world in 2017 and
their cane productions as well as their rank among the 107
sugarcane production countries is given in Table 3.

In 2017, Peru, Guatemala, Senegal, Egypt and Malawi are
the top 5 countries in the world which produce sugarcane yield
up to 121.25, 121.01, 118.03, 112.70 and 107.66 t ha−1,

respectively (Table 3), while the sugarcane yield in the top
10 countries ranged from 60.32 to 121.01 t ha−1 which is
much lower than many other countries of the world
(FAOSTAT 2019). Though sugarcane in the above mentioned
5 countries is not grown on a vast area and ranked 19th, 9th,
64th, 17th and 41st, respectively, in sugarcane production in
the world, but few parts of the said countries have suitable soil
and environment conditions for sugarcane production
(FAOSTAT 2019).

3 Uptake and Quantum of Si Removal
Under Different Vegetation Cover

Plants take up Si as monomeric silicic acid from the soil (Ma
and Yamaji 2006). Few plants absorb excessive silica than
their requirement (Epstein and Bloom 2005). Indeed, the con-
centration of Si in plant shows wide variation ranging from 0.1
to 10% (Ma and Takahashi 2002). Generally, aerial parts
mount up more Si than roots (Hodson et al. 2005). The liver-
worts contain the highest concentration of Si in the shoots
(Hodson et al. 2005). In the case of higher plants, except
members of the Cyperaceae, Poaceae and Equisetaceae, most
of the crops contain less than 1% Si in their dry matter
(Hodson et al. 2005; Ma and Takahashi 2002). Generally,
grasses have higher concentration of Si compared to legumes
(Epstein 1994; Ma and Takahashi 2002). Epstein (1999) re-
ported that monocotyledons have higher Si concentrations
compared to dicotyledons.

Table 3 Production, area and
cane yield of top 10 sugarcane
producing countries in the world
in 2017

Country Area (million ha) Rank Production (million tonnes) Rank Yield (t ha−1) Rank

Brazil 10.18 1 758.55 1 74.48 29

India 4.39 2 306.07 2 69.74 35

China 1.38 3 104.79 3 76.10 25

Thailand 1.37 4 102.95 4 75.24 27

Pakistan 1.22 5 73.40 5 60.32 52

Mexico 0.77 6 56.95 6 73.78 31

Australia 0.45 7 36.56 7 80.63 20

Philippines 0.44 8 29.29 11 87.16 13

Indonesia 0.43 9 21.21 12 82.41 17

Colombia 0.40 10 34.64 8 87.16 13

USA 0.37 13 30.15 10 82.41 17

Guatemala 0.28 15 33.76 9 121.01 2

Peru 0.08 30 9.40 19 121.05 1

Senegal 0.004 78 0.46 64 118.03 3

Egypt 0.14 20 15.26 17 112.70 4

Malawi 0.03 52 2.96 41 107.66 5

World total 2597.69 1841.52 5713.44

Source: Food and Agricultural Organization of the United Nations (FAOSTAT 2019) and Factfish (2019), data
retrieved on the 5th March 2019
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Ma and Takahashi (2002) proposed criteria to differentiate
Si-accumulating plants from non-accumulating plants.
According to them, ‘accumulators’ have Si concentrations more
than 1%, ‘excluders’ have Si concentrations less than 0.5% and
plants that do not meet these criteria are called ‘intermediates’.
There are three possible types of Si uptake for higher plants with
respect to water uptake: active, passive and rejective (Takahashi
et al. 1990). Hence, there will be a significant depletion of Si
concentration in the solution for plants with active Si uptake,
whereas for plants with passive uptake, the concentration of Si
remains unchanged. In the same token, an increase in Si con-
centration in the uptake solution occurs over time for plants
having a tendency to reject Si from their tissues (Takahashi
et al. 1990). Moreover, two different types of Si transporter,
influx and efflux, are mainly functioning in the process of Si
transport in higher plants. Ma (2010) revealed that accumulation
of Si in rice is credited to a potential uptake system mediated by
two Si transporters Lsi1 and Lsi2. Removal of either Lsi1 or
Lsi2 results in substantial decline in Si uptake (Ma et al. 2006,
2007). Furthermore, the transporters (Lsi1 and Lsi2) responsible
for uptake of Si by roots have also been identified in barley
(Hordeum vulgare L.), maize (Zea mays L.) (Chiba et al.
2009; Mitani et al. 2009a, b), wheat (Triticum aestivum L.)
(Montpetit et al. 2012), horsetail (Equisetum arvense L.)
(Grégoire et al. 2012) and pumpkin (Cucurbita moschata
Duch.) (Mitani et al. 2011; Mitani-Ueno et al. 2011).
However, no Si transporter has yet been identified in sugarcane.

According to FAOSTAT (2019), out of the 10 most pro-
duced crops in the world in 2017 (Table 4), except maize,
potato and soybean, all (rice, sugarcane, wheat, cassava, sugar
beet, barley and tomato) are categorised as Si accumulators
(Ma and Takahashi 2002) based on their calculated Si content
(Hodson et al. 2005). Hence, it can be easily remarked that
continuous cultivation of these seven crops would lead to
deplete Si concentration in soil. Bazilevich (1993) reported

that about 200–800 kg Si ha−1 year−1 is removed from the soil
through leaching, horizontal migration of Si and absorption by
plants. By the same token, in agricultural ecosystems, ample
amount of Si is expected to be removed through the harvested
crop. Globally, 210–224 million tons of Si is removed from
cultivated land annually (Matichenkov and Bocharnikova
2001). The amount of Si removed by different vegetation is
briefly presented in Table 5. It is evident from the existing
literature that the highest amount of Si is removed by sugar-
cane (300–700 kg Si ha−1) followed by rice (200–600 kg Si
ha−1) and wheat (50–150 kg Si ha−1). The magnitude of Si
taken up by sugarcane is equal to potassium (K) and some-
times exceeds that of nitrogen (N). For example, Samuels
(1969) reported that a 1-year-old sugarcane crop removes ap-
proximately 380 kg Si ha−1 which is 2.7 times higher than N
(140 kg ha−1) absorption. Similarly, Anderson et al. (1991)
revealed that sugarcane absorbs 50 to 500 kg N ha−1, 40 to
80 kg P ha−1, 100 to 300 kg K ha−1 and 500 to 700 kg Si ha−1.
Such a continuous and tremendous removal of Si by sugar-
cane could be considered to promote desilication of soils and
calls for external Si supplementation to achieve sustainable
yield. At the same time, with intensive weathering, usually
noticed in Ultisols and Oxisols, silica to sesquioxide ratio
decreases, and subsequently, soil becomes deficient in Si
(Foy 1992; Juo and Sanchez 1986; McKeagne and Cline
1963). Therefore, desilication caused by the natural
weathering process and plants might be considered as a major
factor for lower productivity of sugarcane in the tropical re-
gion compared to the temperate region.

It can also be inferred from Table 5 that the ability of the
natural ecosystem to take up Si is much slower: 22–
180 kg ha−1 year−1 in grassland, 41–67 kg ha−1 year−1 in
tropical forest, 2.3–44 kg ha−1 year−1 in temperate forest and
110–410 kg ha−1 year−1 in Savannah. Hence, it can be stated
that the absorption of Si by natural ecosystem (20–200 kg Si

Table 4 Shoot Si concentration in
the top 10 most produced crops in
the world during 2017

Crop Scientific name Production (MT)a Shoot Si concentration (% dry weight)b

Sugarcane Saccharum officinarum 1842 1.51

Maize Zea mays 1135 0.83

Wheat Triticum aestivum 772 2.5

Rice Oryza sativa 770 4.2

Potatoes Solanum tuberosum 388 0.4

Soybeans Glycine max 353 0.5

Sugar beet Beta vulgaris 301 1.5

Cassava Manihot esculenta 292 2.3

Tomatoes Lycopersicon esculentum 182 1.8

Barley Hordeum vulgare 147 1.6

Except maize, potato and soybean, the rest of these crops are classified as Si accumulators (> 1.0% Si in dry
matter) (Ma and Takahashi 2002)
a http://faostat.fao.org/site/339/default.aspx, data retrieved on the 5th March 2019
bData compiled by Hodson et al. (2005)
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ha−1) is far lower compared to rice and sugarcane (Table 5).
This is mainly due to the fact that in natural ecosystems, Si is
reverted back to the soil through plant litter. Contrastingly,
most of the Si is exported from the cultivated field during
harvesting rather than being incorporated into the soil.
Numerous studies have validated that a substantial amount
of Si stored in cultivated crops is removed from the field at
the time of harvesting and does not return directly back to the
soil (Barão et al. 2014; Clymans et al. 2011; Desplanques et al.
2006; Guntzer et al. 2012b; Vandevenne et al. 2012). Hence,
accumulated crop residue can play an important role in main-
taining Si balance in rice fields (Klotzbücher et al. 2015).
Likewise, Savant et al. (1999) suggested that recycling of
bagasse or bagasse fly ash to sugarcane field can be supportive
in improving Si concentration in soils.

4 Effect of Adverse Climatic Condition
on Sugarcane

Global climate change is one of the most important hot topics
and currently discussed by modern societies as well as the
research scientists across the world. According to the
Intergovernmental Panel on Climate Change (IPCC), the fore-
cast for the year 2100 is an increase in the global mean tem-
perature of 5 °C (IPCC 2014). Anthropogenic activities such
as fossil fuel combustion, industrial processes and deforesta-
tion lead to an increase in the concentration of atmospheric
CO2 by 30% since mid of the eighteenth century (Houghton
et al. 2001). Consequently, the increased CO2 concentration
has strengthened the greenhouse effect and causes global
warming. Projection indicated that by the end of this century,

Table 5 Variation in silicon
removal under different
vegetation cover

Vegetation cover Si removal (kg ha−1) Reference

Natural ecosystem

Grassland 22–67 Blecker et al. (2006)

170–180 Melzer et al. (2010)

Tropical forest 41–67 Lucas et al. (1993), Alexandre et al. (1997)

Temperate forest 2.3–44 Bartoli (1983), Gérard et al. (2008), Cornelis et al. (2010)

Savannah 110–410 Melzer et al. (2010)

Agricultural crop

Rice 205–611 Prakash (2002), Wickramasinghe and Rowell (2006)

270 Desplanques et al. (2006)

500 Makabe et al. (2009)

230–400 Savant et al. (1997)

234–400 Prakash et al. (2011)

250–620 Klotzbücher et al. (2016)

Sugarcane 379 Samuels (1969)

408 Ross et al. (1974)

300 Meyer and Keeping (2001)

500–700 Anderson et al. (1991)

200–500 Camargo et al. (2010)

300–700 Savant et al. (1999), Meena et al. (2014)

Wheat 50–150 Bazilevich (1993)

94 Guntzer et al. (2012b)

37–113 Vandevenne et al. (2012)

Barley 50–200 Bazilevich (1993)

15–24 Vandevenne et al. (2012)

Maize 50–200 Bazilevich (1993)

112–127 Vandevenne et al. (2012)

Oat 50–200 Bazilevich (1993)

19–27 Vandevenne et al. (2012)

Sorghum 50–200 Bazilevich (1993)

Soybean 50–200 Bazilevich (1993)

Sugar beet potato 50–200 Bazilevich (1993)

50–70 Matichenkov and Calvert (2002)
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the atmospheric CO2 concentration would increase to about
550 ppm and 800 ppm in a low and high emission scenario,
respectively. Therefore, the most conspicuous effect of cli-
mate change is generally witnessed in agriculture due to the
sensitivity of the agricultural productivity. The frequent
changes in climatic conditions lead to changes in variables
viz., sea levels, rainfall pattern, heat waves (extreme high tem-
perature), prolonged droughts, floods, wildfires, tropical cy-
clones, tornadoes and hurricane (Dhillon and von Wuehlisch
2013; Gawander 2007; Silva et al. 2019; Trenberth et al.
2007). Ultimately, these variables have a profound influence
on agricultural production and productivity. Among these var-
iables, elevated temperature which is subsequently reflected in
prolonged drought stress is one of the most important factors
affecting crop productivity across the world (Lobell et al.
2011; Wang et al. 2003). Alteration in climatic condition af-
fects the agricultural crop production in two different ways:
(1) directly by changes in temperature and/or precipitation and
(2) indirectly through the burden of pest infestation and avail-
ability of pollination services (Lobell et al. 2008).

Sugarcane, one of the most efficient photosynthesisers in
the plant kingdom, is typically grown in tropical and sub-
tropical regions with long growing seasons (Chhabra et al.
2016) and provides about 75% of sugar produced in the world
for human consumption (Souza et al. 2008). Recently, sugar-
cane is gaining more importance worldwide due to its supple-
mentary benefits of biofuel (ethanol) production (Hoang et al.
2015; Silva et al. 2019). According to FAO (2015), agricul-
tural productivity in low-latitude tropical regions tends to de-
cline due to climate change. At the same time, being a peren-
nial crop, the productivity of sugarcane is overwhelmingly
influenced by climatic elements (Francisco et al. 2017;
Srivastava and Rai 2012). Although sugarcane is capable of
tolerating certain limits of hostile climatic conditions, cane
yield and productivity of sugarcane can also get severely af-
fected by the changing climatic conditions due to global
warming (Fig. 1). In the recent years, the significant decline
in sugarcane yield is noticed due to various biotic and abiotic
stresses (Zia et al. 2019).

Being an exhaustive crop, sugarcane needs more water and
nutrients due to production of higher biomass and nutrient
removal, respectively. Consequently, sugarcane is very
sensitive to climate change events. After studying the effect
of climate change on sugarcane production, Silva et al. (2019)
revealed that rainfall and temperature were positively and
negatively correlated with sugarcane production,
respectively, in the state of Paraíba, Brazil. Likewise,
Chandiposha (2013) has studied the negative effects of rainfall
and temperature on sugarcane production in Zimbabwe. On
the other side, low temperatures of 15 °C restricted sugarcane
cultivation (Ebrahim et al. 1998). Contrary to this, high tem-
perature hampers the natural ripening of sugarcane compared
to low temperature (Gawander 2007). Sugarcane is very

sensitive to water deficits (Lakshmanan and Robinson
2014), which reduce the crop productivity up to 60%
(Basnayake et al. 2012; Gentile et al. 2015). Lower tempera-
ture can affect sprouting in sugarcane, while prolonged water
scarcity affects cane growth and development. Besides this,
variable climatic conditions will also affect juice quality pa-
rameters and sugar recovery (Shukla et al. 2019). During win-
ter, freeze damage in the sub-tropical areas is one of the major
limitations in sugarcane production (Tai and Miller 1986).
Further, a change in temperature caused by climate change
can exert stress on sugarcane via increased weed competition
and water deficit besides increasing pest and disease attack
which elevates the input cost for controlling them
(Chandiposha 2013). For mitigating the adverse effects of
climate change in sugarcane production, although different
remediation technologies are advocated, application of Si
may be a feasible pathway to increase resistance under these
stress conditions.

5 Potential of Si in Mitigating Biotic
and Abiotic Stresses in Crops

Although the positive effects of external Si supplementation
on growth and yield of different crops are well documented in
the literature (Guntzer et al. 2012a; Liang et al. 2015; Meena
et al. 2014; Prakash et al. 2018), but the real potential of Si is
more conspicuous in mitigation of both abiotic and biotic
stresses in crops (Keeping and Reynolds 2009). The numerous
studies have revealed the beneficial role of Si in mitigating
various abiotic stresses including heavy metal toxicity (Wu
et al. 2013; Neumann and Nieden 2001; Vaculík et al.
2009), nutrient imbalances (Cocker et al. 1998; Neu et al.
2017), UV-B radiation (Shen et al. 2010), gamma rays (Ma
and Takahashi 2002), salinity (Liang et al. 2003), heat (Agarie
et al. 1998), freezing (Ulloa and Anderson 1991), drought
and/or water stress (Camargo et al. 2017). On the other hand,
Si has been repeatedly implicated as a factor influencing the
degree of susceptibility of crops to biotic stress (pests and
diseases). Ample studies have confirmed that Si fertilisation
has been linked to increased resistance of crops and vegetables
to many diseases, namely: blast (Pyricularia grisea) and
brown spot (Bipolaris oryzae) in rice (Datnoff et al. 1997;
Ning et al. 2014; Rodrigues et al. 2004), powdery mildew
(Erysiphe graminis) in wheat (Bélanger et al. 2003), brown
rust (Puccinia melanocephala) in sugarcane (Naidoo et al.
2009), downy mildew (Peronospora manshunica) in soybean
(Nolla et al. 2006), panama wilt (Fusarium oxysporium) in
banana (Kaiser et al. 2005), root rot (Phytium ultimum) in
cucumber (Chérif and Bélanger 1992) and fruit decay
(Alternaria alternate) in melon (Bi et al. 2006). Likewise,
application of Si has also shown resistance of crops to several
pests, namely: stem borer (Scirpophaga incertulas) in rice
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(Sawant et al. 1994), brown plant hopper (Nilaparvata lugens)
in rice (Yoshihara et al. 1979), green bug (Schizaphis
graminum) in wheat (Costa and Moraes 2006), stem borer
(Sesamia calamistis) in maize (Setamou et al. 1993), stalk
borer (Eldana saccharina) in sugarcane (Kvedaras et al.
2009a), spittle bug (Mahanarva fimbriolata) in sugarcane
(Korndörfer et al. 2011), whitefly (Bemisia tabaci) in cucum-
ber (Correa et al. 2005) and weevil (Cylas formicarius) in
sweet potato (Singh et al. 1993). As crops are usually exposed
to various stresses during their growth period, it will not be
overstated to remark that the role of Si in the future would be
overwhelming in alleviating the stresses which would ulti-
mately result in increased productivity. Being a perennial
crop, sugarcane remains in soil throughout all seasons of the
year, and consequently, it is attacked by a huge number of
pests and diseases (Yadav et al. 2009a, b). The significance
of Si nutrition in alleviating different abiotic and biotic stress-
es in sugarcane is briefly presented in Tables 6 and 7.

5.1 Main Defence Mechanisms Activated by Silicon

5.1.1 Physical Defence

The increased resistance of Si to maize Hessian fly,Mayetiola
destructor, was first reported in the 1920s (McColloch and
Salmon 1923), and later, Ponnaiya (1951) revealed a close
association between resistance of central shoot fly
(Atherigona indica) and Si concentration in sorghum shoots.
Since then, numerous studies have proven the potential of Si
in enhancing the resistance to several insect herbivores and

other arthropods, including folivores (Han et al. 2015;
Korndorfer et al. 2004; Massey et al. 2007; Redmond and
Potter 2006), borers (Anderson and Sosa Jr 2001; Elawad
et al. 1985; Camargo et al. 2014; Hou and Han 2010;
Keeping et al. 2013; Kvedaras and Keeping 2007; Kvedaras
et al. 2007a, b, 2009a; Nikpay et al. 2017; Vilela et al. 2014),
phloem feeders (Correa et al. 2005; Goussain et al. 2005; He
et al. 2015), xylem feeders (Yoshihara et al. 1979), leaf hopper
(Indhumathi et al. 2018), spittlebug (Korndörfer et al. 2011),
mites (Nikpay and Nejadian 2014) and nematodes (Silva et al.
2015). Several studies have also confirmed that Si nutrition
helped in altering survival, reproduction and host plant pref-
erences of chewing (Goussain et al. 2002; Kvedaras et al.
2009a; Massey et al. 2006) and sucking insects (Basagli
et al. 2003; Correa et al. 2005; Korndörfer et al. 2011).

A comprehensive review on the importance of Si against
various insect pests and non-insect pests has been compiled
by Liang et al. (2015) and Prakash et al. (2018). Except South
Africa, Brazil and the USA, very few researches across the
world have been focused on the potential of Si in mediating
resistance to insect pests in sugarcane. For the first time, Rao
(1967) reported that sugarcane varieties resistant to the shoot
borer (Chilo infuscatelus) revealed a high concentration of sil-
ica cells in the leaf sheath. Later, Pan et al. (1979) noticed that
the percentage of the incidence of stem borer (Scirpophaga
excerptalis) damage was less in sugarcane cultivar GPB 5 treat-
ed with bagasse furnace ash and silicate slag compared to the
control. This increased resistance was directly related to the
silica content of the leaves. It has been documented that the
deposition of Si as opaline phytoliths in the cell walls of the

U
D

p a
ow

rr
n a

ow
rr

 (m
ow

ar
 (m

ke
ar

d i
ke

n b
d i

ro
n b

wn
ro

 c
wn

olo
 c

r) 
olo

ind
r) 

ica
ind

te
ica

s in
te

cr
s d

ea
ecr

sed
ea

 ef
sed

fec
 e

t o
ffe

f a
ct o

 pa
f a

rt
p

icu
art

lar
icu

 fa
la

cto
r fa

r
ctor

Fig. 1 A flowchart to explain
how climate change affects
sugarcane production and
productivity
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leaf acts as a mechanical barrier to insects (Meena et al. 2014;
Reynolds et al. 2009). A higher concentration of Si in plant
tissues may increase the bulk density of the insect diet which
makes it difficult for insects to ingest sufficient quantities of
nutrients mainly carbohydrates and nitrogen (Massey et al.
2006; Panda and Kush 1995; Smith et al. 1971). Hence, it can
be resolved that the harmful effect of insects in sugarcane may
be counteracted by application of Si. As a mechanism of phys-
ical defence, Si increases hardness and abrasiveness of the plant
tissues which reduces the palatability and digestibility to both
vertebrate and invertebrate herbivores (Dias et al. 2014;
Goussain et al. 2005; Kaufman et al. 1985; Kvedaras et al.
2007a; Massey and Hartley 2006, 2009; Reynolds et al.
2009). Higher deposition of Si in the leaves may cause man-
dibular wear for insects (Djamin and Pathak 1967; Hanifa et al.
1974; Kvedaras et al. 2009a; Massey and Hartley 2009;
Ramachandran and Khan 1991; Sasamoto 1958).

5.1.2 Chemical Defence

Several studies have confirmed that external Si application
prompted a substantial increase in the plant defensive en-
zymes which helped to elevate accumulation of defensive
compounds such as phenolics , phytoalexins and
momilactones (Chérif et al. 1994; Gomes et al. 2005;
Rahman et al. 2015; Rémus-Borel et al. 2005; Rodrigues
et al. 2004) besides increasing the biosynthesis of herbivore-
induced plant volatiles (HIPVs), including jasmonic acid and
salicylic acid (Fauteux et al. 2005; Reynolds et al. 2009;
Thaler et al. 2002). Although soluble Si plays a pivotal role

in inducing resistance to insect herbivores (Correa et al. 2005;
Gomes et al. 2005; Kvedaras et al. 2009b), but only one pub-
lished report is available against resistance in sugarcane
(Kvedaras et al. 2009a). Kvedaras et al. (2009a) revealed that
soluble Si is involved in induced chemical or biochemical
defences to stalk borer attack in sugarcane through the in-
creased production of defensive enzymes or probably due to
enhanced release of plant volatiles.

Besides, few publications despite not being from the core
field of sugarcane have also shown the effects of Si on plant
defence compounds. It is known that Si may be precipitated as
phytoliths in cell walls (Sangster 1970). Consequently, it has
been suggested that like lignin, silica may act as a compression
resisting agent (Raven 1983) and hence may substitute for car-
bon (C) for structural support and other metabolic processes
(McNaughton et al. 1985). Since the production cost of lignin
and cellulose, respectively, is 27 and 15 times more compared
to silica (Penning de Vries 1975; Raven 1983), silica can be
considered as an energetically cheap resource compared to C
(Jung et al. 1999; O’Reagain and Mentis 1989) It has been
calculated that the energy costs of Si versus C is 1:10–1:20 by
weight (Raven 1983). Hence, Si may perhaps alter the ratio of
cellulose and lignin in plants. Few studies indicated that Si
content is negatively related to C content in aboveground bio-
mass of plants (Klotzbücher et al. 2018; Neu et al. 2017) and
plant phenol content (Schaller et al. 2012). Silicon content also
showed negative or no apparent effect on plant lignin content
(Klotzbücher et al. 2018; Schaller et al. 2012; Schoelynck et al.
2010) and either positive or negative relation with cellulose
content (Schaller et al. 2012; Schoelynck et al. 2010).

Table 6 Importance of Si supplementation in mitigating abiotic stress in sugarcane

Abiotic stress Source of Si Country Reference

Physical stress

UV-B radiation Sodium silicate USA Elawad et al. (1985)

Freezing Calcium silicate USA Ulloa and Anderson et al. (1991)

Calcium silicate slag USA Rozeff (1992a, 1992b, 1992c)

Water stress/drought Calcium silicate Brazil Oliveira et al. (2010)

Calcium silicate China Bokhtiar et al. (2012a)

Calcium magnesium silicate Brazil Camargo et al. (2017)

Calcium magnesium silicate Brazil Camargo et al. (2019)

Calcium magnesium silicate Brazil Bezerra et al. (2019)

Calcium metasilicate China Verma et al. (2019a, 2019c)

Calcium metasilicate, wollastonite China Verma et al. (2019b)

Sorbitol-stabilised sodium and potassium silicate Brazil Teixeira et al. (2020)

Chemical stress

Fe toxicity Calcium silicate slag USA Fox et al. (1967)

Salinity Calcium silicate Pakistan Ashraf et al. (2009)

Calcium silicate Pakistan Ashraf et al. (2010a, 2010b)
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Recently, Schaller et al. (2019a) observed that besides cellulose,
lignin and phenol content, accumulation of Si in rice also de-
creased the content of C compounds such as fat, wax, lipids and
free organic acids.

5.1.3 Mandibular Wear

Numerous studies have revealed that hardness and rigidity of
plant tissues affected mandibular wear in leaf beetle (King

et al. 1998), bee (Kokko et al. 1993; Schaber et al. 1993),
weevil (Barnes and Giliomee 1992), noctuid lepidopteran lar-
vae (Korth et al. 2006) and stalk borer (Kvedaras et al. 2009a).
Although earlier studies (Djamin and Pathak 1967; Goussain
et al. 2002; Hanifa et al. 1974; Ramachandran and Khan 1991;
Sasamoto 1958) have indicated that mandibular wear is re-
peatedly related to Si precipitation within plant tissues,
Kvedaras et al. (2009a) found no significant differences in
mandible wear between E. saccharina larvae with Si-treated

Table 7 Role of Si nutrition in suppressing biotic stress in sugarcane

Name of disease/pest Scientific name of pathogen/insects Source of Si used Country Reference

Disease

Ring spot Leptosphaeria sacchari
Phyllosticta sp. (anamorph)

Calcium silicate slag USA Raid et al. (1992)

Brown rust Puccinia melanocephala Potassium silicate, Calmasil South Africa Naidoo et al. (2009)

Ca-Mg silicate Brazil Camargo et al. (2013)

Smut Sporisorium scitamineum Blast furnace slag Australia Bhuiyan and Croft (2015)

Insect pest

Stem borer Scripophaga excerptalis Bagasse furnace ash Malaysia Pan et al. (1979)

Diatraea saccharalis Sodium silicate USA Elawad et al. (1985)

Calcium silicate USA Anderson and Sosa Jr (2001)

Stalk borer Eldana saccharina Calcium silicate South Africa Keeping and Meyer (2002)

Calcium silicate, wollastonite,
blast furnace slag, fly ash

South Africa Keeping and Meyer (2003)

Calcium silicate South Africa Kvedaras et al. (2005)

Calcium silicate, wollastonite,
blast furnace slag, fly ash

South Africa Keeping and Meyer (2006)

Calcium silicate South Africa Kvedaras and Keeping (2007)

Calcium silicate South Africa Kvedaras et al. (2007a)

Calcium silicate South Africa Kvedaras et al. (2007b)

Calcium silicate South Africa Kvedaras et al. (2009a, 2009b)

Calcium silicate South Africa Keeping et al. (2009)

Calmasil® and Slagment® South Africa Keeping et al. (2013)

Calcium silicate slag South Africa Keeping et al. (2014)

Stalk borer Diatraea saccharalis Ca-Mg silicate Brazil Camargo et al. (2010)

Calcium silicate USA White and White Jr (2013)

Ca-Mg silicate Brazil Camargo and Korndörfer (2013)

Ca-Mg silicate Brazil Camargo et al. (2014)

Silicic acid solution Brazil Vilela et al. (2014)

Noctuid/pink-stalk borer Sesamia spp. Calcium silicate Iran Nikpay et al. (2015)

Calcium silicate Iran Nikpay (2016)

AgriSil, potassium silicate
formulation, Silamol

Iran Nikpay et al. (2017)

Spittlebug Mahanarva fimbriolata Potassium silicate Brazil Korndörfer et al. (2011)

Leaf hopper Pyrilla perpusilla Calcium silicate India Indhumathi et al. (2018)

Coccinellid beetle Stethorus sp. AgriSil, potassium silicate
formulation, Silamol

Iran Nikpay and Nejadian (2014)

Yellow mite Oligonychus sacchari AgriSil, potassium silicate
formulation, Silamol

Iran Nikpay and Nejadian (2014)

AB Yellow(R) Iran Nikpay and Laane (2020)
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(+Si) and control (−Si) sugarcane plants. This was the first
study which precisely and quantitatively measured the man-
dibular wear of an insect fed on sugarcane plants with higher
Si content. Similarly, calcium silicate fertilisation caused no
excessive wearing on the mandibular teeth in black cutworm
and root-feeding masked chafer grubs feeding on creeping
bent grass (Redmond and Potter 2006). However, Massey
and Hartley (2009) noticed a significant increase in the wear
of mouthparts of S. exemptawhich developed on grass species
fertilised with Si compared to the untreated control.

5.1.4 Photosynthesis and Lodging

In addition to the previously described defence mechanism,
photosynthetic activity in plants can be improved by preserv-
ing photosynthetic pigments, increasing water content,
balancing water potential and osmotic adjustment, reducing
oxidative stress and improving leaf erectness.

Water stress decreases the photosynthesis activity as a re-
sult of decline in phosphoenolpyruvate carboxylase and
rubisco activity in sugarcane (Lakshmanan and Robinson
2014). The relationship between photosynthesis and Si in sug-
arcane was first time studied by Alexander and Montalvo-
Zapata (1970). Application of Si also promotes mechanical
strength or plant erectness and thereby promotes resistance
to lodging. Savant et al. (1999) indicated that Si fertilisation
can stimulate growth and yield of sugarcane by reducing mu-
tual shading due to improved leaf erectness. The increased leaf
erectness can be attributed to the deposition of Si in the epi-
dermal layers of the leaf panicle (Takahashi et al. 1982).
Similar results were also noticed by Takahashi et al. (1982)
and Wong You Cheong et al. (1972) in cucumber and sugar-
cane, respectively. Precipitation of Si in the epidermal layers
of sugarcane also contributed to leaf strength which improved
leaf erectness and eventually helped in avoiding mutual shad-
ing (Bokhtiar et al. 2012a). Nevertheless, under the circum-
stances of substantial application of nitrogenous fertilisers, Si
nutrition is advantageous due to its potential to reduce lodging
(Miyake 1993).

6 Role of Si Fertilisation in Suppressing
Abiotic Stresses in Sugarcane

6.1 Water Stress

Water deficit is one of the abiotic stresses that most limit
agricultural production worldwide and the damage caused
by many other stresses causes dehydration and impairs plant
growth. Water stress under field condition is a common phe-
nomenon which affects cane yield badly. The morphological
and physiological responses of sugarcane to water stress are
stomatal closure; inhibition of stalk and leaf growth; leaf

rolling; reduction in leaf area (Inman-Bamber et al. 2012);
interruption of cell elongation and division (Machado et al.
2009); reduction of water potential, relative water content and
photosynthesis activity; and electrolyte leakage (Ferreira et al.
2017; Machado et al. 2009; Medeiros et al. 2013). Moreover,
biochemical changes noticed under drought conditions in-
clude extreme production of reactive oxygen species (e.g. su-
peroxide anion, hydrogen peroxide, hydroxyl radicals, alkoxy
radicals), decreased lipid metabolism (Kim et al. 2017) and
activation of antioxidant enzymes (Gong et al. 2005; Gill and
Tujeja 2010). Water stress also causes accumulation of stress
proteins (e.g. proline) and osmotic solutes in plant tissues
(Farooq et al. 2009). Application of Si has shown to increase
tolerance to water stress in rice (Geng et al. 2018), wheat
(Ahmed et al. 2016), maize (Gao et al. 2006), sorghum
(Sonobe et al. 2011), soybean (Shen et al. 2010), sunflower
(Gunes et al. 2008) and pepper (Lobato et al. 2009).

Several researchers have cautioned the negative impacts of
water stress on sugarcane (Boaretto et al. 2014; Oliveira et al.
2011; Ramesh 2000; Silva et al. 2008). Few researchers
opined that Si deficiency is associated with excessive rate of
transpiration (Lewin and Reimann 1969; Okuda and
Takahashi 1965). Wong You Cheong et al. (1973) reported
that application of Si may reduce excessive leaf transpiration.
After a prolonged moisture stress, foliar spray of sodium sil-
icate leads to an increase in cane yield (Jayabad and
Chockalingam 1990). Yoshida (1975) revealed that Si influ-
ences water loss from plants by reducing circular transpira-
tion. However, the association between Si supplementation
and water stress has not yet been studied in detail by the
scientific community with the exception of a few. Oliveira
et al. (2010) reported that with Si fertilisation dry biomass of
sugarcane increased to an extent of 34% over control under
moderate water stress. By utilising a scanning electron micro-
scope (SEM) and energy-dispersive X-ray analyser (EDAX),
Bokhtiar et al. (2012a) observed higher accumulation of silica
in the epidermal layers of sugarcane plants treated with calci-
um silicate compared to non-treated plants, and consequently,
more moisture was conserved in the former which is attributed
to a decrease in water loss by cuticle transpiration. These
results are in accordance with those reported by Takahashi
et al. (1982) andWong You Cheong et al. (1972) in cucumber
and sugarcane, respectively. Moreover, Si fertilisation im-
proved the stalk and sugar yield of sensitive sugarcane culti-
vars (RB85-5536), even when grown under water deficit con-
ditions and thereby indicating the usefulness of these cultivars
in soils subject to drought (Camargo et al. 2017). Further,
Camargo et al. (2019) revealed that irrespective of cultivars
(tolerant or sensitive), Si nutrition improved the drought tol-
erance in sugarcane grown under moisture stress during spring
and winter. This study indicated the importance of Si in sug-
arcane on the backdrop of water stress by preservation of
photosynthetic pigments, reduction of electrolytic leakage,
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increase in relative water content and maintenance of leaf
water potential. Application of Si can also be considered as
an alternate strategy to enhance tolerance of sugarcane to wa-
ter stress by improving antioxidant enzymes and photosyn-
thetic capacity (Verma et al. 2019a, b, c).

Water stress, during the tillering phase and early grand
growth phase, has been a challenge for sugarcane production
(Machado et al. 2009; Ramesh 2000). In order to check the
influence of calcium magnesium silicate against water stress,
Bezerra et al. (2019) conducted an experiment by imposing a
moderate water stress in two sugarcane cultivars (drought tol-
erant and drought sensitive) during tillering phase and the
grand growth phase for 30 and 60 days. This study indicated
that the addition of Si enhanced the physiological response
which is reflected in the increased water potential and relative
water content in sugarcane leaves during both growth phases.
Furthermore, Si fertilisation increased proline concentrations
and/or ant-oxidant enzymes, such as superoxide dismutase
(SOD) and ascorbate peroxidise (APX), in both the cultivars
under water stress conditions. Recently, Teixeira et al. (2020)
suggested that application of Si by means of nutrient solution
was more efficient compared to leaf spraying in pre-sprouted
sugarcane seedlings to mitigate water stress damage imposed
after transplanting in a 30% level of soil water retention ca-
pacity. However, water-holding capacity of soil is a vital fac-
tor which controls the intensity of drought stress in plants. A
recent study revealed that most of the effect of Si on drought is
happening in the soil and the plant effect may be only a con-
sequence of those soil effects (Schaller et al. 2020).

6.2 Salinity Stress

Salinity, one of the major abiotic stresses, has a hostile effect
on crop growth and development. Rasool et al. (2013)
assessed that approximately 7% of the land on the earth and
20% of the total arable land are adversely affected by salinity.
Soil salinity suppresses the crop growth as a result of osmotic
stress followed by ion toxicity, induced nutritional imbalances
and oxidative stress (Liang et al. 2015). Sugarcane is moder-
ately sensitive to salinity (Shannon 1997) with a threshold
value for yield reduction at 1.7 dS m−1 (Maas and Grieve
1990). Under salt-stressed conditions, the addition of Si has
shown to increase the growth of many crops including barley
(Liang 1998), rice (Yeo et al. 1999), sugarcane (Ashraf et al.
2009), tomato (Al-Aghabary et al. 2004), cucumber (Zhu et al.
2004), cowpea and kidney bean (Murillo-Amador et al. 2007),
alfalfa (Wang and Han 2007), wheat (Tuna et al. 2008), soy-
bean (Lee et al. 2010) and sorghum (Yin et al. 2013).
Although the enhancement of sugarcane yield by Si may be
credited to its induced resistance to several biotic and abiotic
stresses (Liang et al. 2015), very few research has been carried
out to unravel the response of sugarcane to Si nutrition under
environmental stress. Ashraf et al. (2009) reported that a salt-

sensitive genotype of sugarcane was more responsive to Si
addition than a salt-tolerant genotype. The added Si decreased
the uptake of Na+ in sugarcane under salt stress, and conse-
quently, cane yield increased by 59% and 28% in the salt-
sensitive and the salt-tolerant genotype, respectively, com-
pared to the control which clearly indicates the dependence
of cane yield on genotype. Similarly, Ashraf et al. (2010a)
noticed that Si supplementation caused a significant increase
in yield and yield attributes of sugarcane under salt stress.
Further, the results of a hydroponic experiment revealed that
application of Si has significantly increased the salt tolerance
in sugarcane genotypes mainly due to decreased Na+ concen-
tration and increased K+ with a resultant improvement in K+/
Na+ ratio (Ashraf et al. 2010b). At the same time, the addition
of Si has shown to improve juice quality of sugarcane under
salt stress (Ashraf et al. 2010a, b). Alexander et al. (1971)
described that the addition of sodium metasilicate immediate-
ly after milling delayed the sucrose inversion in sugarcane
juice. Concurrently, invertase and amylase were completely
inactivated in the range of 3 to 9 μmol of Si.

6.3 Nutrient Toxicity

The beneficial role of Si has been documented to alleviate
toxicity of metals including Cd in rice (Tripathi et al.
2012a), Cr in rice (Tripathi et al. 2012b), Al in wheat
(Zsoldos et al. 2003), Mn in cowpea (Führs et al. 2009), As
in rice (Tripathi et al. 2013), Pb in cotton (Bharwana et al.
2013), Fe in rice (Dufey et al. 2014), Zn in maize (Kaya et al.
2009) and Cu in rice (Kim et al. 2014). Recent studies also
indicated that Si fertilisation can alleviate ammonium toxicity
in sugar beet (Viciedo et al. 2019). Additionally, the effect of
Si on nutrient imbalances was shown for other plants by
Brackhage et al. (2013) and Neu et al. (2017). The effect of
Si on nutrient and toxicant availability for plant uptake was
explained by two studies on biogeochemistry revealing that Si
is interfering with the binding of those elements to soil mineral
and organic particles (Reithmaier et al. 2017; Schaller et al.
2019b). However, scanty information is available in the
existing literature about the importance of Si in alleviating
metal toxicity in sugarcane. Although leaf freckling in sugar-
cane is reflected in rust or brownish coloured small spots on
the older leaves (Clements 1965a), but the cause of leaf freck-
ling in sugarcane is still under dilemma. Yet, few researchers
indicated that leaf freckling in sugarcane may be caused due to
toxicity of Fe, Al and Mn (Clements 1965b; Clements et al.
1974; Fox et al. 1967). In this regard, Si fertilisation may be
useful to alleviate Fe, Mn and Al toxicities in certain acidic
soils. Gascho (1978) stated that the development of freckled
leaves is an expression of the sugarcane plants’ need for Si
application. Studies indicated a positive interaction of appli-
cation of calcium silicate slag and its effect in alleviating leaf
freckling where sugarcane absorbs surplus quantities of Mn
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(Clements 1965b). Similarly, Fox et al. (1967) noticed that
leaf freckling symptoms in sugarcane disappeared significant-
ly following application of calcium silicate slag. In Florida,
Elawad et al. (1982) noticed that application of 15 t ha−1 of
Tennessee Valley Authority (TVA) slag decreased leaf freck-
ling by 46 and 41% in initial sugarcane crop and ratoon crops,
respectively, and decreased Fe, Mn and Zn content in the
sugarcane leaves. Florida slag performed well in decreasing
leaf freckling compared to TVA slag in the ratoon crop.

Although most of the studies in the existing literature de-
scribed the role of Si in mitigating nutrient toxicity (see review
by Liang et al. 2015; Haynes 2017), very scanty information is
available on the effect of Si in mitigating nutrient deficiency
(Bityutskii et al. 2014). Consequently, few authors who de-
cided to study on this theme found that the application of Si
can mitigate deficiency of Fe in rice, cucumber and soybean
(Bityutskii et al. 2014; Chalmardi and Zadeh 2013; Gonzalo
et al. 2013; Muneer and Jeong 2015; Pavlovic et al. 2013), K
in sorghum (Chen et al. 2016), phosphorus (P) in wheat
(Kostic et al. 2017) and manganese (Mn) in sorghum
(Hattori et al. 2003; Lima de Oliveira et al. 2019). The addi-
tion of Si favoured the storage of Fe in the root apoplasm of
cucumber (Pavlovic et al. 2013), whereas Si nutrition
prohibited chlorophyll degradation by activation of different
enzymatic systems in Fe-deficient soybean (Gonzalo et al.
2013). Additionally, in the case of P and K deficiencies in
plants, Si fertilisation has been beneficial in improving their
respective use efficiencies (Ma 2004; Miao et al. 2010).
However, few authors also revealed that the addition of Si
does not improve the deficiencies of Mn, zinc (Zn) and copper
(Cu) in cucumber (Bityutskii et al. 2014; Hernandez-Apaolaza
2014).

6.4 Freezing Stress

Freezing is another aspect of environmental stress that can be
mitigated by Si application. Freeze stress interferes with water
relations, photosynthesis and antioxidant defence capacity
(Liang et al. 2015). In fact, Si fertilisation has shown to in-
crease tolerance to freezing stress in pistachio (Habibi 2015)
and wheat (Liang et al. 2008; Zhu et al. 2006) plants. Freeze
damage during the winter in the sub-tropical areas in the con-
tinental United States and south of Brazil is one of the major
limitations in sugarcane production (Irvine 1963, 1968; Tai
and Miller 1986). Cultivation of cold-tolerant varieties can
be considered as one of the possible way to decrease freeze
injury to leaves and stalks and the failure of the ratoon crop
(Tai and Miller 1986). Application of calcium silicate has
shown to increase tolerance to freeze damage of commercial
sugarcane in Florida (Ulloa and Anderson 1991). Similarly,
silicate application also mitigated mild freeze effects in sugar-
cane (Rozeff 1992a, b, c). These limited observations on Si-

induced cold tolerance in sugarcane calls for additional field
investigations to decipher the mechanism in detail.

6.5 UV-B Radiation Stress

The sun is the most important source of ultraviolet (UV) radi-
ation. The frequency of UV radiation lies between that of X-
rays and visible light. The wavelength of UV radiation ranges
between 100 and 400 nm (Madronich et al. 1998). Based on
the wavelength, the UV radiation is classified into three bands,
namely: UV-A (315–400 nm), UV-B (280–315 nm) and UV-
C (100–280 nm), and consequently, UV radiation at different
wavelengths differs in its effects (Madronich et al. 1998).
Among these three bands, UV-A and UV-B reach the earth’s
surface, whereas UV-C band is completely absorbed by the
ozone layer (Madronich et al. 1998). UV-B radiation is the
most damaging part of UV radiation and depletion of strato-
spheric ozone layer increases the concentration of it on the
earth’s surface (Madronich et al. 1998). The negative impact
of UV-B is mainly reflected in plant cells in the form of gen-
eration of reactive oxygen species (ROS) such as superoxide
anion radicals (O2

−), hydrogen peroxide (H2O2) and hydroxyl
radicals (OH−) (Kakani et al. 2003). Drought stress has been
considered a significant factor which induces plant sensitivity
to UV radiation (Alexieva et al. 2001). Although several stud-
ies have addressed the role of Si in lowering stress induced by
UV-B radiation in rice (Fang et al. 2011; Goto et al. 2003; Li
et al. 2004), wheat (Yao et al. 2011) and soybean (Shen et al.
2010), but very meagre information is available on the bene-
ficial effects of Si in reducing UV-B radiation stress in sugar-
cane. Savant et al. (1999) reported that high concentration of
UV-B radiation in the tropics may adversely affect sugarcane
yield. Few researchers have suggested that leaf freckling in Si-
deficient sugarcane might be caused by UV-B radiation radi-
ated by direct sunlight (Elawad et al. 1985; Gascho 1978;
Wong You Cheong et al. 1972). Contrary to this, while study-
ing the influence of UV-B radiation on growth of sugarcane,
Elawad et al. (1985) did not notice the UV-B effect at low,
medium and high levels of Si fertilisation in greenhouse con-
ditions. Hence, the role of Si in response to UV-B radiation
needs further investigation.

7 Role of Si Fertilisation in Suppressing Biotic
Stresses in Sugarcane

In case of plant nutrition, biotic stresses may be seen in the
form of plant pathogens (bacteria, fungus and virus), insects
and animals (vertebrate and arthropod herbivores) (Liang et al.
2015; Prakash et al. 2018). It has been reported that more than
440 bacteria and fungi affect sugarcane production (Stevenson
and Rands 1938). In this section, recent advances and updated
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knowledge about the potential of Si in alleviating various
biotic stresses in sugarcane have been explored.

7.1 Diseases

Souza et al. (2017) estimated that sugarcane is affected by
about 200 fungal diseases which affects the growth of many
vital commercial sugarcane varieties and thereby reduces the
cane yield. Application of Si has been shown to suppress
fungal diseases in many crops (Datnoff et al. 2007; Liang
et al. 2015; Prakash et al. 2018) including sugarcane (Meyer
and Keeping 2001; Savant et al. 1999). Yet very few re-
searches have been documented in the existing literature about
Si fertilisation in alleviating fungal diseases in sugarcane. One
of the basic reports linking Si nutrition in suppressing sugar-
cane rust (Puccinia melanocephala) in sugarcane is credited to
Dean and Todd (1979). Later, Raid et al. (1992) studied the
influence of cultivar and soil amendment with calcium silicate
slag on foliar disease development in sugarcane. The severity
of sugarcane rust was not affected by application of silicate
slag at a rate of 6.7 t ha−1. They observed significant reduction
in severity of ring spot (Leptosphaeria sacchari) with the
addition of slag by an average of 67% across the five cultivars.
A significant cultivar effect and slag × cultivar interaction was
also observed with respect to ring spot severity. They attrib-
uted this diverse effect of Si on plant pathogens due to differ-
ence in mode of penetration. Si is known to be deposited at the
external surface of cell wall of plants, thus forming a mechan-
ical barrier to penetration of the pathogens causing ring spot
but not to that of rust in sugarcane (Kunoh 1990; Raid et al.
1992). Moreover, brown rust (Puccinia melanocephala Syd.
& P. Syd.), earlier recognised as common rust, was introduced
into South Africa from India in 1941 (Saumtally and Autrey
1999) and is presently considered as an important disease in
the South African sugar industry (Naidoo et al. 2009) which
causes yield losses of up to 26% on the susceptible sugarcane
variety N29 (McFarlane et al. 2006). Consequently, Si
fertilisation has been found to be effective in declining the
brown rust (Puccinia melanocephala) of sugarcane in South
Africa (Cadet et al. 2003; Naidoo et al. 2009) and Brazil
(Camargo et al. 2013). Naidoo et al. (2009) observed that
the application of K2SiO3 during the early stages of growth
of sugarcane may reduce brown rust levels and more Si was
deposited in the lower epidermis than in the upper epidermis
and mesophyll. There was substantial decline in brown rust
incidence with Si fertilisation at 2000 mg L−1. The Si-
mediated resistance induction of various crops to fungal path-
ogens has been reviewed by Fauteux et al. (2005).

Few studies have shown that Si is deposited in high con-
centrations in the dumb-bell–shaped silica cells of the leaf and
stem epidermis (Artschwager 1930; Wong You Cheong et al.
1971a, b). Kaufman et al. (1979) reported that the relative
number of silica cells in the upper and lower leaf epidermis

may vary between sugarcane varieties. Several investigations
on other crops have also revealed high levels of Si deposition
in the epidermis (Lux et al. 2003; Ma and Yamaji 2006;
Motomura et al. 2006; Samuels et al. 1991a, b). Higher depo-
sition in the lower epidermis could be credited to a greater
number of silica cells in this region (Ferreira et al. 2007;
Kaufman et al. 1979). Globally, one of the important diseases
noticed in sugarcane is sugarcane smut caused by the fungus
Sporisorium scitamineum (Comstock 2000), and the smut
fungus infects sugarcane plants through buds or germinating
shoots (Hoy 1986). Significant yield loss with plantation of
susceptible varieties of sugarcane is reported (Comstock
2000), and Hoy (1986) observed a 0.6 to 0.7% yield loss for
every 1% increase of diseased plants. Croft and Braithwaite
(2006) revealed that ratooning can encourage smut symptom
progress in latently infected plants. There was a significant
reduction in brown rust incidence in sugarcane with the appli-
cation of Ca-Mg silicate in Brazil (Camargo et al. 2013).
Bhuiyan and Croft (2015) showed that application of blast
furnace slag did not control smut in highly susceptible varie-
ties of sugarcane in Australia, but perhaps diminished the
hostile stress response in intermediate to resistant variety.
However, irrespective of Si nutrition, intermediate and resis-
tant varieties effectively controlled sugarcane smut under very
high disease pressure. From this study, it can be inferred that
Si fertilisation is an economically feasible strategy that can
contribute efficiently to crop yield at a lower cost compared
to investments in genetic improvement programs, especially
considering natural degradation. Hence, further investigation
is needed to confirm the effects of Si supplementation in con-
trolling different diseases in sugarcane across the world.

7.2 Insects and Pests

7.2.1 Potential of Si Against Stem and Stalk Borer

The stem borer (Diatraea saccharalis F.) of sugarcane, a ma-
jor pest of sugarcane in America (Pemberton and Williams
1969; Sosa Jr 1981), damages sugarcane in Southern Florida
(Anderson and Sosa Jr 1981). Elawad et al. (1985) noticed
increased resis tance of sugarcane to stem borer
(D. saccharalis F.) with the addition of sodium silicate. It
was attributed to the high levels of Si in sodium silicate–
treated plants which might have acted as a deterrent to the
stem borer. Few studies have exposed that higher application
of nitrogenous fertilisers alone has the potential to increase the
incidence of sugarcane stalk borer (Eldana saccharina
Walker) in Mali (Coulibaly 1990) and that of another borer
(Chilo auricilius Dudgeon) in India (Sukhija et al. 1994).
Similarly, Meyer and Keeping (2005) reported that Si
fertilisation might eliminate the positive effects of nitrogen
application on density and populations of the stalk borer
(Eldana saccharina Walker) in sugarcane. Hence, the borer
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incidence in sugarcane could have been prevented by com-
bined application of Si and nitrogenous fertilisers (Keeping
et al. 2014; Maxwell et al. 1972; Meyer and Keeping 2005;
Savant et al. 1999). Under field conditions, Anderson and
Sosa Jr (2001) observed that irrespective of the cultivars
(CP70-1133, CP72-1210, CP72-2086, CP74-2005, CP80-
1827) and calcium silicate slag rate (0 and 6.7 Mg ha−1), the
intensity of borer infestation declined with slag application,
but the trends were non-significant.

Lepidopteran stalk borers are the most destructive and
harmful arthropod pests of sugarcane in many sugar-
producing countries (Goebel and Sallam 2011; Kuniata
et al. 2001; Rutherford and Conlong 2010; Sallam
2006).The sugarcane stalk borer Eldana saccharina
Walker (Lepidoptera: Pyralidae) is a major pest of sugar-
cane in South Africa (Keeping and Meyer 2002). This stalk
borer can significantly reduce the sucrose yield in southern
and eastern Africa (Conlong 1994). The larvae of
E. saccharina usually pierce the stalk via the node and in
particular the leaf bud (Atkinson 1980). In the sugarcane
stem, the highest concentration of Si was found to be depos-
ited in the silica cells of the epidermis (Kaufman et al. 1979)
and it could be assumed that Si may perhaps partially en-
hance the borer resistance of sugarcane, by delaying stalk
penetration by early-instar E. saccharina (Kvedaras and
Keeping 2007). In order to explore the potential of Si in
increasing the resistance to sugarcane stalk borer, Keeping
and Meyer (2002) observed that application of calcium sil-
icate @ 10,000 kg ha−1 substantially improved the borer
resistance in sugarcane and borer mass declined to an extent
of 19.8%. They also revealed that susceptible varieties
might benefit more from external Si supplementation com-
pared to resistant varieties. It is interesting to note that Si
nutrition can help to decrease moisture stress by limiting
cuticular transpiration which ultimately results in reducing
susceptibility of E. saccharina under limited moisture and/
or drought conditions. Keeping and Meyer (2003, 2006)
recorded the highest increase in Si content in stalks of plants
treated with wollastonite. Although resistant varieties (N21
and N33) had a higher stalk Si content compared to suscep-
tible ones (N26 and N30), there was no significant differ-
ence in Si uptake between susceptible and resistant varie-
ties. They also revealed that higher rate of Si application
decreased the borer damage by 34% and 26% in
suscept ible and resis tant var ie t ies , respect ively.
Subsequently, Kvedaras et al. (2005) specified that the lar-
vae of E. saccharina find it difficult to penetrate through the
internode of sugarcane, whereas root primordial and bud are
more favourable for larval penetration and survival. It was
mainly due to the higher precipitation of Si in the internode
of sugarcane. Similar results were also noticed by Kvedaras
and Keeping (2007) in sugarcane. By using energy-
dispersive X-ray (EDX) microanalysis, Keeping et al.

(2009) indicated that irrespective of the sugarcane cultivars,
application of Si has increased the silica content in the stalk
epidermis, particularly at the internode and root band. Since
internode and root band are considered as known penetra-
tion sites for stalk borer, deposition of Si may perhaps par-
tially elucidate the resistance of Si-treated sugarcane to bor-
er penetration. They also observed that irrespective of the
cultivars, epidermis of the root band contained significantly
higher Si compared to internodal epidermis. Hence, they
opined that besides Si, fibre content (cellulose, hemicellu-
lose and lignin) is also probably crucial in this regard and
more so in resistant cultivars (Rutherford et al. 1993). This
was validated by a significant positive correlation obtained
between fibre% in cane and internode rind hardness across
the 72 sugarcane cultivars (Keeping and Rutherford 2004).
Contrary to the s tudy of Keeping et a l . (2009) ,
E. saccharina exhibits an entry site inclination towards the
leaf bud of a cane stalk, mainly in Si-treated cane (Kvedaras
et al. 2007a, b). Further, Keeping et al. (2013) observed a
significant increase in soil, leaf and stalk Si content in three
different types of sugarcane cultivars varying in borer sus-
ceptibility with the application of two different sources of
Si. Further, they argued that if leaf Si content in sugarcane
can be raised to 0.8%, using a potential Si amendment that
release Si slowly, a significant decline in stalk damage and
sucrose loss could be accomplished in susceptible cultivars
in Si-deficient soils. Similarly, in a study of a 72-year-old
burning and trashing trial, where historically no Si
fertilisation has been reported, van Antwerpen et al.
(2011) observed a substantial reduction in E. saccharina
stalk damage in plots with leaf Si values surpassing 1.8%.

Most of the studies described so far have been related to stalk
borer E. saccharina damage in sugarcane. It has been reported
that in Central and South America, sugarcane is affected by
another stalk borer, Diatraea saccharalis (F) (Lepidoptera:
Crambidae) (Long 1969; Parra et al. 2010). In Brazil, although
Camargo et al. (2010) noticed an increase in the yield of first
ratoon sugarcane with the application of Ca-Mg silicate, but
there was no effect on sugarcane borer damage. In another
study, Camargo and Korndörfer (2013) stated reduced borer
damage with Si fertilisation in a first ratoon sugarcane crop.
In a field study, Camargo et al. (2014) revealed that application
of Ca-Mg silicate @ < 200 kg Si ha−1 in the planting furrows
could be an economical method to provide Si to sugarcane plant
where the source of Si fertiliser is very costly and may also help
to reduce the stalk borer D. saccharalis damage in sugarcane.
Likewise, in a greenhouse experiment, White and White Jr
(2013) noticed that the addition of calcium silicate in the potting
medium reduced the internode damage by the stalk borer up to
an extent of 45% and 40% in susceptible and resistant varieties
of sugarcane, respectively. Vilela et al. (2014) reported that Si
nutrition improved cuticle thickening which may prevent
D. saccharalis attack on sugarcane plant.
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7.2.2 Water Stress

Water stress is considered as one of the important factors
underlying outbreak of herbivorous insects (Huberty and
Denno 2004). Various investigations so far have confirmed
that Si fertilisation has the potential to reduce water stress in
rice (Ma et al. 2001), maize (Gao et al. 2004) and wheat
(Hattori et al. 2005). In order to check the potential of Si in
alleviating insect attack under water stress condition,
Kvedaras et al. (2007b) observed a higher decline in stalk
borer (E. saccharina) numbers and stalk damage in Si-
treated cane under water-stressed conditions compared to
non-stressed condition, mainly for susceptible sugarcane cul-
tivars. Although a probable role of soluble Si in providing
defence against stalk borer was advocated in this study, field
trials are prerequisite to validate these results.

8 Sources and Forms of Application of Silicon
in Sugarcane

Weathering reactions, leaching and intensive cultivation of Si-
accumulating crops, like rice and sugarcane, can decline the
concentration of plant-available Si in the soil. As the earth’s
crust is rich in Si, it may not be an exaggeration to mention
that Si fertilisation to fields will not pose a threat to either
crops or the environment (Prakash et al. 2017). However,
the majority of the sources of Si in soil exist as crystalline
aluminosilicates which are sparingly soluble and/or insoluble
and not directly available for plants (Richmond and Sussman
2003). Numerous Si sources ranging from chemical products
to natural products to by-products of the steel and iron indus-
tries have been suggested for use in different crops.

However, a particular material to be handy as a Si fertiliser,
it must possess attributes like high Si content and high solu-
bility, provide a massive amount of plant-available Si, have
suitable physical properties, be environmental-friendly
(Gascho 2001) and have the presence of very low heavy metal
content (Haynes 2014). But for the external application of Si
in the field, the Si source should also have characteristics such
as local availability, cost effectiveness, ease of handling and
decisive evidence of improved crop growth and yield.
Moreover, the nutrient value of other elements present in the
fertiliser should also be considered (Heckman 2013). Various
Si sources like silicic acid, calcium silicate slag, calcium sili-
cate, potassium silicate, sodium silicate, quartz sand, rice hull
ash (RHA), diatomaceous earth (DE), amorphous silica (ASi),
etc. contain high Si; however, very few possibly meet all of
these prerequisites collectively (Haynes 2014; Kingston 2008;
Liang et al. 2015; Prakash et al. 2018; Tubana et al. 2016).
Other sources that have been commercially used are calcium
silicate hydrate, silica gel and thermo-phosphate (Gascho
2001). Besides these, some naturally occurring Si-containing

minerals such as wollastonite and olivine (MgSiO3) are also
used as sources of Si in agriculture after being pulverised and/
or pelletised (Gascho 2001; Park 2001). Other sources of Si
include magnesium silicate, basalt dust, dolomite and rock
phosphate containing only traces of plant-available Si
(Savant et al. 1999). Moreover, for Si to be used most effec-
tively as a fertiliser, it is important to have sufficient knowl-
edge of the physical and chemical characteristics of the Si
source and to know how much available Si must be applied
for adequate plant uptake (Savant et al. 1997). This empha-
sises the necessity for identifying an ideal source of Si for field
application.

Existing literature indicated that Si fertilisation has certain
beneficial role in sugarcane cultivation, especially on highly
weathered tropical soils such as Oxisols, Ultisols, Entisols and
Histosols (organic soils) (Meyer and Keeping 2001; Savant
et al. 1999). As a matter of fact, Si has been recognised as
‘agronomically essential’ for sugarcane production (Chen and
Lewin 1969; Fox and Silva 1978; Lux et al. 1999; Pilon-Smits
et al. 2009). Due to improved growth and yield of sugarcane in
response to Si fertilisation (Guntzer et al. 2012a; Liang et al.
2015; Meena et al. 2014; Prakash et al. 2018; Savant et al.
1999), Si fertilisers are regularly applied to sugarcane in
Australia, South Africa and northern and southern America
(Kingston 2008; Liang et al. 2015; Savant et al. 1999;
Tubana et al. 2016). Improved yield in sugarcane is attributed
to increased photosynthetic activity (Cheng 1982; Elawad
et al. 1982), increased tolerance to salinity (Ashraf et al.
2010a, b) and water stress (Camargo et al. 2019; Oliveira
et al. 2010, Teixeira et al. 2020), mitigating nutrient toxicity
(Clements 1965b; Elawad et al. 1982; Fox et al. 1967) and
enhanced defence mechanisms to a wide range of biotic stress-
es resulting in increased plant resistance and/or tolerance to
such stresses (Haynes 2017; Keeping et al. 2009; Savant et al.
1999).

Although various sources of silicon has been tested for
improving growth and yield of different crops, silicate slag
or basic slag is the most frequently used Si source in sug-
arcane production (Alcarde 1992; Kingston 2008; Liang
et al. 2015; Savant et al. 1999). The application of Si as a
fertiliser instead of a liming agent was tested for the first
time for sugarcane cultivation in Hawaii region (Clements
1965a). This investigation was initiated due to growing
occurrence of leaf freckling in sugarcane plants. Later, nu-
merous field experiments proved the positive interaction of
soil application of calcium silicate slag and its influence in
mitigating leaf freckling in sugarcane plants (Clements
1965b). At the same time, Si nutrition substantially
improved stalk sucrose content. Subsequently, soil
application of electric furnace slag (6.2 t ha−1) indicated
an increase of 9 to 18% and 11 to 22% in cane yield and
sucrose content, respectively (Ayres 1966). Similarly, Fox
et al. (1967) reported significant disappearance of leaf
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freckling symptoms in sugarcane following application of
calcium silicate slag. In Florida, Si fertilisation with TVA
slag (15 t ha−1) reduced leaf freckling by 46% and 41% in
initial sugarcane crop and ratoon crop, respectively
(Elawad et al. 1982). Further, the authors stated that the
performance of Florida slag was better in declining leaf
freckling compared to TVA slag in ratoon crop.
Moreover, numerous field studies conducted in Hawaii,
Mauritius, Puerto Rico, Florida, South Africa, Brazil and
Australia confirmed that utilisation of silicate slag as a Si
source for sugarcane has increased yield by 10–50% in Si-
deficient soils (Alvarez and Datnoff 2001; Anderson et al.
1991; Ayres 1966; Berthelsen et al. 2001a; Cheong and
Halais 1970; Clements 1965a; Elawad et al. 1982; Fox
et al. 1967; Gascho 1976; Haysom and Chapman 1975;
Meyer and Keeping 2001; Ross et al. 1974; Samuels
1969). Similar results were also noticed in Pakistan,
China and Taiwan (Ashraf et al. 2009; Jiang et al. 2011;
Huang et al. 2011; Shiue 1973).

Besides silicate slag, few studies have indicated the poten-
tial of bagasse furnace ash in increasing sugarcane yields in
Malaysia (Pan et al. 1979) and Taiwan (Lee et al. 1965).
Although a significant increase in the yield of rice with appli-
cation of DE was noticed in India (Pati et al. 2016; Sandhya
et al. 2018), Berthelsen et al. (2003) found that DE did not
increase sugarcane yield in Australia. Moreover, Jain et al.
(2018) observed that application of orthosilicic acid granules
along with recommended doses of NPK fertiliser during plant-
ing may prove beneficial for improving cane yield and juice
quality in sugarcane in India. Recently, Singh et al. (2020)
noticed that fertilisation with orthosilicic acid significantly
reduced the quality deterioration in sugarcane.

It is known that plants can also absorb nutrients through
their leaves. Nutrients pass through the stomata of the leaves.
However, very limited information is available about the ab-
sorption of Si through sugarcane leaves (Alexander 1968,
1969). Through a field experiment by imposing drought con-
dition, Jayabad and Chockalingam (1990) noticed improved
yields of sugarcane (var. CO 6304) due to foliar application of
2.5% sodium metasilicate. Foliar application of Si has also
been reported to increase sucrose synthase and sucrose phos-
phate synthase activities in sugarcane leaves; however, there
was no change in mean commercial sugar content (Pawar
et al. 2003). Similarly, in Indonesia, application of organic
manure followed by spraying of Si liquid fertiliser recorded
the highest cane yield (Djajadi et al. 2016). In addition to this,
few studies have shown that application of Si in planting fur-
rows may be a cost-effective method for sugarcane production
(Camargo et al. 2014; Keeping et al. 2013). Hence, major
emphasis should be given in identifying a region-specific Si
source for sugarcane cultivation. It would also be interesting
to study the method (soil or foliar) of application of Si sources
to check its efficiency.

9 Strategies for the Use of Silicon in Areas
Cultivated with Sugarcane

9.1 Effect of Different Silicon Sources and Varietal
Variation on Insect Pest Resistance

Application of Si fertiliser is a regular practice in sugarcane
production in Australia, South Africa and northern and south-
ern America (Kingston 2008; Liang et al. 2015; Savant et al.
1999). Different sources of Si such as calcium silicate, calci-
um magnesium silicate, bagasse furnace ash, fly ash, silicic
acid solution, potassium silicate, blast furnace slag, etc. are
commonly used in sugarcane (Table 7). It can also be directly
said that the most commonly used Si source in sugarcane crop
is silicate slag (Tables 6 and 7). However, studies on the po-
tential of Si in controlling insects in sugarcane are mainly
restricted to the USA, South Africa, Brazil and Iran
(Table 7). It could be attributed to the fact that the selection
of a particular fertiliser usually depends on local availability in
the market and cost effectiveness (Gascho 2001; Kingston
2008). Berthelsen et al. (2003) revealed that there was a lack
of locally available and economical sources of Si. Numerous
studies conducted so far proved the potential of calcium
(magnesium) silicate in supplying plant-available Si for sug-
arcane (Berthelsen et al. 2001b; Bokhtiar et al. 2012b;
Crusciol et al. 2014; Gascho 2001; McCray and Ji 2013;
Meyer and Keeping 2001; Tubana et al. 2016). A recent study
conducted in South Africa revealed that alkaline Si sources,
such as calcium silicate slag, cement and granulated ground
blast furnace slag, produced substantially greater plant-
available Si and plant uptake in sugarcane than non-alkaline
sources, such as potassium silicate, bagasse fly ash and diato-
maceous earth (Keeping et al. 2017).

Additionally, in order to check whether the yield obtained
due to Si nutrition is mainly due to applied rates of Si in soil, it
would be essential to strike out the effects of Ca,Mg and pH in
soil following application of different rates of Si fertiliser.
There are very few studies which have isolated the effects of
Ca, Mg and pH, wherein studies were conducted with major
emphasis on different rates of silicates (Ayres 1966;
Berthelsen et al. 2001a; Keeping and Meyer 2006; Keeping
et al. 2013; McCray and Ji 2012). Moreover, in most of the
field studies, the rate of silicate applications was similar to the
agricultural lime (more than 2 or 3 t ha−1) (Ayres 1966;
Berthelsen et al. 2001a, b; Brassioli et al. 2009; Elawad
et al. 1985; McCray and Ji 2012), which can be considered
costly for sugarcane cultivation if the main focus is on correc-
tion of Si deficiency for that particular area.

It is apparent that the effectiveness of a Si fertiliser mainly
depends on their reactivity instead of total Si content
(Kingston 2008) as it does not reflect the potential Si supply
in the field (Haynes 2017). Accordingly, Keeping (2017)
found that Calmasil with the lowest total Si content (10.3%
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Si) produced the highest leaf Si concentration in sugarcane
compared to sources with high total Si content, such as
Calsimag (12.6% Si), potassium silicate (30.8% Si), Prosil
Plus (16.3% Si) and Turbo-Grow (24.9% Si). This study
showed that the total Si content of a Si fertiliser may not be
used as a prerequisite for evaluating the potential Si supply of
the fertiliser in the field. Similar results were also reported by
Elephant et al. (2016), Haynes et al. (2013) and Korndörfer
and Gascho (1999). Moreover, numerous studies have indi-
cated that the availability of Si increases with decrease in
particle size and increase in surface area of dissolution
(Datnoff et al. 1992; Gascho 2001; Haynes et al. 2013; Ma
and Takahashi 2002; Medina-Gonzales et al. 1988).
Contrastingly, Keeping (2017) observed that Calsimag-P, be-
ing a granular product, has high Si-supplying capacity com-
pared to Turbo-Grow and Prosil Plus with finer particle size.

Besides these, a part of the applied Si fertiliser may be lost
due to adsorption and desorption reactions to colloids and
polymerisation reactions. Themost common site for adsorp-
tion of silicate ion is the surface of iron (Fe) and aluminium
(Al) hydrous oxides (Goldberg and Glaubig 1988; Hingston
et al. 1972). Moreover, pH is one of the most important
factors which governs the availability of Si in soil (Haynes
2014). At the same time, soil acidity coupledwithAl toxicity
may be a major concern for sugarcane production (Moberly
and Meyer 1975; Schroeder et al. 1995). It is mainly due to
the formation of insoluble hydroxy aluminosilicates (HASs)
by the reaction between soluble Al and Si in acid soils
(Doucet et al. 2001; Exley 2012; Farmer et al. 1979;
Schneider et al. 2004). Hence, the formation of HASs can
be considered as a severe loss of Si in tropical and sub-
tropical regions (McKeague and Cline 1963; Savant et al.
1997). The presence of Al on the surface of slag particles
may reduce the silica dissolution rate and speed up the poly-
merisation ofmonomeric silica to colloidal silica (Babu et al.
2016). Similarly,Keeping (2017) reported that existence of a
little quantity of soluble Al3+ ions in Calmasil may have
augmented its polymerisation process. Consequently, to
meet up the plant uptake rate, higher doses of Si are required
in field applications.

The responses of sugarcane yield to Si nutrition are
more substantial under environmental stress condition
compared to normal condition. Moreover, soil application
of calcium silicate increased cane yield by 59% and 28% in
salt-sensitive and salt-tolerant genotypes, respectively,
compared to controls and thereby indicates that cane yield
response is genotype dependent (Ashraf et al. 2009). The
limited use of Si in other countries is mainly due to a lack
of awareness of its effectiveness and/or adoptability under
field condition. Among the varietal variation in resistance
against borers, susceptible varieties benefit more from Si
fertilisation compared to resistant ones (Keeping and
Meyer 2002; Keeping et al. 2013).

9.2 Inclusion of Silicon in Integrated Pest
Management Strategy

9.2.1 Potential of Silicon in Controlling Primary Pest

The noctuid stalk borers or pink borers, Sesamia spp.
(Sesamia cretica Lederer and Sesamia nonagrioides
Lefebvre), are considered as primary pest of sugarcane in
Khuzestan province, Iran (Askarianzadeh et al. 2008). These
pink borers mainly attack sugarcane during tillering, forma-
tion of internodes and ripening stage (Nikpay et al. 2015) and
play a substantial role in damaging sugarcane internodes an-
nually (Danialy 1985). Recently, Si fertilisation has shown a
promising effect in reducing these borer damages in sugarcane
(Nikpay et al. 2015, 2017; Nikpay 2016). Under field condi-
tions, Nikpay et al. (2015) observed that Si nutrition in the
form of calcium silicate decreased the percentage of stalk
damage, bored internodes, moth exit holes and length of borer
tunnel caused by Sesamia spp. in the susceptible variety,
CP69-1062, of sugarcane. This may be attributed to the de-
layed insect penetration or the insufficient digestibility of
silicon-treated sugarcane stalk tissues. Although biological
control is one of the ecological friendly ways of managing
pink borer in sugarcane (Kuniata and Sweet 1994; Nikpay
et al. 2014), Nikpay (2016) suggested that treatments receiv-
ing the release of 2500 Telenomus busseolae Gahan, a major
biological control agent of stalk borers in Iran, followed by
calcium silicate application @ 1200 kg ha−1 improved the
cane quality, increased egg parasitism and decreased stalk
damage in sugarcane comparedwith treatments receiving only
biological control. Likewise, the potential of Si in enhancing
biological control has also been reported by Nikpay et al.
(2017). Furthermore, after testing the four different sources
of Si (rice husk ash, bagasse ash, calcium silicate and sodium
metasilicate) against sugarcane leaf hopper, Pyrilla perpusilla
Fletcher, Indhumathi et al. (2018) revealed that basal applica-
tion of calcium silicate @ 1000 kg ha−1 was effective in re-
ducing the leaf hopper population by the attraction of lepidop-
teran ecto-parasitoids, Epiricania melanoleuca. However, the
mechanisms need to be studied in detail to explore the exact
role of Si in promoting biological control in sugarcane.

9.2.2 Potential of Silicon in Controlling Secondary Pest
and Non-insect Pest

Due to change in agro-ecosystem and cultivation practices, the
spittlebug Mahanarva fimbriolata Stål (Hemiptera:
Cercopidae) has become a serious insect pest in sugarcane-
growing areas of Brazil (Korndörfer et al. 2011). Dinardo-
Miranda et al. (2002) recorded yield losses up to 44.8% due
to spittlebug attack. In a greenhouse experiment, Korndörfer
et al. (2011) investigated the effects of potassium silicate ap-
plication on the biology of spittlebug reared on three
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sugarcane cultivars (two resistant, SP79-1011 and SP80-1816,
and one susceptible, SP81-3250). They observed the lowest
male and female longevity ofM. fimbriolata on cultivar SP79-
1011 which may be credited to its high Si content in the
leaves. However, there was no effect on the fecundity and
egg viability either by the Si content in the plants or the cul-
tivars used. Besides stalk borer, stem borer, spittlebug and leaf
hopper, sugarcane is also attacked by about 30 species of
mites and non-insect pests globally (Beard et al. 2003;
Leslie 2004). The most destructive pest of mite usually no-
ticed in the south west province of Khuzestan, Iran, is
Oligonychus sacchari (Nikpay and Nejadian 2014), and can
be possibly controlled by using chemical and botanical miti-
cides (Nikpay et al. 2011, 2012). In order to explore an envi-
ronment friendly and non-chemical method for controlling
this pest, Nikpay and Nejadian (2014) investigated three dif-
ferent sources of Si (AgriSil, potassium silicate formulation
and Silamol) as foliar spray in sugarcane. They found that Si-
treated plants displayed significant reduction in mite density
compared to control. Additionally, they remarkably noticed
that the number of coccinellid beetles (Stethorus sp.) was also
affected by the mite’s population besides declining the beetle
density with Si fertilisation. Recently, Nikpay and Laane

(2020) noticed that spraying of silicic acid four times after
8 weeks of planting of sugarcane significantly controlled mite
damage and leaf dryness. Therefore, it was suggested that
inclusion of Si with other reduced risk natural-based miticides
might be an alternative option in an integrated pest manage-
ment (IPM) program strategy.

Based on this review, the beneficial effect of Si in sugar-
cane production is elucidated in Fig. 2. Further, this review
also explored that external Si nutrition in sugarcane is useful
in the improvement of photosynthesis and lodging resistance,
enhancement of growth and development, regulation of reac-
tive oxygen species, protection from soil salinity, reduction in
metal toxicity, alleviation of freeze damage and mitigation of
water stress, besides suppressing incidence of diseases and
pests.

10 Conclusion

Although Si depletion is very high in sugarcane especially in
tropical regions, unlike in rice, research on Si in sugarcane
under field condition is very limited mainly due to its long
growing duration. It can be predicted that climate change in

Role of Si 
in 

Sugarcane

Alleviates freeze damage

Protects from soil salinity

Improves photosynthesis 
and lodging

Reduces metal toxicity

Enhances growth and 
development

Regulates reactive oxygen species

Suppresses diseases and pests

Mitigates water stress

Fig. 2 A brief outline of the beneficial effects of Si in sugarcane
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the future will have an overwhelming influence on sugarcane
production across the world due to its susceptibility to various
biotic and abiotic stresses. The possible potential role of Si
mentioned in this review in providing resistance against vari-
ous biotic and abiotic stresses need to be addressed by re-
searchers in future investigations if the importance of external
Si nutrition is to be recognised for sugarcane farmers across
the world. Since Si fertilisation has many advantages for the
sugarcane crop to cope with the adverse climatic conditions,
this compiled review may encourage researchers to conduct
further studies by economically feasible and environmental-
friendly external Si supplementation in sugarcane under var-
ied biotic and abiotic stress conditions.

11 Future Perspectives

Based on this review, we would like to suggest few future
lines of work which would be appreciated in undertaking in-
depth research into unanswered problems for the benefit of
sugarcane cultivation in different parts of the globe. Few of
these suggestions are as follows: (1) budgeting and calibration
of plant-available Si content in different long-term fertiliser
experimental sugarcane plots across the world; (2) identifica-
tion and development of location, soil and area-specific and
cheaper and efficient Si sources which may help in formulat-
ing region-specific integrated nutrient management (INM)
and integrated pest management (IPM) in sugarcane in order
to protect sugarcane from different biotic and abiotic stresses;
(3) testing the possibility of application of Si through
fertigation as liquid Si fertiliser does not need huge storage
space and easier to be delivered compared to powder or gran-
ular form; (4) undertaking multi-season and large-scale field
investigation in different types of soils with different sources
and rates of Si to check the potential of Si on the backdrop of
various biotic and abiotic stresses; (5) providing a detailed
study of the mechanism underlying the physical and chemical
defence following Si application in sugarcane; and (6) screen-
ing of genotypic variability for efficient Si-accumulating sug-
arcane cultivars which may require lower rates of Si fertiliser.
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