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Abstract
The mapping of saturated soil hydraulic conductivity (KSat) is essential to understanding soil water dynamics and is
a sensitive input in hydrological modeling. The objectives of this study were to provide a reference for the selection
of soil hydrology and other environmental attributes that can be used as covariates for estimating KSat and to
compare the efficiency of univariate ordinary kriging versus ordinary robust cokriging, using selected soil hydrology
and environmental attributes. Data sets were obtained from a sample grid of 179 points established in the Ellert
creek watershed (ECW), located in Rio Grande do Sul state, Southern Brazil. KSat, macroporosity, microporosity,
total porosity, and bulk density were determined from soil sampled at each point. Data of land use and elevation
were also applied. All data sets were firstly submitted to classical statistics. Boxplot graphics were constructed to
evaluate the relationship between KSat and land uses. Spearman coefficient of correlation between KSat and the other
attributes was also assessed. For the assortment of covariates, cluster analysis was applied. Classical and robust
estimators were applied to calculate the auto and cross-semivariograms and hereafter the ordinary kriging and
cokriging. The Spearman coefficient showed some inconsistencies among the applied variables, suggesting that the
multivariate method was more appropriate. All cross-semivariograms, except for land use, showed results with better
accuracy than the auto-semivariograms. From the methods applied, the best estimates of KSat were obtained using the
robust cokriging method, using macroporosity and soil bulk density as covariates.
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1 Introduction

The variability of soils, both spatially and temporally, has long
been recognized in soil science (Jenny 1941; Lin 2006;
Simonson 1959;Wang and Shi 2018). Techniques that capture
soil spatial and temporal variability have recently evolved to
focus the attention of soil scientists on soil attributes related to
hydrological models (Qiao et al. 2018; She et al. 2017).
According to Libohova et al. (2018), the success of predic-
tions when modeling hydrological processes depends on the
accurate representation of the spatial and temporal variability
of soil hydrological attributes and the main external factors,
such as climate, land use and management, and soil water
dynamics.

Saturated soil hydraulic conductivity (KSat) is a key soil
attribute for understanding the soil water movement phenom-
enon and is therefore one of the main inputs used in hydro-
logical models. Several studies have reported that KSat values
are affected by the variation of pore space geometry
(Baiamonte et al. 2017), topography (Wang et al. 2013), land
use (Price et al. 2010; Salemi et al. 2013; Pinto et al. 2019),
and scale (Picciafuoco et al. 2019). It has also been well doc-
umented in the literature that Ksat is highly variable in space
(Wang et al. 2013; Papanicolaou et al. 2015; She et al. 2017).
Therefore, due to its high variability as well as to the effort
required for KSat data sampling, representativeness of the spa-
tial variability ofKSat at the watershed scale is often difficult to
obtain (Reichardt and Timm 2020).

Geostatistical tools have been used to quantify and map
the spatial variability of soil hydrology attributes aimed at
supporting hydrological modeling at the watershed scale.
The classical estimator of Matheron is the most used
semivariogram estimator to characterize and quantify the
spatial variability structure of soil attributes. However, due
to its high sensitivity to the existence of outliers, and its
requirement of a normal distribution in order to estimate
the underlying process (Lark 2000), its use is difficult in
field conditions, especially for attributes related to soil wa-
ter dynamics (Lebrenz and Bárdossy 2017). In order to
overcome these drawbacks, data transformation (loga-
rithm, exponential, root fourth, etc.) from the original scale
of measurement has been adopted (Song et al. 2019; Wallin
and Bolin 2015). However, Goovaerts (1997) indicated
that data transformation is not ideal if the aim is prediction,
since in general those who ultimately use the predictions,
such as land managers, hydrological modelers, and envi-
ronmental scientists and so on, require values on the orig-
inal scale of measurement which involves a back-transfor-
mation. Therefore, several robust estimators, such as that
of Cressie and Hawkins (1980), have been proposed to
minimize the effects of the presence of outliers or for use
on datasets with non-normal distributions for calculating
experimental semivariance values.

The determination of KSat can be costly, and much effort is
required to obtain representative spatial variability at the wa-
tershed scale. Therefore, multiple regression models (namely
pedotransfer functions (PTFs)) have been developed to esti-
mate KSat from easily available soil attributes from databases.
For instance, Boadu (2000) developed regression-based
models for estimating the KSat of compacted soils using fractal
dimension, entropy, porosity, percent of fine soil particles, and
the bulk density as predictors. However, some values (e.g.,
fractal dimension, entropy, and soil porosity) are not readily
available from soil databases.

Another alternative is to use geostatistical tools such as the
cross-semivariogram to estimate KSat from an auxiliary vari-
able of simple determination and/or low cost, since both var-
iables are well correlated. In this sense, robust estimators can
be applied for the calculation of the cross-semivariogram be-
tween KSat and other soil (such as porosity, textural fractions,
bulk density, etc.), topographical (elevation, slope, aspect,
etc.), and environmental (climate, land use, etc.) attributes
when such data are available.

Adhikary et al. (2017) mentioned that the ordinary
cokriging method in general reduces the variance of the pre-
diction error and improves estimations compared with
univariate ordinary kriging method, when the auxiliary
variable is well correlated with the primary one. Wang and
Shi (2018) used robust cross-semivariograms in the cokriging
process to estimate soil particles (clay, silt, and sand) in a large
watershed, applying some of the estimators proposed by Lark
(2003).

The spatial variability of KSat in watersheds is recognized
as a complex phenomenon, due mainly to the natural and
anthropogenic processes that influence soil water dynamics,
predominantly at the surface layer (Becker et al. 2018). In this
sense, an auxiliary variable (or covariate) should consider
some characteristics of the soil or the environment that are
quantifiable and related to the occurrence or the impediment
of the target phenomenon. Acquiring these auxiliary data
should be operationally more viable compared with the acqui-
sition of the target variable. Nowadays, topographical attri-
butes are widely available and can be readily obtained through
the geographic information system (GIS) using digital eleva-
tion models (DEMs) and digital terrain analysis techniques
(She et al. 2017). Additionally, if soil hydrology attributes
such as KSat can have their estimates optimized using land
features as covariates obtained by GIS, costs and time can
be saved (She et al. 2017).

The development of the Ellert Creek Watershed (ECW) is
regionally strategic as it is the main watercourse that flows
directly to the Pelotas River, supplying drinking water for
the population of Pelotas, a city with some 329,000 inhabi-
tants (Beskow et al. 2016). The ECW is a headwater water-
shed of the Pelotas River Watershed (PRW), where local
events are possibly reflected in the hydrological behavior of
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the downstream PRW. Furthermore, the ECW has suffered
from the impacts of human activities, being vulnerable to wa-
ter erosion and floods, causing soil and nutrient losses
resulting in economic and social damage.

Soil hydrology attributes (e.g., KSat) are key to understand-
ing the processes of the hydrological cycle and are critical
information for the application of hydrological models aimed
at supporting decisions on water resource management
(Beskow et al. 2016; She et al. 2017). Among them, KSat is
a sensitive model input for the application of distributed hy-
drological models (Wang et al. 2013; Hu et al. 2015).
Therefore, the objectives of this study were to (i) provide a
reference for the selection of soil hydrology and environmen-
tal attributes that can be used as covariates forKSat estimations
at the watershed scale using the non-linear Spearman correla-
tion coefficient and multivariate analysis, (ii) assess the per-
formance of ordinary kriging for mapping the spatial distribu-
tion of KSat using Matheron and Cressie and Hawkins estima-
tors, and (iii) assess the performance of the ordinary cokriging
method to map KSat using the Cressie and Hawkins cross-
semivariogram estimator and each selected attribute as an aux-
iliary variable.

2 Materials and Methods

2.1 Description of the Study Site

The study was carried out in a headwater sub-basin of the
Pelotas River Watershed, known as the ECW, located in the
municipality of Canguçu, Southern Rio Grande do Sul (RS)
state, approximately 50 km northeast of municipality of
Pelotas (Fig. 1). The ECW has an area of approximately
0.7 km2, and the altitude varies from 310 to 419 m.
According to the Köppen climate classification, ECW is Cfa
type, a mesothermal climate indicating wet subtropical condi-
tions, and characterized by an annual average temperature of
18 °C, with hot summers and cold winters (Kuinchtner and
Buriol 2001). The precipitation is well distributed throughout
the year, and its mean annual value is around 1350mm (IBGE
1986). The regional relief varies from undulating to strong
undulating, with a predominance of native forest or sparse
shrub, and shallow soils.

The watershed comprises only one soil class, theNeossolos
(Brazilian Soil Classification System) or Entisols in soil tax-
onomy, identified using the soil map developed by Embrapa
(1999), and updated by the latest version of the Brazilian Soil
Classification System (Embrapa 2006). The ECW was select-
ed due to its economic and social importance to the munici-
pality of Canguçu, an area greatly dominated by family farm-
ing systems. The ECWmain watercourse flows directly to the
Pelotas River, located in the southern part of the Rio Grande
do Sul state, with a total area of approximately 940 km2,

including the municipalities of Pelotas, Morro Redondo,
Arroio do Padre, and Canguçu.

2.2 Sample Grid

A sample grid of 106 sampling points spaced 50 m in the west
by 75m in the south direction was established at the beginning
of field work. Subsequently, in order to better model the spa-
tial variability structure of soil hydrology attributes, 78 soil
samples were collected in a specific area of the ECW water-
shed spaced 25 m at both directions, totaling 184 sampling
points (Fig. 1). This specific landscape was selected due to its
diverse features, including different land uses, soil textural
classes, and features of the topographical terrain. The geo-
graphical location of each point in the ECWarea was recorded
using GPS navigation equipment. ArcGIS software was used
to establish the sample grid and to obtain the UTM coordi-
nates of each point (Environmental Systems Research
Institute, Redlands, CA).

2.3 Soil and Topographic Attributes

Undisturbed soil samples were collected at all 184 sampling
points from the 0–0.20-m layer using metallic cylinders with a
5.0-cm height and a 4.8-cm internal diameter. It is important to
highlight that the samples were collected from the topsoil
layer (0–20 cm), the area of the watershed most affected by
different land management systems (Alvarez and Steinbach
2009).

The following soil hydrology attributes were determined:
soil bulk density (BD) (Blake and Hartge 1986), soil total
porosity (TP), macroporosity (Mac), and microporosity
(Mic) (Klute 1986). Saturated soil hydraulic conductivity
(KSat) was measured at each point using the constant head
method (Klute and Dirksen 1986).

The main land uses identified in the ECW were forest,
silviculture, annual cropping, and pasture. Forest here includ-
ed native forest sites which accounted for around 10% of the
ECW’s area; areas of silviculture were characterized by the
occurrence of Pinus sp., Eucalyptus sp., and Acacia sp.,
equivalent to 12% of the ECW. Annual cropping areas includ-
ed the cultivation of Glycine max, Zea mays, and Nicotiana
tabacum which occupied the largest area of the ECW (71%).
Pastures were mainly characterized by grazing areas, account-
ing for 7% of the total area of the ECW.

2.4 Exploratory Analysis

All data sets were submitted to basic and descriptive statistics,
calculating position (arithmetic average and median) and dis-
persion (standard deviation, variance, and coefficient of vari-
ation) measures as well as skewness and kurtosis coefficients,
which are related to the characteristics of the data distribution.
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The Kolmogorov-Smirnov (K-S) test at 5% significance was
applied to verify normality of all data sets. Additionally,
boxplots were constructed to evaluate the relationship be-
tween KSat and the identified land uses. The Spearman coef-
ficient of correlation between KSat and the other soil hydrolo-
gy attributes and environmental features was also calculated.

2.5 Cluster Analysis

Before the multivariate statistical analyses, each data set was
standardized (mean = 0 and standard deviation = 1), with the
aim of transforming the original data to the same order of
magnitude. Because the variables present different orders of
magnitude, the use of the standardized variables requires that
the variance and covariance matrixes are the same as the cor-
relation matrix. Cluster analysis was applied to construct den-
drograms with the aim of grouping the standardized variables
into homogeneous groups (Everitt and Hothorn 2011), using
the Mojena’s (1977) criterion for cutoff. The dissimilarity be-
tween the standardized variables is a distance measure. The
hierarchical cluster technique uses a Euclidean distance
(metric) to separate a set of objects (variables) into groups
according to chosen criteria. The group-average method was
used as an aggregation criterion. It is a weighted method
which calculates the distance between two clusters as the ar-
ithmetic average distance from observations in one cluster to
observations in another cluster. This method tends to combine
clusters that have small variances and may produce new clus-
ters that have the same variance (Ramos et al. 2007). The

number of groups was defined based on the criterion of the
square root of the number of variables (Bitencourt et al. 2016).

2.6 Geostatistical Analysis

The semivariograms used for geostatistical analysis may ex-
plain the spatial variability ofKSat, and are calculated from the
set (Zu (xi), i = 1, 2,…, N), usually by the Matheron classical
estimator (Webster and Oliver 2007), defined by Eq. (1):

γMZu
hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1
zu xið Þ−zu xi þ hð Þ½ �2 ð1Þ

where γMZu
(h) is the semivariance value using the Matheron

estimator, zu(xi) and zu(xi + h) are values of Zu at locations xi
and xi + h, respectively, andN(h) is the number of pairs [zu(xi),
zu(xi + h)] separated by the lag distance h.

Lark (2000) studied several robust estimators for experi-
mental semivariograms, which deal better with the presence of
outliers in the datasets. One of these estimators was developed
by Cressie and Hawkins (1980) and is presented in Eq. (2):

γCHZu
hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1

zu xið Þ−zu xi þ hð Þj j12
h i4� �

0:457þ 0:494

N hð Þ
ð2Þ

where γCHZu
(h) is the semivariance value using the Cressie-

Hawkins estimator. This estimator was designed to calculate
the semivariogram of a primary process with differences

a)

b)

c)

Fig. 1 Location, topography, hydrography, and sampling points of the Ellert CreekWatershed. a South America, b Rio Grande do Sul State, and c Ellert
Creek Watershed
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normally distributed even in the presence of contaminants of a
secondary process.

Cressie and Hawkins (1980) showed that the square root of
the absolute difference had a normal distribution with no sig-
nificant bias. Therefore, the effect of outliers is damped by the
square root of the absolute differences and then increasing that
values to the fourth power to resize the semivariogram scale.
The denominator of Eq. (2) is a correction factor based on the
assumption that the underlying process has the differences
normally distributed over all lags (Lark 2000). The breakdown
point of this estimator is zero, and for this reason, it may
present some difficulty by not establishing any limits on the
effect of outliers. In this case, a very large outlier could make
the estimate non-representative (Genton 1998). However, in
practice, it is an estimator that smooths the discrepant values
and does not set absolute limits on its effect.

The classical cross-semivariogram of Matheron is defined
by Eq. (3), being an extension of Eq. (1), where Zu and Zv are
the target and the auxiliary variables, respectively.

γMZu;Zv
hð Þ ¼ 1

2N hð Þ

� ∑
N hð Þ

i¼1
zu xið Þ−zu xi þ hð Þ½ �2: zv xið Þ−zv xi þ hð Þ½ �2

ð3Þ

where γMZu;Zv
hð Þ is the cross-semivariance value between

the variables Zu and Zv, the latter obtained by means of the
Matheron estimator.

For the Cressie and Hawkins estimator, the cross-
semivariogram follows the same rule described above, where
the covariate assists in robust semivariance estimates, accord-
ing to Eq. (4):

γCHZu;Zv
hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1

zu xið Þ−zu xi þ hð Þj j12
h i4� �

zv xið Þ−zv xi þ hð Þj j12
h i4� �

0:457þ 0:494

N hð Þ
ð4Þ

where γCHZu;Zv
hð Þ is the cross-semivariance value between Zu

and Zv variables, the latter obtained by means of the Cressie-
Hawkins estimator.

2.7 Cross-Validation

The cross-validation technique was used to verify the quality
of the geostatistical results, comparing estimated data by
kriging and cokriging with KSat measurements. The statistical
parameters used to evaluate the performance of the cross-
validation technique were the mean error (ME, Eq. (5)), the
square root of the mean squared error (RMSE, Eq. (6), and the
coefficient of determination (r2).

ME ¼ 1

n
∑
n

i¼1
ei−mið Þ ð5Þ

RMSE ¼
ffiffiffi
1

n

r
∑
n

i¼1
ei−mið Þ2 ð6Þ

where n = number of sampling points, ei = estimated value of
KSat, and mi = observed KSat value. The ME is an indicator of
the accuracy of the estimation, showing the tendency of the
interpolator to overestimate the values if positive or to under-
estimate if negative. RMSE quantifies the dispersion of the
measured and estimated values around the 1:1 line.

3 Results

3.1 Exploratory Analyses

The summary statistics of soil saturated hydraulic conductiv-
ity (KSat) and the other six associated attributes (BD, TP, Mac,
Mic, Elev, and Land Use) for the 179 points (five soil samples
were discarded during laboratory procedures) are presented in
Table 1. The frequency distribution ofKSat and TKSat (normal-
ized KSat data set using the fourth root transformation) is pre-
sented in Fig. 2. According to the classification ofWilding and
Drees (1983), the coefficients of variation (CV) for BD, TP,
Elev, and Land Use can be considered low (CV ≤ 15%),
whereas the Mac and Mic CV values were considered mod-
erate (15%<CV ≤ 35%).

The crossbar of the boxplot graphics (Fig. 3) shows the
median for each dataset for different land uses. The length of
the box reflects the interquartile range, and the vertical tails (or
bars) of the boxplot are marked by the extremes (either the
highest or lowest observed data); however, such do not qualify
as outliers. Outliers are defined as data ≥ 1.5 times greater
(upper fence) or ≥ 1.5 times lower (lower fence) than the in-
terquartile range.

3.2 Cluster Analysis

Table 2 presents the correlation matrix between attributes,
showing that between KSat and the associated attributes (BD,
TP, Macro, Micro, Elev, and Land Use), all linear correlations
were significant at the 1% probability level, with the exception
of elevation.

The dendrogram plotted from topographic and soil hydrol-
ogy attributes and land use in the ECW are shown in Fig. 4.
The cutoff was defined at 70% taking into account the statis-
tical stopping rule suggested by Mojena (1977).

3.3 Geostatistical Analysis

In this study, isotropic experimental semivariograms are esti-
mated for KSat, assuming an identical spatial correlation in all
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directions and neglecting the influence of anisotropy on the
semivariogram parameters. Isotropy is assumed for methodo-
logical simplicity. Isotropy is a feature of a natural process or
data in which directional influence is considered insignificant
and spatial dependence (autocorrelation) changes only with
the distance between two lags (Johnston et al. 2001).

In Table 3, the fitted parameters of the semivariogram and
cross-variogram models and their respective degree of spatial
dependence (DSD) values are presented.

The DSD calculated from the univariate semivariograms of
KSat was 43.2% for the transformed data, applying the classi-

cal Matheron estimator γMZu
hð Þ

h i
. On the other hand, a DSD of

22% was obtained for the untransformed KSat data using the

robust estimator of Cressie and Hawkins γCHZu;Zv

h i
, indicating

that these data have a moderate and weak spatial dependence
(Cambardella et al. 1994). Following the same classification,
the cross-semivariograms presented moderate spatial depen-
dence (KSat × Macro = 33.2%; KSat × TP = 34.8%; KSat ×
BD = 36.2%), except for the KSat × LU (land use) cross-
semivariogram (2.1%), which presented a weak spatial depen-
dence. The ranges for the univariate semivariograms of KSat

were 168.5 m for γMZu
hð Þ and 178.8 m for γCHZu

hð Þ. For

γCHZu;ZV
hð Þ, the range values were 152.9, 213.1, 161.8, and

212.7 m.
The maps developed by kriging methods using the param-

eters of γMZu
hð Þ (TKSat) and γCHZu

hð Þ (RKSat) are presented in

Fig. 5. Furthermore, the cross-validation statistical precision
(ME, RMSE, and r2) between the observed and estimated KSat

values using univariate kriging and cokriging are shown in
Table 4.

Figure 6 presents the scattered points around the 1:1 line
from the cross-validation process, which was applied for each
of the studied combinations, showing the accuracy of the
geostatistical procedures applied in this study.

4 Discussion

4.1 Exploratory Analyses

The average KSat and the median corresponded to 0.81 m h−1

and 0.52 m h−1, respectively. This contrast shows the great
variability of this soil hydrology attribute, also demonstrated
by the coefficient of variation (99.4%), being classified as
having a high variability (CV > 35%) according to Wilding

Table 1 Exploratory analysis of the data sampled in the study watershed

Attrib Number X + SE Med s CV (%) Skew Kurt K-S Norm

KSat 179 0.81 ± 0.06 0.52 0.80 99.4 1.38 1.46 0.175 No

Mac 179 20.6 ± 0.38 20.4 5.05 24.3 1.17 4.10 0.102 No

Mic 179 26.1 ± 0.59 26.4 7.89 30.3 0.11 0.79 0.075 Yes

TP 179 46.7 ± 0.49 46.4 6.62 14.1 1.01 1.61 0.137 No

BD 179 1.41 ± 0.01 1.42 0.17 12.4 − 1.01 1.61 0.151 No

Elev 179 362.5 ± 1.32 362.2 17.6 4.8 0.01 0.79 0.096 No

Attrib attributes, KSat saturated soil hydraulic conductivity (m h−1 ),Macmacroporosity (%),Micmicroporosity (%), TP total porosity (%), BD soil bulk
density (g cm−3 ), Elev elevation (m), Number number of data points, X mean value, SE standard error,Medmedian value, s standard deviation, CV (%)
coefficient of variation, Skew coefficient of skewness, Kurt coefficient of kurtosis,K-SKolmogorov-Smirnov test value (K-S critical value 0.086),Norm
normality

Fig. 2 a Histogram of the
saturated soil hydraulic
conductivity (KSat) values and b
histogram of transformed data by
the fourth root indicating a
Gaussian behavior. TKSat: KSat

normalized by fourth root
[KSat

(1/4)]
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and Drees (1983). Godoy et al. (2019) and She et al. (2014)
found a CV for KSat of 122.0 and 50.8% in studies conducted
in central-western Brazil and in the Loess Plateau region
(China), respectively. Even when the data sets were trans-
formed to logarithmic (ln), She et al. (2017) obtained a CV
above 35%.

All datasets followed a normal distribution as determined
by applying the K-S test. KSat data presented a non-normal
distribution, agreeing with results widely reported in the liter-
ature (Ahuja et al. 2010; Godoy et al. 2018; She et al. 2017).
Therefore, the original KSat data was fourth root transformed
(Elsenbeer et al. 1992) in order to use Matheron’s classical
semivariance estimator (Fig. 2).

The boxplot analysis (Fig. 3) of KSat in the different types
of land uses shows a decrease in the saturated soil hydraulic

conductivity following the areas of forest, silviculture, annual
cropping, and pasture. Forest soils are associated with a higher
infiltration capacity (Archer et al. 2013; Kurnianto et al. 2018;
Wood and King 1977) and a lower generation of surface run-
off (Germer et al. 2010; Kurnianto et al. 2018; Liu et al. 2018)
than soils under other types of vegetation. This occurs in na-
ture due to preferential flows in the soil profile as a result of
soil biota activity and higher organic matter content, as report-
ed by Pinto et al. (2015), Ma et al. (2017), and Pinto et al.
(2019).

The median KSat values for forest, silviculture, annual
cropping, and pasture were 1.18, 0.65, 0.49, and 0.26 m h−1,
respectively (Table 1). Annual cropping showed a greater num-
ber of outliers, suggesting a greater variability of KSat in this
area of land use. Despite this variability being linked to the
different farming activities practiced in the watershed, we did
not investigate changes in Ksat patterns over the time within the
same management system, which would lead to another line of
investigation. In the agricultural areas of the watershed, differ-
ent farming systemswith differing levels of mechanization, and
technology such as conventional tillage, no-tillage and mini-
mum tillage were observed, increasing the variability of Ksat.

Several studies have shown that land use systems affect
KSat values and therefore their spatial variation in a watershed
(Price et al. 2010; Salemi et al. 2013; Pinto et al. 2019).
Therefore, if properly quantified, it is possible to improve
KSat estimates in non-sampled points when used as a covariate
in a cokriging interpolation.

4.2 Cluster Analyses

The value of the Spearman correlation coefficient between
KSat vs. Land Use was low (0.21), although it was significant
at a probability level of 1%. A correlation of 0.5 was observed
betweenKSat vs. Mac and KSat vs. BD; however, in the case of
KSat vs. BD, the correlation was negative. The highest corre-
lation value was found between KSat and TP (0.72). The
values of Mac and TP were directly related with KSat, which
is corroborated by several other studies, where values of hy-
draulic conductivity are reported to increase with the increase
of total porosity. This is mainly due to macroporosity since it
is a preferred path of water flow in the soil profile, especially
in response to gravitational force (gravitational potential)
(Kurnianto et al. 2018).

A negative correlation was observed between KSat and
Micro (− 0.51). According to Godoy et al. (2019), this would
be an inconsistent pattern considering that the KSat of the soil
has no physical relationship with soil micropores. This result
indicates that a simple linear correlation matrix is not enough
to explain the correlations between KSat and other attributes,
and thus, multivariate statistical tools should be considered for
the assortment of spatial covariates and then a more efficient
cokriging process.

Fig. 3 Boxplot of KSat for the different land uses observed in SEW

Table 2 Spearman correlation matrix for the attributes studied

KSat BD TP Macro Micro Elev

BD − 0.50*
TP 0.50* − 0.99*
Mac 0.72* − 0.74* 0.74

Mic − 0.51* − 0.02NS 0.02NS − 0.57*
Elev 0.05NS − 0.21* 0.21 0.07NS 0.05NS

Land Use 0.28* − 0.25* 0.24 0.32* − 0.12NS − 0.10NS

KSat saturated soil hydraulic conductivity (m h−1 ), Mac macroporosity
(%), Mic microporosity (%), TP total porosity (%), BD bulk density
(g cm−3 ), Elev elevation (m)

*Significant at 0.01 level significance

**Significant at 0.05 level significance
NSNo level significance
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Based on the dendrogram and the cluster analyses, two
clusters were formed: the first was composed by KSat, TP,
Mac, and Land Use, and the second formed by the BD,
Micro, and Elev. In cluster 1, the most pronounced similarity
occurred between Mac and TP and then between these two
and KSat, followed by Land Use. The relationship between
Mac and TP is justified by the fact that macroporosity is a
straight component of total soil porosity. Soil porosity, mainly
macroporosity, is the main water path in the soil profile, and in
this way, the approximation of these attributes with KSat be-
comes clear (Godoy et al. 2019). Some studies (Kurnianto
et al. 2018; Liu et al. 2018) suggest that KSat is affected by
land use, mainly in the superficial soil layers. This is due to the
physical modifications in the superficial layers by soil man-
agement, altering the dynamics of the water in the soil.

4.3 Geostatistical Analyses

The variographic analysis (Table 3) demonstrates the spatial
dependence of univariate semivariograms fitted using the
spherical theoretical model. The cross-semivariograms were
also fitted by the spherical theoretical model, except for KSat ×
LU, which had the experimental semivariogram fitted by the
Gaussian theoretical model.

The values of the semivariogram parameter [γCHZu
hð Þ� con-

tribution [C] and nugget effect [C0+C] are integers and pos-
itives, except when BD was used as a covariate (KSat × BD).
The negative values for these parameters of [γCHZu;Zv

hð Þ� KSat ×

BD occur due to the inversely proportional correlation be-
tween the attributes KSat and BD, demonstrated by the
Spearman matrix. This is widely diffused in the literature,

Fig. 4 Dendrogram of all
hydrology attributes, elevation,
and land use, constructed from
179 data points sampled at SEW.
The graph also shows the cutoff
of 70% (red line)

Table 3 Parameters of univariate
semivariograms and cross-
semivariograms adjusted by the-
oretical models

Attributes Model C0 C0 +C s2 a (m) DSD (%) Est.

Univariate variogram

TKSat Spherical 0.03 0.07 0.06 168.5 43.2 M

RKSat Spherical 0.36 0.73 0.65 178.84 22.0 CH

Cross-variogram

KSat × Mac Spherical 1.457 4.38 4.05 152.9 33.2 CH

KSat × TP Spherical 0.009 0.03 0.02 213.1 34.8 CH

KSat × Land use Gaussian 0.002 0.11 0.08 161.8 2.1 CH

KSat × BD Spherical − 0.024 − 0.07 − 0.06 212.7 36.2 CH

KSat saturated soil hydraulic conductivity (m h−1 ),Macmacroporosity (%), TP total porosity (%),BD bulk density
(g cm−3 ), C0 nugget effect, C0 +C sill, a range, s2 variance, DSD degree of spatial dependence [C0/(C0 +
C)]×100, TKSat KSat normalized by fourth root [KSat

(1/4) ], RKSat KSat by robust estimator, Est. semivariance
estimator, M Matheron estimator, CH Cressie and Hawkins estimator
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where it is assumed that changes in BD mainly affect the
volume and the relationship of the macropores of a soil, thus
influencing the flow of soil water (Godoy et al. 2019).

Although the highest range of values were observed for
γCHZu;Zv

hð Þ for KSat × TP and KSat × BD, it is not possible to

state categorically that cross-semivariograms significantly in-
crease their spatial range when compared with univariate
semivariograms, mainly in this case, where for this parameter,
γMZu

hð Þ and γCHZu
hð Þ of KSat presented better performance than

γCHZu;Zv
hð Þ, when the covariates wereMac and LU. This may be

an indication that for a more realistic assessment of the

efficiency of each method, the analysis of parameters of
cross-validation could be essential.

The kriging maps (TKSat and RKSat) exhibit distinct pat-
terns (Fig. 5), where it is possible to observe that for TKSat,
high values occupy a more extensive area of the ECW, where-
as for RKSat, the highest values are restricted to areas near the
drainage network and with a greater forest presence. These
results are in accordance with (Kurnianto et al. 2018).

The map generated by the parameters of γCHZu;Zv
hð Þ called

KSat × LU presents a random pattern very different from the
others, indicating a more coherent saturated flow accumula-
tionwhen comparedwith each other. This phenomenon can be
explained by the low performance of the γCHZu;Zv

hð Þ parameters

when using land use as the covariate, indicating that this en-
vironmental attribute is not suitable for cokriging interpolation
in the ECW.

Maps generated from KSat × Macro, KSat × TP, and KSat ×
BD are more detailed than those generated by univariate ordi-
nary kriging. Maps generated from KSat × Macro are close to
the original data in relation to the maximum and minimum
values and amplitude. Additionally, maps generated by uni-
variate kriging had less spatial detail (more uniform) than
those generated by cokriging (KSat × Mac; KSat × TP; KSat ×
BD). This spatial detail is clearer in some specific areas of the
watershed, such as seen in the middle area. A greater ampli-
tude of the high and low values distributed over the ECWarea
is also observed in the three KSat maps which presented better
performance in the cokriging process. This suggests that the

Fig. 5 Spatial distribution of KSat

in the Sanga Ellert Watershed
using classic ordinary kriging (a),
robust ordinary kriging (b), and
robust ordinary cokriging (c–f)

Table 4 Summarized statistics of the cross-validation for observed vs.
interpolated data of KSat

Attributes RMSE ME r2

Kriging

TKSat 0.6875 0.0285 0.64

RKSat 0.4948 − 0.0033 0.69

Cokriging

KSat × Mac 0.2618 − 0.0044 0.91

KSat × TP 0.3755 − 0.0047 0.83

KSat × Land use 0.8373 − 0.0281 0.22

KSat × BD 0.3744 − 0.0054 0.83

KSat saturated soil hydraulic conductivity (m h−1 ), Mac macroporosity
(%), TP total porosity (%), BD bulk density (g cm−3 ), TKSat KSat normal-
ized by fourth root [KSat

(1/4) ], RKSat KSat by robust estimator, ME mean
error, RMSE root mean square error, r2 coefficient of determination
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smoothing effect is more pronounced in kriging than in
cokriging. Furthermore, this demonstrates that cokriging,
when used the correct covariates, can better describe the var-
iability of KSat than ordinary univariate kriging.

The RMSE values (Table 4), which indicate the data dis-
persion behavior, presented a better absolute performance of
the KSat × Mac interpolation, with a value closer to zero. In
contrast, the KSat × LU cokriging and the univariate interpo-
lations (TKSat and RKSat) presented the worst results. On the
other hand, the values of ME, which identify if the model
underestimated (negative values) or overestimated (positive
values) the target variable, were quite satisfactory, presenting
low and negative values with a slight underestimating behav-
ior, except for the maps generated by univariate kriging TKSat

and cokriging “KSat × LU.” Only the TKSat interpolation
overestimated the observed data, showing the highest ME
value.

The coefficient of determination (r2) had a very high per-
formance demonstrating a good fit for almost all of the esti-
mated values in the interpolations. Especially in reference to
KSat × Mac (r2 = 0.91), this statistic indicated an excellent

linear fit in the cross-validation cokriging data (Fig. 6). The
lowest performance can be attributed to cokriging where the
covariate of land use was used. In addition to the extremely
random standard of the map generated by cokriging, theKSat ×
Land Use cross-validation (Fig. 6e) showed a poor fit between
the estimated and observed values. On the other hand, the
results obtained by KSat × Mac (Fig. 6c) during cokriging
proved to be the most efficient mapping method, with a high
performance in statistical indicators and cross-validation.

Saturated soil hydraulic conductivity is the most important
soil hydrology attribute for soil management, water yield and
baseflow behavior in watersheds, sediment transport, and for
the basic information of initial hydrogeology exploration.
Several applications require a good map of KSat, such as for
identifying areas with higher potential for groundwater re-
charge (Pinto et al. 2016; Alvarenga et al. 2012), to character-
ize the effect of land use on the watershed streamflow behav-
ior by means of a distributed hydrological model (Alvarenga
et al. 2016) or based onmeasurements in the field (Price 2012;
Muñoz-Villers and McDonnell 2013; Pinto et al. 2019), to
understand the water balance in watersheds (Mello et al.

(a)  TKSat

(d)  KSat  X TP 

(b) RKSat (c)  KSat  X Mac 

(e)  KSat  X Land use (f)   KSat  X BD 

Fig. 6 Cross-validation and linear adjustment of observed vs. interpolated data ofKSat using classic ordinary kriging (a), robust ordinary kriging (b), and
robust ordinary cokriging (c–f)
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2019; Salemi et al. 2013; Fleischbein et al. 2006) and for use
as a support for storm hydraulic structure design (Chappell
et al. 2017).

5 Conclusions

Among univariate geostatistical techniques, the use of the ro-
bust Cressie and Hawkins estimator on untransformed data
presented a better performance than using the classical esti-
mator of Matheron on transformed data. The cluster multivar-
iate method presented a clearer separation of the covariates for
the KSat cokriging process, which can be considered as the
most efficient method for selection of covariates compared
to classic techniques.

The cokriging technique demonstrated a greater perfor-
mance than univariate techniques when robust cokriging was
applied using macroporosity and bulk density as covariates,
demonstrated by the quality of the KSat map increased esti-
mates. Land use covariate, although showing an influence on
KSat, was not successful in subsequent geostatistical multivar-
iate processes for the studied watershed.

The KSat robust cokriging map can be used to improve land
planning in this headwater watershed, with the aim of increas-
ing the water infiltrability and preserving the uses and man-
agement strategies that have shown a positive impact on the
hydrology of the watershed.
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