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Abstract
Ash resulting from biomass energy resource utilization contains a wide range of metal oxides and hydroxides, which may
influence the capacity of the ash to be used as a soil amelioration material. This study aimed to assess the effects of different
ashes on changes in soil carbon (C) mineralization and soil microbial biomass carbon (MBC) in reclaimed mining soils (RMSs).
Different levels (0, 25, 50, and 75 Mg ha−1) of three ashes (rice husk, oil palm shell, and coal fly ash) were applied to 10-year
RMS for a 120-day incubation period. Carbon mineralization was measured over the 120-day incubation period, while MBC and
selected chemical properties were quantified at the end of the incubation period. The results of the study showed that the
application of rice husk and oil palm shell ash at all levels and coal fly ash at low levels (≤ 25Mg ha−1) increased Cmineralization
and MBC. However, the C mineralization and MBC of the soil decreased significantly when the amount of added coal fly ash
reached 75Mg ha−1. These decreases in Cmineralization andMBCmay be ascribed to the harmful effect of high amounts of coal
fly ash on microbial activity and the increased specific surface areas and contents of Ca, Mg, oxalate- and dithionite-extractable
iron and aluminum in soil with high amounts of added coal fly ash. This study demonstrates that the application of different types
of ash to RMS leads to different C mineralization and soil MBC responses.
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1 Introduction

Several attempts have been made to replace fossil fuels with
renewable energy resources, such as biomass energy sources,
in response to concerns about climate change (Bentsen and
Felby 2012; Varlas et al. 2017). A result of the use of biomass
for energy generation is the production of large amounts of ash
during incineration. Ash is frequently considered an unwanted
product because of its toxic elements, such as Cd, Ni, Pb, Cr,
Zn, Co, and Cu (Maresca et al. 2018; Munda et al. 2016;
Noyce et al. 2016); therefore, large quantities of generated
ash are regularly applied for landfills (Careddu et al. 2015;
Valentim et al. 2019). Ash also contains major nutrients

required by plants, except for nitrogen, and has liming prop-
erties due to its high contents of metal oxides and hydroxides
(Maresca et al. 2019; Qin et al. 2017; Silva et al. 2019).
Therefore, ash is frequently applied as an ameliorant material
to soils to improve soil quality.

Microorganisms are essential soil ecosystem drivers that
conduct soil biochemical processes, such as the decomposi-
tion of organic matter (OM), nutrient cycling and the produc-
tion of greenhouse gasses (Paul 2014). Changes in soil eco-
systems may affect soil microbial communities, thus eventu-
ally influencing soil quality and soil productivity. Carbonmin-
eralization and microbial biomass carbon (MBC) are the most
broadly applied variables for measuring the effects of alter-
ations in soil ecosystems on soil microbial processes (Chen
et al. 2018; Morillas et al. 2017; Singh and Gupta 2018; Zhao
et al. 2019). C mineralization and MBC have been used to
describe the effect of long-term nitrogen fertilizer application
(de Andrade et al. 2019) and the effect of corn stover manage-
ment (Urra et al. 2018) on changes in soil quality. MBC is
frequently thought to be a more dynamic indicator than those
based on physicochemical soil characteristics and therefore
has the advantage of being an early warning parameter of
changes in soil quality (Bünemann et al. 2018; Schloter
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et al. 2018). The results of these studies suggest that C miner-
alization and MBC have crucial functions in changes in soil
quality throughout the acceleration of soil organic carbon
decomposition.

Reclaimed mining soils (RMSs) have an irregular soil layer
due to the mining process, so the characteristics of RMSs are
very different from those of the original soils. RMSs generally
have a low level of soil fertility, with low contents of OM and
nutrients, a low soil pH, high contents of toxic elements
(Ahirwal et al. 2017; Feng et al. 2019; Yuan et al. 2018), low
concentrations of cations and a low cation exchangeable capac-
ity (CEC) (Asensio et al. 2019; Zhen et al. 2019). Total organic
carbon contents in the range of 5.6 15.9 g kg−1 (Kumar et al.
2018) and the high bioavailability of metalloid elements such as
Cd, Pb, Cu, Ni, and Zn (Manna and Maiti 2018; Pietrzykowski
et al. 2014) are observed in RMSs. Therefore, soil amelioration
is essentially required to improve the quality of RMSs before
revegetation is conducted in the soils.

In general, the application of ash to soils as a form of soil
amelioration improves the soil physical, chemical, and biolog-
ical characteristics (Moragues-Saitua et al. 2017; Thomaz
2018). The application of 3–6 Mg ha−1 wood ash to soils in-
creased the pH and nutrient concentrations in the O horizon of
forest soil after 2.5 years (Hansen et al. 2018). Furthermore, the
application of whole digestate combined with wood ash to soils
resulted in higher soil pH and nitrate concentration compared to
the application of whole digestate without wood ash (Ibeto et al.
2020). However, the results of a study carried out by García-
Sánchez et al. (2015) showed that no significant changes in soil
chemical and microbiological parameters followed coal fly ash
application to Chernozem soil. No changes in C mineralization
and urease activity in soils were observed after 14 years of coal
fly ash application (Leclercq-Dransart et al. 2019). Differences
in the effect of ash used as an amelioration material on changes
in soil properties may be attributed to differences in the type and
amount of elements contained in the ash. Until now, compre-
hensive information on the changes in soil properties resulting
from different ash applications to RMSs has been relatively
unavailable. The lack of such information restricts the practical
use of ash as an amelioration material to improve the character-
istics of RMSs. The aim of this study was to evaluate the
changes in C mineralization and MBC in response to different
ash applications to RMSs. The hypothesis is that the application
of different ash to RMSs results in different C mineralization
and soil MBC values.

2 Materials and Methods

2.1 Study Site Description

The research site was in the reclaimed coal mining area at the
PT Arutmin Indonesia Satui site (03°11′27″ – 03°46′41″ S,

115°22′56″ – 115°54′14″ E) in the South Kalimantan
Province, Indonesia. Soils at this site are classified as Typic
Dystrudepts on the basis of the soil taxonomy system. The
average annual precipitation is 3001 mm, ranging from 1157
to 4459 mm, with approximately 75% precipitation between
March and July. The average annual temperature is 27.5 °C,
with a mean minimum temperature of 22.7 °C and a mean
maximum temperature of 31.9 °C observed in June and
November, respectively.

The research site is a former coalmine area with an open pit
system that was closed in 2009. After the closure of the mine,
the site was reclaimed and planted with forestry plants and
cover crops. The dominant trees at the site include Acacia
mangium and Paraserianthes falcataria. Smaller proportions
of Samanea saman, Shorea megistophylla, Dipterocarpus
hasseltii, and Peronema canescens were observed at the site.
The cover crop at this site is Calopogonium mucunoides.

2.2 Soil and Ash Sampling and Characterization

The soil used for this study was characterized by the O horizon
(4–0 cm), A horizon (0–45 cm) and B horizon (45–90 cm).
The organic layer (O horizon) is dominated by slightly to
modera te ly decomposed l i t t e r or ig ina t ing f rom
C. mucunoides, which is used as a cover crop in the reclama-
tion of coal mine soils. Soil samples were collected randomly
from 20 soil cores at a depth of 0–30 cm (A horizon) using a
soil auger, and then the samples were combined into a soil
composite sample. Plant debris was removed manually, and
the soil samples were homogenized, placed in a plastic bag,
and stored under field-moist conditions at 4 °C until they were
used for the incubation study. Soil subsamples were air-dried
at room temperature and sieved to 2 mm for soil physical and
chemical characterization.

Rice husk ash was sampled from rice mills located in the
Asam-Asam Village, Jorong Subdistrict, South Kalimantan
Province, which is adjacent to the reclaimed coal mining area
of the PTArutmin Indonesia Satui site. Oil palm shell ash was
collected from the PTPN XIII oil palm processing plant,
Pelaihari, South Kalimantan Province, Indonesia. Coal fly
ash was sampled from the Asam-Asam Coal Power Plant,
which is located in Asam-Asam village adjacent to the
reclaimed coal mining area of the PT Arutmin Indonesia
Satui site. All ashes were air-dried after collection and then
homogenized by sieving (2 mm mesh) before physical and
chemical characterization.

2.3 Organic Matter Preparation

Calopogonium mucunoides grown in the reclaimed coal
mining area of the PT Arutmin Indonesia Satui site as a
cover crop was used as OM in this study. Plant residues
were oven-dried at 60 °C and then ground to <2 mm. The
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residues contained 370.4 g kg−1 organic carbon,
28.5 g kg−1 total nitrogen, 27.3 g kg−1 hot water-soluble
carbon, 37.2 g kg−1 cellulose, 31.5 g kg−1 hemicellulose,
and 14.9 g kg−1 lignin (Saidy et al. 2019).

2.4 Laboratory Incubation

The experiment was conducted using polyvinyl chloride
(PVC) tubes (1.95 cm diameter) containing 30.40 g of moist
soil (the amount of soil in the tube was calculated to obtain a
bulk density of soil similar to that in field measurements after
the compaction of the soil to a depth of 2.00 cm). OM (0.3 g)
and ash (0.00, 0.36, 0.72, and 1.07 g) were added gently to and
combined homogenously with the soil. The amount of OM
added to the soil was equivalent to a field application of
5.0 Mg ha−1, while the amount of ash added to the soil was
equivalent to field applications of 0, 25, 50, and 75 Mg ha−1,
respectively. Distilled water was added carefully to the mix-
ture of soil OM and ash to achieve 70% water-filled pore
space (WFPS), and the mixture in the tube was compacted
to a depth of 2.00 cm. The tubes were then transferred to
1000 mL Mason jars along with 15 mL of distilled water in
a 20 mL glass vial for humidity maintenance. After being
sealed with airtight lids with rubber septa for gas sampling,
the jars were incubated in the dark at room temperature for
120 days. A total of 36 tubes were prepared and incubated:
three ashes×four levels of ash application×three replicates.

Carbon mineralization was determined by extracting
10 mL of headspace gas from each jar using a 10 mL syringe
through the septum in the middle of the lid. The extracted gas
was transferred to a 10 mL glass vial and then injected onto a
gas chromatograph (Shimadzu GC-14A). Carbon mineraliza-
tion was measured on a weekly basis during the 120-day in-
cubation period. After the C mineralization measurement was
completed each week, the jars were opened for 3 h to permit
the exchange of the CO2-enriched water inside the jar with
fresh water. The tubes were watered precisely when the jars
were opened to ensure a constant water content during the
incubation period (the water content at the end of incubation
was 69.2–71.2% WFPS). The total C mineralization in each
sample during the incubation period of 120 days was calcu-
lated as the sum of each C mineralization measurement every
week and expressed as the cumulative C mineralization.

2.5 Characterization of Soil, Ash, and Amended Soil

The determination of soil texture was conducted using sieving
and sedimentation methods (Gee and Bander 1986). The bulk
density of the soil and ash was determined by driving a cylin-
drical metal sampler (diameter = 4.8 cm; height = 10.0 cm)
into the soil or ash to a 30 cm depth, and then the cylindrical
metal was carefully removed to preserve the soil and ash cores
(Blake and Hartge 1986). The soil and ash samples were

transported to the laboratory, dried to a constant weight at
105 °C and then weighed. The soil and ash pH values were
determined using the electrode glass method in an aqueous
mixture of air-dried sample and distilled water (1:5,
mass:volume) (McLean 1982). The contents of organic car-
bon and total nitrogen in the soil and the ash weremeasured by
the dry combustion method using a LECO CNS2000 (LECO
Corporation, MI, USA). The total P of the soil and ash was
measured using molybdenum blue with spectrophotometric
measurements at 660 nm after digestion of the soil and ash
with 60% HClO4 (Olsen and Sommers 1982). CEC was mea-
sured using the ammonium acetate (pH 7.0) method (Rhoades
1982). Measurements of total potassium (K), sodium (Na),
magnesium (Mg), calcium (Ca), aluminum (Al), and iron
(Fe) were conducted by digestion of the soil and ash using a
mixture of HNO3 and HClO4 in glass test tubes for 2 h at
100 °C, followed by digestion at 120 °C until a white residue
was obtained. The solution containing the white residue was
diluted with distilled water to 50 mL and then filtered through
Whatman No. 41 filter paper (Barnhisel and Bertsch 1982;
Olson and Ellis 1982). The concentrations of K, Na, Ca,
Mg, Al, and Fe in the solution were determined using atomic
absorption spectrophotometry (Shimadzu AA6300G). The
characteristics of the soil and ash samples in the study are
presented in Table 1.

Selected soil chemical properties were determined follow-
ing the completion of the incubation period. The soil reaction
(pH), CEC, and total Ca and Mg of the ash-amended soils
were measured using the methods described previously. The
specific surface areas (SSA) of the soils were acquired by five-
point nitrogen adsorption at 77 K and the subsequent desorp-
tion of nitrogen with an autosorb instrument (Nova 4200
Analyzer, Quantachrome Corp., Boynton Beach, USA). The
extraction of Fe and Al from the soils using oxalate (Feo and
Alo) and dithionite (Fed) solutions was conducted by the meth-
od of Blakemore et al. (1987), and the concentrations of Fe
and Al in the extracts were quantified spectrophotometrically
(Shimadzu AA6300G).

After the completion of the incubation period, all tubes
were removed from the jars, and the ash-amended soils were
air-dried for 6 h to determine the soil MBC. Soil MBC was
measured by the chloroform fumigation-extraction (CFE)
method (Vance et al. 1987), and a KEC value of 0.45 was
used to measure MBC (Joergensen 1996). Two soil subsam-
ples of 5 g each (approximately 40% water holding capacity),
one designated for nonfumigation and the other for fumiga-
tion, were placed into a 50 mL conical flask. The soil samples
were fumigated using ethanol-free chloroform in a vacuum
desiccator for 24 h at room temperature in the dark. Both the
nonfumigation and fumigation samples were extracted by
adding 40 ml of 0.5 M K2SO4 to the soil and were shaken
on a shaker at 40 cycles per minute for 30 min. The extract
was filtered through Whatman No. 41 filter paper, and the
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contents of organic C in the extract were measured using the
Walkley-Black wet digestion method (Heanes 1984). Soil
MBC was calculated by subtracting the nonfumigated C mea-
surement from the fumigated C measurement.

2.6 Carbon Mineralization Fitting and Statistical
Analysis

The C mineralization data were fitted to the two-pool carbon
mineralization model, i.e.,Ct =Cs (1-e

-st) +Cf (1-e
-ft), to quan-

tify the dynamics of C mineralization, where Ct is the cumu-
lative C mineralization (mg C kg−1) during the incubation
period t; Cs is the size of the pool of slowly mineralizable C
(mg C kg−1); Cf is the size of the pool of rapidly mineralizable
C (mg C kg−1); and s and f are the mineralization rate con-
stants for the slow and fast pools (day−1), respectively. Curve
fitting was carried out by the least-squares nonlinear curve
fitting procedure in Microsoft Excel® (de Levie 2001).

The experimental data were analyzed by analysis of variance
(ANOVA) in GenStat 11th Edition to test the effects of each
treatment (Payne 2008). In the case of significance in ANOVA,
the least significant difference (LSD) test was used to differen-
tiate among the treatment means at the 95% confidence level.

3 Results

3.1 Characteristics of Soils with Different Types
and Amounts of Added Ash

The ANOVA results revealed that the addition of ash to
the RMSs resulted in significant changes in several soil

chemical characteristics, except soil CEC (Table 2). The
increase in soil pH was larger with coal fly ash addition
than with oil palm shell and rice husk ash addition
(P ≤ 0.05) (Table 3), suggesting that the neutralizing
values of coal fly ash were higher than those of both oil
palm shell and rice husk ash. The SSA of the soils in-
creased with ash addition. The largest increase in SSA
was observed for coal fly ash addition (Table 4). The
contents of Ca, Mg, oxalate-extractable Al, oxalate-
extractable Fe and dithionite-extractable Fe in the soil
also increased with the addition of ash, with higher in-
creases after coal fly ash addition than after oil palm shell
and rice husk ash addition (Table 4).

3.2 Effect of Ash Additions on Carbon Mineralization

Rapid C mineralization was observed for all treatments over
the first 35 days; then, the C mineralization increased gradu-
ally, starting to flatten on day 98 (Fig. 1A, B, and C). The
cumulative carbon mineralization at the end of the incubation
period reached 1260–1593 mg C kg−1, depending on the type
and amount of ash added to the soil (Fig. 1D).

The ANOVA results showed that the cumulative C mineral-
ization during the 120-day incubation period was significantly
influenced by ash application (P ≤ 0.001; Table 2). The C min-
eralization of soils amended with oil palm shell and rice husk
ash exhibited similar responses to increasing amounts of applied
ash. Increasing the amount of oil palm shell or rice husk ash to
high rates (50 and 75 Mg ha−1) increased C mineralization (P ≤
0.05; Fig. 1D). However, the response of C mineralization to
increasing amounts of added coal fly ash was different from that
to increasing amounts of added oil palm shell and rice husk ash.

Table 1 Characteristics of the soil
and different types of ash used in
the experiment

Characteristics Soil Coal fly ash Rice husk ash Oil palm shell ash

Texture

Sand (%) 38.33 (3.99) * – – –

Silt (%) 23.45 (3.72) – – –

Clay (%) 38.22 (2.56) – – –

pH (H2O) 4.23 (0.12) 7.12 (0.10) 6.45 (0.09) 6.68 (0.09)

Bulk density (g cm−3) 1.21 (0.03) 1.37 (0.10) 1.27 (0.10) 1.19 (0.04)

Organic C (g kg−1) 2.34 (0.13) 1.02 (0.05) 1.12 (0.07) 1.24 (0.06)

N (g kg−1) 1.45 (0.03) 0.91 (0.04) 0.34 (0.04) 0.19 (0.03)

P (g kg−1) 1.67 (0.09) 0.11 (0.03) 0.09 (0.04) 0.07 (0.02)

Ca (mg kg−1) 2.34 (0.13) 1897.30 (8.73) 23.56 (2.83) 45.23 (6.24)

Mg (mg kg−1) 3.23 (0.05) 1684.30 (7.08) 43.44 (5.50) 36.22 (2.04)

K (mg kg−1) 2.12 (0.06) 678.23 (6.10) 3.45 (0.15) 3.12 (0.04)

Na (mg kg−1) 1.23 (0.08) 512.30 (5.42) 1.23 (0.04) 1.57 (0.09)

Al (mg kg−1) 12.34 (0.10) 823.21 (4.65) 3.44 (0.16) 3.13 (0.08)

Fe (mg kg−1) 9.67 (0.51) 532.31 (2.98) 2.56 (0.11) 2.34 (0.06)

CEC (cmol kg−1) 19.87 (0.08) – – –

*Numbers in the parentheses indicated the standard deviation of mean (n = 3)
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The application of 75 Mg ha−1 coal fly ash led to a decrease of
14% in C mineralization compared to the soil without coal fly
ash application (P ≤ 0.05; Fig. 1D).

The cumulative C mineralization of soil amended with ash
fitted very well to the two-pool carbon mineralization model
with R2 ≥ 0.99 (Fig. 1A, B and C). The size of the rapidly
mineralizable pool (Cf − 855-1102 mg C kg−1) was larger than
that of the slowly mineralizable pool (Cs – 429-578 mg C
kg−1) (Table 5). The addition of oil palm shell and rice husk
ash to the RMSs resulted in increases in bothCf andCs, but the
increase in Cf was stronger than that in Cs (Table 5). The
greatest increase in the size of Cf by 11% and 15% was ob-
served when the amount of added oil palm shell and rice husk
ash reached 75 Mg ha−1, respectively. The addition of
50 Mg ha−1 oil palm shell and rice husk ash resulted in
the greatest increase in the size of Cs by 8% and 12%,
respectively (Table 5). However, the addition of coal fly
ash to the RMSs decreased both Cs and Cf (Table 5). The
results of ANOVA revealed that the mineralization rates
of the slow (s) and fast ( f ) mineralizable pools were not
significantly influenced by the addition of different types
and amounts of ash (P > 0.05; Table 2).

3.3 Microbial Biomass Carbon

The ANOVA results showed that the soil MBC was influ-
enced by the application of ash (P ≤ 0.001). The addition
of oil palm shell and rice husk ash at 50 Mg ha−1 and
75 Mg ha−1 to the RMSs increased MBC compared to that
of soil without ash (P ≤ 0.05; Fig. 2). In contrast, the ad-
dition of a high amount of coal fly ash to the RMSs led to
a reduction in MBC. The addition of 25 Mg ha−1 coal fly
ash increased MBC. However, the MBC of the soil with
75 Mg ha−1 coal fly ash was lower than that of the soil
without ash (P ≤ 0.05; Fig. 2).

4 Discussion

The application of different types and amounts of ash to the
RMSs resulted in similar effects on C mineralization and
MBC. The application of different amounts of rice husk and
oil palm shell ash and a low amount of coal fly ash increased C
mineralization and MBC, while the application of a high
amount of coal fly ash reduced C mineralization and MBC.
The results of this study are consistent with a study by Basanta
et al. (2017) that reported changes in both microbial activity
and microbial biomass after the application of remediation
treatments. Ash application to soils indirectly influences soil
C mineralization and MBC through changes in the activity of
soil microorganisms. Increases in soil pH as a result of ash
application have been reported to accelerate microbial activity
and therefore increase C mineralization and soil MBC
(Barthod et al. 2018; Cruz-Paredes et al. 2017; Maljanen
et al. 2006; Reid and Watmough 2014; Zimmermann and
Frey 2002). Such an increase in soil MBC due to changes in

Table 2 Results of nested ANOVA of the effect of different types and
amounts of ash addition on changes in soil characteristics, C
mineralization, parameters of the two-pool C mineralization model (Cs,
Cf, s, and f), and MBC

Source of Variation Degrees of Freedom F P value

Soil pH

Ash type 2 19.69 <0.001

Ash type*Ash amount 9 22.80 <0.001

CEC

Ash type 2 19.69 0.201

Ash type*Ash amount 9 22.80 0.134

Ca

Ash type 2 224.62 <0.001

Ash type*Ash amount 9 101.17 <0.001

Mg

Ash type 2 170.69 <0.001

Ash type*Ash amount 9 40.28 <0.001

SSA

Ash type 2 57.29 <0.001

Ash type*Ash amount 9 22.57 <0.001

AlO
Ash type 2 155.14 <0.001

Ash type*Ash amount 9 70.77 <0.001

FeO
Ash type 2 199.28 <0.001

Ash type*Ash amount 9 44.34 <0.001

FeD
Ash type 2 229.67 <0.001

Ash type*Ash amount 9 81.11 <0.001

C mineralization

Ash type 2 31.50 <0.001

Ash type*Ash amount 9 9.55 <0.001

Cf

Ash type 2 36.55 <0.001

Ash type*Ash amount 9 10.57 <0.001

Cs

Ash type 2 23.48 <0.001

Ash type*Ash amount 9 11.92 <0.001

f

Ash type 2 47,286.45 <0.001

Ash type*Ash amount 9 17,973.82 <0.001

s

Ash type 2 147,000.00 <0.001

Ash type*Ash amount 9 72,180.00 <0.001

Microbial biomass C

Ash type 2 6.16 0.007

Ash type*Ash amount 9 5.62 <0.001
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soil pH is primarily related to the increase in soil bacterial
activity (Rousk et al. 2010). In this experiment, all ash addi-
tions increased the soil pH from 3.60 to 4.06–4.48, depending
on the types and the amounts of added ash (P ≤ 0.05; Table 3),
indicating that the ash used in this experiment could be an
alternative material for liming acid soils (Pandey and Singh
2010; Schönegger et al. 2018).

It is known that MBC shows a quick response to soil ame-
lioration and plays an essential function in controlling changes
in soil quality (Bünemann et al. 2018; Kiboi et al. 2018). The
increase in MBC in response to the application of different
amounts of rice husk and oil palm shell ash and a low amount
of coal fly ash in this study might be because of the easily

available nutrients in the ash. The ash used in this experiment
contains nutrients (Table 1) necessary for the growth of soil
microorganisms, although not all of the nutrients are present in
an available form. The results of this research are in line with a
study conducted by Jokinen et al. (2006) that showed increas-
ing amounts and qualities of available C sources (dissolved
organic C) for microbial activity following the application of
wood ash. The amount of C in microbial biomass and the
amount of K2SO4-extractable dissolved organic C was higher
in soil treated with wood ash and nitrogen applications than in
soil treated with nitrogen application only, indicating that
wood ash application resulted in an increase in the amount
of available C for microorganisms (Saarsalmi et al. 2012).

Table 3 Changes in pH, cation
exchangeable capacity (CEC),
calcium (Ca), and magnesium
(Mg) of soils after the addition of
different types and amounts of ash

Type of ash Amount

(Mg ha−1)

pH (H2O) CEC

(cmol kg−1)

Ca Mg
— g kg−1 —

Oil palm shell ash 0 3.63 (0.09)* a** 21.87 (0.97) 0.77 (0.11) a 1.11 (0.13) a

25 3.68 (0.10) ab 20.54 (1.57) 1.10 (0.12) bc 1.23 (0.12) a

50 3.94 (0.05) cd 20.87 (2.37) 1.63 (0.17) d 1.61 (0.15) b

75 4.06 (0.07) d 20.23 (1.86) 1.99 (0.13) e 1.96 (0.17) c

Rice husk ash 0 3.64 (0.06) a 20.98 (3.16) 0.77 (0.11) a 1.11 (0.13) a

25 3.71 (0.16) ab 19.54 (1.75) 0.99 (0.13) ab 1.25 (0.24) a

50 3.91 (0.06) cd 19.87 (1.43) 1.34 (0.11) c 1.26 (0.15) a

75 4.06 (0.08) d 18.76 (1.64) 1.83 (0.15) de 1.31 (0.06) a

Coal fly ash 0 3.64 (0.07) a 22.04 (1.99) 0.77 (0.11) a 1.11 (0.13) a

25 3.84 (0.05) bc 20.54 (2.57) 1.92 (0.24) e 2.26 (0.25) d

50 4.23 (0.12) e 18.65 (1.98) 3.26 (0.30) f 2.96 (0.17) e

75 4.48 (0.18) f 16.45 (2.15) 4.15 (0.19) g 3.27 (0.17) f

*Numbers in the parenthesis represent the standard deviation of mean (n = 3)

**Lower cases following the standard deviation indicate no significant differences among the treatments based on
the LSD test at P ≤ 0.05

Table 4 Changes in specific
surface areas (SSA), oxalate-
extractable aluminum (AlO),
oxalate-extractable iron (FeO),
and dithionite-extractable iron
(FeD) of soils after the addition of
different types and amounts of ash

Type of ash Amount

(Mg ha−1)

SSA

(m2 g−1)

AlO* FeO* FeD**
— g kg−1 —

Oil palm shell ash 0 11.07 (1.09)* a** 1.11 (0.13) a 1.16 (0.19) a 1.57 (0.10) a

25 12.28 (0.25) ab 1.46 (0.11) bc 1.19 (0.02) a 2.11 (0.13) b

50 13.30 (0.28) bc 1.88 (0.10) d 1.33 (0.12) ab 2.30 (0.17) bc

75 13.50 (0.95) cd 2.12 (0.13) e 1.45 (0.11) abc 2.55 (0.10) c

Rice husk ash 0 11.07 (1.09) a 1.11 (0.13) a 1.16 (0.19) a 1.57 (0.10) a

25 11.98 (0.65) ab 1.27 (0.08) ab 1.31 (0.17) ab 1.99 (0.13) b

50 12.22 (0.24) bc 1.56 (0.12) c 1.59 (0.14) bc 2.13 (0.19) b

75 12.34 (0.85) cd 2.00 (0.13) de 1.66 (0.28) c 2.14 (0.17) b

Coal fly ash 0 11.07 (1.09) a 1.11 (0.13) a 1.16 (0.19) a 1.57 (0.10) a

25 15.48 (1.10) d 2.18 (0.24) e 2.30 (0.17) d 2.99 (0.13) d

50 18.11 (0.50) e 3.02 (0.17) f 3.12 (014) e 3.88 (0.39) e

75 19.70 (1.55) f 3.30 (0.13) g 3.85 (0.28) f 5.52 (0.33) f

*Numbers in the parenthesis represent the standard deviation of mean (n = 3)

**Lower cases following the standard deviation indicate no significant differences among the treatments based on
the LSD test at P ≤ 0.05
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Increased inorganic nitrogen has been observed following
wood ash application to soils (Vestergård et al. 2018), suggest-
ing increased amounts of easily available nutrients for soil
microorganisms. This result indicates that the application of
rice husk and oil palm shell ash and a low amount of fly ash to
RMSs increases soil biochemical processes that eventually
improve the characteristics of the RMSs.

The effect of coal fly ash addition on C mineralization and
soil MBC is different from that of rice husk and oil palm shell
ash addition on the soil MBC; i.e., an increase in soil MBC
occurred at the lowest amount of added coal fly ash, while C
mineralization and soil MBC decreased at higher amounts of
added coal fly ash. The changes in the effects of low and high

amounts of coal fly ash on C mineralization and MBC are
attributed to the direct effect of coal fly ash on easily available
nutrients for microorganisms (Nayak et al. 2014). An increase
in C mineralization and soil MBC at low amounts of added
coal fly ash may be related to the presence of low amounts of
Fe, Al, and other elements derived from coal fly ash that
function as easily available nutrients in soil biochemistry.
However, the decrease in MBC under high amounts of added
coal fly ash may be attributed to the detrimental effect of the
metals contained in coal fly ash. Coal fly ash contains rela-
tively high amounts of Fe and Al (Table 1), which may hinder
soil microbial activity. The low C mineralization of bentonite
waste is attributed to the presence of a high concentration of

Fig. 1 Carbon mineralization of
reclaimed-mine soil with different
amounts of oil palm shell ash (A),
rice husk ash (B), and coal fly ash
(C), throughout a 120-day incu-
bation period. Vertical bars repre-
sent the standard deviation of the
mean (n = 3). The lines are curves
fitted to the two-pool carbon
mineralization model: Ct =Cs(1-
e-st) +Cf(1-e

-ft); R2 > 0.98.
Cumulative C mineralization of
reclaimed-mine soil with addi-
tions of different ash throughout a
120-day incubation period (D).
Different lowercase letters above
the columns indicate significant
differences between the treat-
ments (LSD test, P < 0.05)
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toxic compounds in the bentonite waste (Rodríguez-Salgado
et al. 2017). A large body of research in the last decade has
been carried out to elucidate the changes in soil properties due
to coal fly ash application (Pandey and Singh 2010). Briefly,
studies on the effect of a low amount of coal fly ash on soil
MBC have shown conflicting results. Schönegger et al. (2018)
reported that the addition of a low amount of coal fly ash (2w/
w %) to soils resulted in the suppression of soil MBC after 60
and 100 days of incubation. The soil MBC and soil enzymatic
activity did not change following a low amount of coal fly ash
application (15 Mg coal fly ash ha−1) to soils (García-Sánchez
et al. 2015). In another study, Lim and Choi (2014) found that
the soil MBC observed 7 days after incubation increased sig-
nificantly following the application of a low amount of coal
fly ash (5–10 w/w %) to the soil.

In contrast, no conflicting results on the reduction in soil
MBC following the application of a relatively high amount of

coal fly ash have been reported in previous studies (e.g.,
Nayak et al. 2014; Parab et al. 2015). Parab et al. (2015)
reported that the number of soil beneficial microbes
(Azotobacter) declined considerably with coal fly ash applica-
tion, while the soil microbial activity substantially increased
with the application of up to 50 Mg ha−1 coal fly ash and then
decreased when the amount of applied coal fly ash reached
100 Mg ha−1. A study conducted by Parab et al. (2015) re-
vealed that 50 Mg ha−1 is considered an optimal amount of
applied coal fly ash for improving soil microbial properties. In
another study, Nayak et al. (2014) found that the soil MBC
decreased significantly throughout a 120-day incubation peri-
od with 10% 20% coal fly ash addition to soils, which might
be caused by a reduction in substrate availability due to the
accumulation of persistent lignite-derived organic carbon
compounds. Decreases in MBC may also be related to the
decrease in the soil microbial population with the application
of high amounts of coal fly ash to soils (Pandey and Singh
2010). Soluble C and enzyme activities (alkali phosphatase,
arylsulfatase, b-glucosidase, and L-asparaginase) decrease
significantly in co-composted public green waste with high
coal fly ash application rates (Belyaeva and Haynes 2009).

Another possible mechanism for the decrease in the C min-
eralization of soils with high amounts of coal fly ash is the
reduction in the availability of organic carbon for microorgan-
isms through soil physicochemical reactions, i.e., the stabili-
zation of organic C by oxides contained in coal fly ash. The
application of a high amount of coal fly ash to soil resulted in
increases in the contents of FeO, AlO, and FeD (Table 4). It is
well known that the presence of FeO, AlO, and FeD (iron and
aluminum oxides) in soils increases the sites (specific surface
areas) for OC sorption supplied by the high density of reactive
surface functional groups associated with those oxides. It has
been suggested that the higher SSA of soil with coal fly ash

Table 5 Results of carbon mineralization data fit to the two-pool mineralization model

Type of ash Amount of ash (Mg ha−1) Cs (mg C kg−1) s (day−1) Cf (mg C kg−1) f (day−1) R2

Oil palm shell ash 0 510.44 (25.37)* b** 0.0308 (0.00075) 963.18 (47.73) b 0.0378 (0.00002) 0.999

25 508.25 (14.78) b 0.0234 (0.00008) 1005.77 (13.84) bc 0.0430 (0.00014) 0.999

50 550.25 (10.25) de 0.0276 (0.00012) 1015.62 (18.92) c 0.0402 (0.00005) 0.999

75 545.00 (4.43) cd 0.0248 (0.00009) 1070.35 (8.69) de 0.0431 (0.00008) 0.999

Rice husk ash 0 517.62 (25.81) bc 0.0350 (0.00034) 960.23 (47.60) b 0.0350 (0.00007) 0.999

25 519.72 (7.63) bc 0.0350 (0.00007) 964.33 (14.17) b 0.0350 (0.00002) 0.999

50 577.84 (2.54) e 0.0350 (0.00018) 1022.83 (4.50) cd 0.0350 (0.00021) 0.999

75 542.78 (9.72) cd 0.0258 (0.00005) 1102.44 (19.74) e 0.0403 (0.00012) 0.999

Coal fly ash 0 517.62 (25.54) bc 0.0350 (0.00008) 960.23 (47.60) b 0.0350 (0.00008) 0.999

25 526.11 (7.81) bcd 0.0350 (0.00015) 976.19 (14.49) bc 0.0350 (0.00014) 0.999

50 507.25 (25.01) bc 0.0350 (0.00008) 897.47 (44.61) a 0.0350 (0.00008) 0.999

75 429.37 (10.70) a 0.0234 (0.00011) 855.40 (23.37) a 0.0430 (0.00016) 0.999

*Numbers in the parenthesis represent the standard deviation of mean (n = 3)

**Lower cases following the standard deviation indicate no significant differences among the treatments based on the LSD test at P ≤ 0.05

Fig. 2 Microbial biomass C of reclaimed-mine soil with the addition of
different types of ash. Vertical bars indicate the standard deviation of the
mean (n = 3). Different lowercase letters above the columns indicate sig-
nificant differences between the treatments (LSD test, P < 0.05)
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than that of control soil (Table 2) may enable more organic
carbon-soil interactions and thereby result in a reduction in
carbon mineralization (Saidy et al. 2012; von Lützow et al.
2006; Wattel-Koekkoek et al. 2003). Decreases in C mineral-
ization with high levels of coal fly ash addition have also been
found in previous experiments (McCarty et al. 1994; Nayak
et al. 2014; Pandey and Singh 2010; Pitchel 1990). Lim et al.
(2012) suggested that the application of coal fly ash can re-
duce C emissions due to the formation of carbonate from CO2

resulting from the C mineralization facilitated by calcium-
enriched coal fly ash.

The reduction in the C mineralization of the RMSs with
high amounts of coal fly ash is also related to the presence of
polyvalent cations in coal fly ash. Coal fly ash has high con-
tents of calcium and magnesium (Table 1), which increase the
sorption of OM through the mechanism of cation bridging.
The sorption of OM increases the amount of OM protected
from soil microbial decomposition. The calcium and magne-
sium cations from the added coal fly ash, which increase con-
siderably with increasing coal fly ash application (Table 3),
may function as bridges between the negatively charged func-
tional groups of OM and negatively charged clay minerals,
ultimately leading to increase OM sorption (Arnarson and
Keil 2000; Feng et al. 2005; Singh et al. 2016).

Changes in the C mineralization of the RMSs due to
ash application may also be attributed to alterations in the
size of the slowly mineralizable pool, rapidly mineralized
pool or both pools. The application of oil palm shell and
rice straw ash increased C mineralization, and the sizes of
both the slowly and rapidly mineralizable pools increased
substantially with ash application. In contrast, the sizes of
both the slowly and rapidly mineralizable pools decreased
with coal fly ash application, and C mineralization de-
creased with coal fly ash application. These observations
suggest that coal fly ash application results in the protec-
tion of a relatively large proportion of OM.

Ash application resulted in either increased C mineraliza-
tion or decreased C mineralization, and the mineralization
rates of both the slowly and rapidly mineralized pools did
not change with ash application. This result indicates that
ash addition affected the dynamics of C mineralization by
changing the size of mineralizable C pools. This result is in
line with the previous finding that C mineralization was re-
duced significantly for clays coated with iron and aluminum
oxides; the sizes of the slowly and rapidly mineralizable pools
were considerably reduced, while the mineralization rates of
these pools were unaffected (Saidy et al. 2012). Previous stud-
ies have shown that the size of the mineralizable C pool,
obtained from the two-pool C mineralization model, increases
significantly after the sorption of organic C onto soils (Kalbitz
et al. 2005), clay minerals and goethite (Mikutta et al. 2007).

The results of this study showed that the addition of oil
palm shell and rice husk ash at all doses and coal fly ash at a

low dose resulted in increases in C mineralization and soil
MBC, while C mineralization and soil MBC decreased with
a high amount of coal fly ash application to the RMSs.
Therefore, our hypothesis that differences in the characteris-
tics of the added ash lead to different C mineralization and
MBC in the RMSs was supported. The different effects of ash
application on C mineralization and soil MBC also imply that
coal fly ash application to the RMSs at high amounts may
protect soil C from microbial decomposition and thereby in-
crease soil C stabilization. With regard to ash management,
the results of this study indicate that ash could be applied as a
waste material to the RMSs to improve soil properties and that
the extent of the effect of ash application on changes in soil
properties varied with the ash characteristics.

5 Conclusions

The results of the study showed that the application of differ-
ent types of ash to the reclaimed-mining soils resulted in dif-
ferent carbon mineralization and soil microbial biomass car-
bon effects. The effect of oil palm shell and rice straw ash
application on carbon mineralization was different from that
of coal fly ash application. The addition of oil palm shell and
rice straw ash to the reclaimed-mining soils increased carbon
mineralization. Low amounts of coal fly ash application to the
soils enhanced carbon mineralization, but C mineralization
decreased with a high amount of coal fly ash application.
This decrease in C mineralization may be attributed to in-
creases in the contents of Ca, Mg, Feo, and Alo (oxalate-ex-
tractable iron and aluminum), and Fed (dithionite-extractable
iron), as a high amount of applied coal fly ash may increase
the stabilization of soil organic matter. The increased specific
surface areas (SSA) for organic carbon sorption provided by
surface functional groups associated with oxides contained in
the coal fly ash may also lead to a decrease in C mineraliza-
tion. The results of the carbon mineralization data fitted to the
two-pool carbon mineralization model showed that changes in
soil carbon mineralization in response to ash application are
associated with differences in the sizes of the mineralizable
carbon pools (rapidly mineralizable carbon pool, slowly min-
eralizable carbon pool or both pools). In the oil palm shell and
rice straw ash treatments that increased C mineralization, the
mineralizable C pool size increased with the application of oil
palm shell and rice straw ash to the soil. However, the appli-
cation of coal fly ash to soils led to a decrease in the size of the
mineralizable C pool, which eventually resulted in decreases
in C mineralization. This result demonstrates that coal fly ash
application to the reclaimed-mining soils leads to the protec-
tion of a relatively large proportion of organic matter, thereby
increasing the organic matter content in the reclaimed mining
soils. Similar to carbon mineralization, the soil microbial bio-
mass carbon of the reclaimed mining soils increased
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significantly with oil palm shell and rice husk ash application.
However, the addition of a high amount of coal fly ash
(75 Mg ha−1) led to a reduction in the soil microbial biomass
carbon compared to that of soils without coal fly ash applica-
tion. With regard to ash management, the results of this study
indicate that the application of ash to improve the soil proper-
ties of the reclaimed mining soils could be used as an alterna-
tive to managing ash as a waste material.
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