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Abstract
The effects of crop straw returning or chemical N fertilization on greenhouse gas emissions and crop yield have been extensively
studied, but their interaction effects remain unclear. So, this study aimed to investigate greenhouse gas emissions and yield from
paddy fields as affected by straw returning, chemical N application, and their interactions in the 2017 and 2018 rice-growing
seasons in northwest Hubei Province, China. The static chamber-gas chromatography method was used to determine CH4 and
N2O fluxes. Straw returning had no significant effect on N2O emissions, but significantly increased CH4 emissions due to
increasedmcrA abundance and global warming potential (GWP). Chemical N fertilization significantly decreased CH4 emissions
by 7.2–18.8% and GWP by 13.5–17.9%, but increased N2O emissions by 72.5–311.1% due to increased abundance of AOA-
amoA, AOB-amoA, nirK, and nirS. Both straw returning and chemical N fertilization significantly increased rice yield. Straw
returning significantly increased greenhouse gas intensity (GHGI), while N fertilization obviously decreased the GHGI.
Moreover, significant interaction effects of straw returning and chemical N fertilization on CH4 emissions, GHGI, and grain
yield were observed. The combination of 250 kg N ha−1 of chemical N application and no straw resulted in the lowest GWP,
second lowest GHGI and relatively high grain yield among all treatments. In conclusion, 250 kgN ha−1 of chemical N application
without straw returning may be an ecological and economic practice for rice production in this study. Nevertheless, ecological-
friendly methods of straw returning for sustainable agriculture should be further explored in future studies.
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1 Introduction

At present, global warming due to increasing concentration of
greenhouse gases (GHG) in the atmosphere has aroused in-
creasing concern. It not only affects crop production, but also

threatens global food production and supply security
(Jonathan et al. 2011). GHG emissions from agricultural pro-
duction are an important part of total global GHG emissions.
Agricultural GHG emissions account for approximately 10–
12% of global anthropogenic GHG emissions (Smith et al.
2007; IPCC 2013, 2014; Htun et al. 2017). About 1% of
carbon dioxide (CO2), 40% of methane (CH4), and 60% of
nitrous oxide (N2O) emissions come from agriculture (Zou
et al. 2005). In China, agricultural production of GHG emis-
sions accounts for about 17% of global emissions, particularly
CH4 and N2O emissions, which account for 50% and 25% of
the total agricultural GHG emissions in China, respectively
Liu et al. 2010a, b).

Crop straw is one of the important organic fertilizers, which
can increase available C and N in the soil and improve soil
physicochemical properties (Wang et al. 2015; Hoang and
Marschner 2019). But straw returning observably affects
CH4 emissions from rice fields (Ma et al. 2009; Zhang et al.
2015). Methyl coenzyme-M reductase (mcrA) regulates the
last step in all methanogenic pathways and is typically
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selected as the functional gene maker for the analysis of
methanogenic communities. Xia et al. (2014) proposed that
long-term straw returning could significantly increase CH4

emissions because it can increase mcrA abundance by provid-
ing predominant C sources within a rice-wheat rotation sys-
tem. Hu et al. (2016) reported that different straw-returning
methods affect CH4 emissions from paddy fields through af-
fecting mcrA abundance. In addition, straw returning also
influences N2O emissions by providing C and N substrates
for nitrification and denitrification. Nitrification and denitrifi-
cation are key components of soil N cycles (Galloway et al.
2008; Nelson et al. 2019). Nitrification is usually mediated by
ammonia oxidation archaeal (AOA) and bacteria (AOB) con-
taining the amoA gene (Purkhold et al. 2000). Denitrification
is the microbially mediated process converting NO3

− to N2, in
which the conversion of NO3

− to nitric (NO−) is the rate-
limiting step mediated by the copper-containing nitrite reduc-
tase from the nirK type denitrifier and the cytochromecd1
nitrite reductase from the nirS type denitrifier (Braker et al.
2000). Liu et al. (2011) demonstrated that straw returning
tends to enhance N2O emissions due to increases in readily
available C and N in soils, while Baggs et al. (2003) pointed
out that the microbial degradation of straws returned into the
soils could consume the mineral N, thus reducing abundance
of nitrification and denitrification related microbes (e.g.,
AOA-amoA, AOB-amoA, nirS, and nirK) and N2O emissions
subsequently. In addition, some studies proposed that straw
application has no significant effects on soil N2O emissions
(Malhi et al. 2006). GHG emitted from rice fields is one of the
most important sources of GHG emissions in central China
(Zhang et al. 2016), and thus, it is highly necessary to consider
the influence of the currently prevailing agricultural practices
such as straw returning.

N fertilizer is extremely important for increasing crop
yields. Thus, farmers tend to increase the application rate of
N fertilizer, which not only causes the overgrowth and late
maturity of rice to result in a decline in rice yield and N use
efficiency, but also leads to agricultural environment source
pollution and GHG emissions (Zhu and Chen 2002; Ju et al.
2009; Hou et al. 2012). N2O emissions are generated from the
microbial nitrification and denitrification in soils. N applica-
tion can increase N2O emissions by providing N substrates for
the nitrification and denitrification. About 1.5 million tons of
N2O are produced each year due to the application of chemical
N fertilizer, accounting for 44% of the total amount of N2O
emitted due to human activities (Eichner 1990). At present,
high N application rate in rice production is one of the most
important contributors to soil N2O emissions (Ma et al. 2007).
Therefore, it is necessary to determine the appropriate rate of
N fertilization for sustainable rice production. Moreover, few
studies have reported the combined effects of straw returning
and chemical N application on global warming potential
(GWP) and greenhouse gas intensity (GHGI). Therefore, in

this study, a field experiment was conducted to investigate the
effects of different straw-returning rates and N fertilizer levels
on CH4 and N2O emissions, GWP, rice yield, and GHGI in the
2017 and 2018 rice-growing seasons of northwest Hubei
Province, China. We hypothesized that there were significant
interactions of straw returning and chemical N fertilization on
CH4 and N2O emissions, GWP, rice yield, and GHGI.

2 Materials and Methods

2.1 Site Descriptions

The experimental site is located at an experimental farm of
Huazhong Agricultural University in Wudian town, Hubei
Province (32°10′ N, 112°10′ E). The elevation of this site is
150 m above sea level. There is a mid-subtropical monsoon
climate, with an annual average temperature of 15.5 °C, an-
nual precipitation of 500–1000 mm, and annual average sun-
shine time of 260 days. Daily mean precipitation and air tem-
perature during the experimental period are shown in Fig. 1.
The major properties of the soil at 0–20 cm are as follows: pH
of 6.55 (extracted by H2O; soil/water = 1:2.5), bulk density of
1.36 g cm−3, organic carbon of 18.96 g kg−1, total N of 1.35 g
kg−1, nitrate(NO3

−) of 6.92 mg kg−1, ammonium (NH4
+) of

8.16 mg kg−1, total phosphorus (P) of 0.53 g kg−1, available P
of 91.96 mg kg−1 (extracted by NaHCO3), total potassium (K)
of 6.63 g kg−1, and available K of 11.62mg kg−1 (extracted by
CH3COONH4).

2.2 Experimental Design

The experiment was designed with a split-plot design of a
randomized integral field with preceding wheat straw-
returning methods as the main plots and N fertilizer levels as
the sub-plots. The main plots included wheat straw removal
(C0), returning half of the wheat straws into the fields (C1)
and returning all the wheat straws into the fields (C2), whereas
the sub-plots included no N fertilizer (N0), 125 kgN ha−1 of N
application (N1) and 250 kg N ha−1 of N application (N2)
during rice seasons (Table 1). Each treatment was repeated
thrice, and each plot was 12 m × 9 m in size. The 30 cm ×
40 cm ridges between the plots were covered by black plastic
films.Water and fertilizer transference was prevented by bury-
ing the lower part of the plastic films 40 cm deep under-
ground. The C/N ratio of wheat straw was 69.

Rice (Oryza sativa L., YY4949) was seeded in middle
May, transplanted at the rate of 2.22 × 105 hills ha−1 in middle
June by hand, and harvested in early October each year. The
preceding wheat straws were chopped into 7–10 cm when
harvesting, and then subsequently mulched on the soils. The
soil was not tilled and the applied fertilizers were surface
broadcasted manually. During the 2017 and 2018 rice-
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growing seasons, N, P and K fertilizers were applied manual-
ly. P fertilizers were only used just before transplanting as
basal fertilizers, K fertilizers were used at the transplanting
(50%) and earring (50%) stages. N fertilizers were applied at
the transplanting, tillering, jointing and earring stages, except
for N0 treatments. The amounts and time of fertilizer applica-
tion in different treatments are shown in Table 1. Weeds were
controlled by spraying herbicide (36% glyphosate) in June
before the field was submerged or by manual weeding during
the rice-growing seasons. Whenever the surface water
dropped below 4–5 cm, it was irrigated back to the level of
about 8 cm.

2.3 Measurements of N2O and CH4 Fluxes

The static chamber-gas chromatography method was
used to measure N2O and CH4 fluxes from the fields
(Li et al. 2013). The cylinder chamber with a diameter
of 38 cm and a height of 50 cm or 120 cm (depending
on rice height) was made by stainless steels. The
chambers were temporarily placed on permanent rings
installed in each plot in order to create a seal on the
gas sampling day. The chamber was wrapped with
heat-insulating plastic layer, installed with four circulat-
ing fans on the top of the chambers for mixing the air
within the chambers, and a thermometer on the top for
recording air temperature during sampling within the
chambers. A total of four samples were collected at
intervals of 10 min each time. The gas samples from
headspace in each plot were collected using a 25-mL
syringe and transferred immediately to 25-mL vacuum
glass containers. The samples were collected at 7–10-
day internals during rice-growing seasons.

CH4 and N2O concentrations were assayed using a
gas chromatograph meter (Shimadzu GC-14B, Li et al.
2013). A linear regression was performed on the con-
centration of the four gas samples to obtain a gas
discharge rate.

The gas flux was calculated according to the method re-
ported by Zheng et al. (1998) as below.

F = ρ × H × dC/dt × 273 ÷ (273 + T)
where F denotes CH4 or N2O fluxes flux (mg m−2 h−1), ρ

denotes CH4 or N2O density at standard state, h denotes cham-
ber height above the soil-water layer (m), dC/dt denotes CH4

or N2O accumulation rate (ppm h−1 and ppb h−1), and T de-
notes mean air temperature inside the chamber during
sampling.

2.4 Rice Grain Yield Measurement

Rice grains were collected randomly using a 2 m × 2 m
frames, and then air-dried and weighed. The final rice yields
were adjusted to 14% moisture contents.

2.5 Calculation of Cumulative GHG Emissions, GWP
and GHGI

Cumulative seasonal emissions of CH4 and N2O were calcu-
lated for each plot according to the method of Li et al. (2013).

Based on the CH4 and N2O emissions, the GWP (kg CO2-
equivalents ha−1) was calculated using the following equation:

GWP = CH4 × 30 + N2O × 268
The GHGI (kg CO2-eq. kg

−1 grain yield) was calculated
following the method of Shang et al. (2011):

GHGI = GWP / grain yield

Fig. 1 Daily mean precipitation
and air temperature during the
2017 and 2018 rice-growing
seasons
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2.6 Abundance Determination of Functional Genes
AOA-amoA, AOB-amoA, nirS, nirK, and mcrA

Five soil cores at 0–20 cm depth were randomly sampled by a
soil core sampler (inner diameter of 7 cm) in each plot just
after the rice was harvested. With the stones and plant debris
picked out, the five samples were mixed and homogenized
into a composite sample for subsequent biological analysis.

According to the manufacturer’s description, the total DNA
of soil microorganisms (equivalent to 1.5 g dry soil) was ex-
tracted by the Fast DNA SPIN Kit for Soil (MP Biomedicals,
Santa Ana, CA, USA). Then, the extracted soil DNA was
stored at − 80 °C for testing. The AOB and AOA gene frag-
ments were amplified using primer pairs Arch-amoAF/Arch-
amoAR and amoA-1F/amoA2R, respectively (Rotthauwe
et al. 1997; Francis et al. 2005). For amplification of amoA
gene fragments of nirS and nirK, primer systems nirs-cd3aF/
nirS-R3cd and nirK1F/nirK5R were, respectively, used
(Braker et al. 1998; Throbäck et al. 2004). The primer used
for qPCR of mcrA gene was mlas-mod-F/mcrA-rev-R
(Steinberg and Regan 2008).

PCR reactions were conducted in quadruplicate of 20 μL,
which were blended to minimize reaction variability. Each
reaction mixture contained 10 μL of iTaq™ Universal
SYBR green Supermix (BIO-RAD, USA), 0.2 μL of each
primer (forward primer and reverse primer), and 1 μL of
DNA-diluted template (15–20 ng DNA μL−1).

Programs of qPCR were carried out by Bio-Rad iQ5 real-
time PCR system (BIO-RAD, USA) as follows: 94 °C for
3 min (AOA, AOB, nirS, and nirK) or 4 min (mcrA), followed
by 40 cycles of 94 °C for 30 s, 60 °C for 1 min (for AOA) or
50 s (for AOB) or 30 s (for nirK and nirS), and an extension at
72 °C for 1 min (for AOA) or 50 s (for AOB) or 45 s (for nirK
and nirS), or followed by 30 cycles of 94 °C for 45 s, 55 °C for
30 s (mcrA), 72 °C for 30 s (mcrA). The standards for qPCR
were provided by pEASY-T5 Zero Cloning Kit (TransGen
Biotech, China). Every reaction was performed in triplicate,
and invalid values were removed. The amplification efficien-
cies were 98.1–100.3% and the R2 values were 0.993–1.000.
Concentration dilution test was performed by 10-fold, 50-fold,
and 100-fold to prove that qPCR assay was not inhibited.

2.7 Data Analysis

A three-way ANOVA analysis was performed with SPSS 20.0
(SPSS Inc., Chicago, IL, USA) to analyze the effects of straw
returning, N fertilization, study year, and their interactions on
seasonal cumulative CH4 and N2O emissions, GWPs, GHGI,
rice yields, and soil gene abundance. Duncan’s multiple range
tests were performed to examine whether the differences be-
tween the mean values were statistically significant at a sig-
nificance level of 0.05. Linear regression was conducted to

assess the correlations between cumulative CH4 and N2O
emissions and soil gene abundance.

3 Results

3.1 Grain Yield

Straw returning, N fertilization, and study year had a signifi-
cant effect on rice yield (Table 4). Compared with C0 treat-
ment, C1 and C2 treatments significantly increased rice grain
yields by 5.6% and 8.0% in 2018, respectively (Table 2). The
application of N fertilizer significantly enhanced rice yield
(Table 4). Higher rice grain yields under N1 and N2 treatments
(31.0% and 40.4% in 2017 and 38.4% and 43.4% in 2018,
respectively) than that under N0 treatment were observed.
Moreover, there were significant two-way interactions and
non-significant interaction (Table 4).

3.2 CH4 and N2O Emissions

Similar CH4 flux patterns were found in all treatments during
the rice-growing seasons of 2017 and 2018 (Fig. 2). Two
peaks of CH4 emissions were observed at the stem-
elongation and heading stages. The highest fluxes were de-
tected under C2 treatment (64.63 mg m−2 h−1 in 2017 and
51.40 mg m−2 h−1 in 2018). The flux ranged from 0.29 to
64.63 mg m−2 h−1 in 2017 and from 1.03 to 51.40 mg m−2

h−1 in 2018 across all treatments.
N fertilization was significantly correlated with N2O emis-

sions, and peaks were found immediately after each N fertil-
ization (Fig. 3). The fluxes from straw-returning treatments
ranged from − 0.1 to 112.3 μg m−2 h−1 in 2017 and from 9.3
to 99.5 μg m−2 h−1 in 2018; the fluxes from N fertilizer treat-
ments varied from − 0.6 to 262.4 μg m−2 h−1 in 2017 and from
13.5 to 235.1 μg m−2 h−1 in 2018. Moreover, significant in-
teractions of straw returning and N fertilizer on CH4 emissions
were observed (Table 2).

Similar to rice grain yield, seasonal cumulative CH4 emis-
sions were significantly affected by straw returning, N fertili-
zation, and study year (Table 4). Compared with C0 treatment,
C1 and C2 treatment resulted in significant increases in the
cumulative emissions (by 12.5% and 25.3% in 2017 and by
49.6% and 86.7% in 2018, respectively). The CH4 emissions
under N1 and N2 treatments were significantly decreased by
14.0% and 7.4% in 2017 and by 2.9% and 1.4% in 2018,
respectively, relative to N0 treatment. Moreover, significant
two-way interactions and non-significant interaction on sea-
sonal cumulative CH4 emissions were found (Table 4).

Straw-returning treatments did not show significant effects on
N2O emissions (Table 4). However, the N2O emissions were
significantly affected by N fertilizer rates (Table 4). Compared
with those from N0 treatment, the seasonal cumulative N2O
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emissions from N1 and N2 treatments were 2.6 and 4.1 times
higher in 2017 and 1.7 and 2.4 times higher in 2018, respectively.

Study year significantly affected N2O emissions, and there were
non-significant two-way or three-way interactions (Table 4).

Fig. 2 Seasonal changes in CH4

fluxes under different straw-
returning and N fertilizer
treatments during the 2017 and
2018 rice-growing seasons. Bars
represent standard error of the
mean. C0, wheat straw removal;
C1, half of the straws returned
into the fields; C2, all the straws
returned into the fields; N0, no N
fertilizer; N1, 125 kg N ha−1 of N
fertilization; N2, 250 kg N ha−1 of
N fertilization

Fig. 3 Seasonal changes in N2O
fluxes under different straw-
returning and N fertilizer
treatments during the 2017 and
2018 rice-growing seasons. Bars
represent standard error of the
mean. C0, wheat straw removal;
C1, half of the straws returned
into the fields; C2, all the straws
returned into the fields; N0, no N
fertilizer; N1, 125 kg N ha−1 of N
fertilization; N2, 250 kg N ha−1 of
N fertilization
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3.3 GWP and GHGI

Both GWP and GHGI were significantly affected by straw
returning, N fertilization, and study year (Table 2).
Compared with C0 treatment, C1 and C2 treatments sig-
nificantly increased the GWP by 12.4% and 25.1% in 2017
and by 48.4% and 84.7% in 2018, and the GHGI by 6.6%
and 21.0% in 2017 and by 36.9% and 67.0% in 2018,
respectively. The GWP and GHGI under N1 treatment
were significantly lower than that under N0 treatment.
For GWP, there were non-significant two-way or three-
way interactions, while significant two-way interactions
for GHGI were observed (Table 4).

3.4 Abundance of AOA-amoA, AOB-amoA, nirS, nirK,
and mcrA

Straw returning, N fertilization, and their interactions had
significant effects on the abundance of AOA-amoA and
AOB-amoA (Tables 3 and 4). The abundance of AOA-
amoA increased with increasing N fertilizer levels. The
treatments of N1 and N2 significantly increased the abun-
dance of AOA-amoA by 31.0% and 40.4% in 2017 and by
38.4% and 43.4% in 2018, respectively. Relative to that
under C0 treatment, the AOB-amoA under C1 and C2
treatments was 15.3% and 6.8% higher in 2017 and
10.9% and 4.8% higher in 2018, respectively. Moreover,
compared with N0 treatment, N1 and N2 treatments result-
ed in significant increases in the abundance of AOB-
amoA.

The abundance of nirS and nirK was also significantly
affected by straw returning, N fertilization, and their inter-
actions (Tables 3 and 4). Compared with C0 treatment, the
abundance of nirS in C1 treatment was increased by 11.8%
and 15.6% in 2017 and 2018, respectively. No significant
difference was found between C0 and C2 treatments.
Higher abundance of nirS was found under N1 and N2
treatments than under N0 treatment. The nirK abundance

under C1 treatment was 1.13 times of that under C0 treat-
ment. However, no significant difference was found be-
tween C0 and C2 treatments. N fertilization also increased
the abundance of nirK. Compared with N0 treatment, N1
and N2 treatments led to significant increase in the abun-
dance of nirK (by 53.2% and 144.0% in 2017 and by
67.0% and 140.0% in 2018).

The abundance of mcrA was also significantly affected
by straw returning, N fertilization, and their interactions
(Tables 3 and 4). Relative to that under C0 treatment, the
mcrA abundance under C1 and C2 treatments was signifi-
cantly elevated by 137.0% and 162.0% in 2017 and by
96.9% and 148.0% in 2018, respectively. Moreover, com-
pared with N0 treatment, N1 treatment resulted in higher
mcrA abundance.

3.5 Regression Analysis Between CH4 and N2O
Emissions and the Abundance of Genes

Cumulative N2O emissions were closely positively related to
the abundance of AOA-amoA, AOB-amoA, nirS, and nirK
(Table 5). Moreover, there was also significant and positive
relationship between cumulative CH4 emissions and the abun-
dance of mcA.

4 Discussion

4.1 Effects of Straw Returning and Chemical N
Fertilization on Grain Yield

In the present study, straw returning remarkably increased the
rice grain yield relative to straw removal (Table 2), possibly
because the returned straws can input various nutrient compo-
nents, such as organic N and available P and K, into the soil
(Wang et al. 2007; Bi et al. 2009; Xue et al. 2013). But the
grain yield did not differ between C1 and C2 treatments.
Though soil organic matter increases as the amount of straw

Table 4 Cumulative CH4 and N2O emissions, GWP, GHGI, yield, and gene abundance as affected by straw returning, N fertilization and study year. F-
values are provided for significant effect

CH4 N2O GWP GHGI Yield AOA AOB nirS nirK mcrA

C 501.88** ns 9.69** 505.23** 109.76** 22.08** 9.01** 11.26** 12.81** 364.25**

N 105.40** 619.80** 256.51** 102.15** 284.33** 754.75** 533.49** 425.70** 352.95** 116.50**

Y 550.28** 278.50** 53.08** 531.47** 337.00** 28.85** 21.56** 655.56** 458.81** 179.68**

C×N 34.36** ns ns 34.66** 16.46** 21.17** 14.30** 6.72** 8.63** 45.70**

C×Y 64.34** ns ns 64.40** 12.37** ns ns ns ns 11.26**

N×Y 7.89** ns ns 7.90** 10.15** 3.87 * ns 34.72** 23.53** 4.48*

C×N×Y ns ns ns ns ns ns ns ns ns ns

C straw returning method, N N fertilization rate, Y study year, GWP global warming potential, GHGI greenhouse gas intensity, ns not significant

*P < 0.05, **P < 0.01
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returning increases, the decomposition of large amounts of
straws returned to the fields may consume soil oxygen content
and increase the content of reducing substances, which is not
conducive for the growth of rice roots (Bird et al. 2001; Chung
et al. 2001; Kumar and Goh 2003).

In this study, N fertilization significantly increased rice
grain yield (Tables 2 and 4) possibly due to development of
leaf area, enhancement in photosynthetic capacity, high resis-
tance to biotic stress, and improvement of N uptake (Kim et al.
2019). It has been reported that decreased N use efficiency by
overuse of N fertilizers can result in economic loss and envi-
ronmental problems (Huang and Tang 2010; Feng et al. 2013),
such as surface water eutrophication and rain acidification
(Liu et al. 2016). Therefore, optimum N rate is important to
increase rice yield and protect the environment against pollu-
tion for rice production (Kim et al. 2019). In general, rice grain
yield increased with increasing N fertilization rate (Table 2).
However, the increase in grain yield did not rise linearly as the
amount of N applied increased in the present study, suggesting
that N use efficiency might not increase with increasing N
rates. Our results indicate significant interaction between
straw returning and N fertilization on grain yield (Table 4).
Under N fertilization conditions, straw returning can increase
organic carbon and release micronutrients to the soil, thus
improving soil fertility and promoting rice growth (Wang
et al. 2018).

4.2 Effects of Straw Returning and Chemical N
Fertilization on CH4 and N2O Emissions

In the present study, CH4 and N2O emissions were affected by
study year (Table 4), in which CH4 emissions were higher in
2017 season than in 2018 season, but it was the opposite for
N2O emissions (Table 2). The differences in CH4 and N2O
emissions between both years may be ascribed to more pre-
cipitation in 2017 than in 2018 (Fig. 1), especially from
September to October. Continuous flooding at the late stage
(from September to October in 2017) of rice growth caused
the reduction of soil redox potential, and thus promoted CH4

emissions. Moreover, continuous flooding is not conducive to
microbial nitrification and denitrification to form N2O (Liu
et al. 2010a, b; Liu et al. 2016).

Double CH4 flux peaks were observed at the tillering and
heading stages (Fig. 2). In the tillering stage, the vigorous
roots can excrete sufficient substrates. Meanwhile, the air tem-
perature of the period is suitable for the growth of
methanogens (Fig. 1). At the heading stage, rice stems grow
vigorously, and thus, more CH4 can be released through the
stems. However, it is worth noting that another peak in CH4

emissions was observed in September 2017 (Fig. 2). In
September 2017, the large-scale heavy precipitation (Fig. 1)
could have caused an anaerobic environment for methanogens
in the soil, which in turn produced more CH4 (Win et al.
2013).

Straw returning evidently increased CH4 emissions
(Tables 2 and 4), which is in agreement with increased mcrA
abundance (Tables 3 and 5). Our result is consistent with pre-
vious studies (Guenet et al. 2012; Yuan et al. 2014; Tang et al.
2016). In the present study, C2 treatment resulted in the
highest CH4 emissions among all straw returning treatments
(Table 2). The decomposition of wheat straws returned into
fields can provide large amounts of available substrates for
methanogenic bacteria and thus promote methanogenic bacte-
rial growth (see Table 3), further increasing CH4 emissions
(Wassmann et al. 2000; Naser et al. 2007). However, some
studies have found that when the straw was placed on the soil
surface, the top of the straw is exposed to the air, which could
reduce the activity of methanogenic bacteria, as they would be
inhibited by O2 (Chareonsilp et al. 2000; Harada et al. 2005;
Ma et al. 2009). These inconsistent findings highlight that
further research is important to reveal the relationship between
crop straw returning and CH4 emissions from paddy fields in
order to propose a reasonable strategy for sustainable
agriculture.

Many studies have reported that both CH4 produc-
tion and oxidation are influenced by N fertilizers, but
the magnitude and direction of this response vary
(Bodelier and Laanbroek 2004; Liu and Greaver
2009). Our results indicated that though N fertilization
resulted in high abundance of mcrA relative to no N
fertilizer (Table 3), the application of N fertilizer de-
creased CH4 emissions (Table 2). The high abundance
of mcrA (Table 3) may be attributed to enhanced rice
growth and increased C substrates from rice roots due
to N fertilization (Sun et al. 2018). But CH4 and

Table 5 The correlations
between CH4 and N2O emissions
and the abundance of functional
genes

AOA AOB nirS nirK mcrA

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

CH4 − 0.24 0.05 − 0.26 0.01 − 0.23 0.01 − 0.25 − 0.004 0.28* 0.49**

N2O 0.90** 0.93** 0.91** 0.92** 0.93** 0.93** 0.89** 0.91** 0.03 -0.09

*P < 0.05, **P < 0.01. n = 54
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ammonium (NH4
+ ) can be ox id i zed by CH4

monooxygenase (Bodelier and Laanbroek 2004). N fer-
tilizer applied into the soil can produce a large amount
of NH4

+, which will act as an inhibitor to reduce CH4

oxidation by competing for CH4 monooxygenase
(Castro et al. 1994). Moreover, N uptake by crops
under the reduction of N input may reduce the concen-
tration of NH4

+ in the soil, and thus the inhibition on
the activity of the CH4 monooxygenase enzyme may
be attenuated (Whalen 2005), thereby promoting the
oxidation of CH4. Moreover, N fertilization also pro-
motes the growth of roots and tillering of rice plants,
and thus more oxygen adheres to the surface of the
root, which is beneficial to the activity of the
methanotropic bacteria near the root, and then promotes
CH4 consumption (Baruah et al. 2010). Thus, CH4

emissions are caused by the activities of both methan-
ogenic archaea and methanotropic bacteria, and the bal-
ance between the two types of bacteria determines the
net flux of CH4 (Ahn et al. 2014). There are debates
regarding the N fertilization effects on CH4 emissions
from paddy fields. Zhang et al. (2019) showed that N
fertilization could lead to more litters of crops into the
soil, increase C sources, and thus promote the activity
of methanogens and CH4 emissions subsequently. The
inconsistent results suggest that it is necessary to study
the mechanism of the effects of N fertilization on CH4

emissions from paddy fields.
In this study, straw returning significantly affected

the abundance of AOA, AOB, nirK, and nirS
(Table 3); moreover, significant relationship between
N2O emissions and this gene abundance was found
(Table 5). However, straw returning did not affect
N2O emissions in the present study (Table 4), which
might be related to the C/N ratio of the returned straws
(Mosier et al. 1998; Huang et al. 2004; Zou et al.
2005; Shan and Yan 2013). Zhang et al. (2015)
showed that when the C/N ratio of straws was between
20 and 75, the fixation of mineral N and soil available
N released from straw decomposition was in a state of
dynamic equilibrium. In our study, the C/N ratio of the
applied wheat straws was 69. Thus, almost no N was
converted to N2O emissions into the atmosphere.
Moreover, straw returning can undoubtedly provide
readily labile carbon and nitrogen substrates for nitrifi-
cation and denitrification, thus stimulating growth of
nitrification- and denitrification-related microorganisms
(Table 2) and the potential of nitrification and denitri-
fication subsequently (Burford and Bremner 1975; He
et al. 2007; Chu et al. 2009). The improvement of
nitrification due to increased reaction substrates from
the decomposition of returned straws might promote
N2O emissions. However, though straw returning can

increase the readily labile organic carbon concentration,
high concentration of labile organic carbon can de-
crease N2O/N2 ratios, resulting in decrease in N2O
emissions (Weier et al. 1993; Giles et al. 2012).
Moreover, the decomposition of straws can consume
soil oxygen and facilitate soil anaerobic conditions
(Wang and Luo 2018), and thus increase denitrification,
causing a large quantity of N2O converted to N2.
Therefore, no significant effects of straw returning on
N2O might be observed in this study.

Many studies have shown that N fertilization could
provide substrates for microbial nitrification and deni-
trification, which in turn promote N2O emissions (Yao
et al. 2013a, b; Yang et al. 2017). Our results indicated
that the application of N fertilizers increases N2O emis-
sions (Table 2). Nitrification involves two processes:
ammoxidation and nitrite oxidation (He et al. 2007).
The ammoxidation process is the rate-limiting step of
nitrification process (Arp et al. 2002) and is catalyzed
by ammonia monooxygenase (amo), which is mainly
composed of AOA and AOB (Schleper 2010;
Monteiro et al. 2014). The excess product hydroxyl-
amine (NH2OH) in the intermediate step undergoes in-
complete oxidation under the action of reductase to
produce N2O (Poth 1986). Denitrification involves a
variety of microorganisms, such as nitrite reductase
(nir), which produces N2O during the reduction of ni-
trite to N2. Nitrification and denitrification usually oc-
cur simultaneously, which together lead to the produc-
tion of N2O (Hu et al. 2015). Thus, more substrates
are provided to the nitrifying and denitrifying microor-
ganisms due to the application of more N fertilizers,
which can be supported by higher abundance of AOA,
AOB, nirK, and nirS under N fertilization (Table 3).
Therefore, N fertilization increased N2O emissions
(Table 2).

We observed that the combination of straw returning
and N fertilization significantly increased CH4 emis-
sions (Tables 3 and 4). Similar results were reported
by Xia et al. (2014), which demonstrated that under
the application of chemical fertilizer, returning of more
straws into the fields could result in higher CH4 emis-
sions. Htun et al. (2017) indicated that the combination
of straw and N fertilizer could significantly affect CH4

uptake in soil. Meanwhile, our results indicated that
there were no significant interaction effects of straw
returning and N fertilization on N2O emissions
(Table 2), which is inconsistent with previous studies
(Huang et al. 2017; Htun et al. 2017). Microbial nitri-
fication and denitrification are the main possesses pro-
ducing N2O in soil (Liu et al. 2011), but they are
significantly affected by the soil conditions such as
water and temperature (Siciliano et al. 2009). The
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combination of straw and N application may affect soil
moisture, temperature, organic matter content, inorganic
nitrogen content, and soil oxidation potential, which
may affect the release of N2O in the soil (Xu et al.
2015; Grave et al. 2018). However, whether the com-
bination of the two practices has a significant impact
on N2O emissions depends on local specific environ-
ment (Butterbach-Bahl et al. 2013). Thus, their interac-
tions can be better understood when examined under
different ecological conditions.

The GWP is usually used as a reference gas to
convert CH4 and N2O emissions into CO2 equivalents
to comprehensively assess the potential effects of CH4

and N2O emissions on the climate system. In this
study, the GWP of the rice growing seasons ranged
from 7654 kg CO2-eq. ha−1 to 15435 kg CO2-eq.
ha−1, which are lower than those reported by Zhang
et al. (2015). Zhang et al. (2015) estimated that the
GWP in the rice seasons was 16,245–21,422 kg CO2-
eq. ha−1 in the central plains of China. The lower
GWP in this study may be due to lower mean annual
air temperature (15.5 °C) of the current study than that
(17.8 °C) of Zhang et al. (2015). Higher air tempera-
tures can promote microbial activity and cause the as-
sociated microbes to produce more CH4 and N2O
(Khalil et al. 1998; Skiba et al. 2009). Moreover, in
this study, straw returning also significantly increased
GHGI (Table 2). Similar results were observed in pre-
vious studies (Sander et al. 2014; Hu et al. 2016). On
the contrary, the application of N fertilizers reduced the
GWP and GHGI (Table 2). These results indicated that
CH4 produced by straw returning is one of the impor-
tant sources of GHGs emissions. In our study, the
emitted CH4 accounted for more than 99% of rice pe-
riod non-CO2 GWP (Table 2), suggesting that CH4 is
the major contributor to non-CO2 GWP in rice-growing
season. Similar results have been reported by Yao
et al. (2013a, b) and Wang et al. (2018). Therefore,
straw removal might be an ecological way to reduce
GHGs emissions in the present study. However, when
the crop straws are not required to be returned into the
fields, the farmers in China usually burn the crop
straws to save time and labor, which will cause envi-
ronmental pollution. In contrast, straw returning can
increase soil carbon sequestration and improve soil fer-
tility (Khosa et al. 2010). Therefore, ecological straw
treatment methods should be adopted. Ma et al. (2009)
studied a variety of straw returning methods and found
ditch mulching and strip mulching can significantly
reduce CH4 emission from rice fields with no adverse
effect on grain yield. Dong et al. (2013) found that
carbonized crop straws retuned into the soil can in-
crease soil stability carbon storage, improve soil

physical and chemical properties and microbiological
properties, and inhibit or reduce CH4 and N2O
production and emissions. Khosa et al. (2010) reported
reduction of CH4 emissions from rice paddies by addi-
tion of straw compost and increase in soil fertility and
crop productivity relative to uncomposted straw
returning. Hence, effective straw treatments can be de-
veloped to mitigate GWP, improve soil fertility, and
increase or maintain crop yields in rice fields.

5 Conclusions

This study investigated the effects of straw returning
and chemical N fertilization on greenhouse gas emis-
sions from rice fields in central China. Straw returning
significantly increased CH4 emissions due to the in-
crease in mcrA abundance, but had no significant ef-
fect on N2O emissions. N fertilization significantly in-
creased N2O emissions due to increased abundance of
AOA-amoA, AOB-amoA, nirS, and nirK, but decreased
CH4 emissions. Moreover, significant interaction effects
of straw returning and N application on CH4 emissions,
greenhouse gas intensity, and grain yield were ob-
served. Our results showed that 250 kg N ha−1 of N
application with straw removal could produce the low-
est global warming potential, second lowest greenhouse
gas intensity, and relative high grain yield. Hence, this
approach can be used as a sustainable way to increase
the agricultural economic and environmental benefits of
rice fields in central China. Nevertheless, when the
straw is not returned to the field, the organic carbon
of the soil will not be replenished, and the treatment of
straws in the field is still an important issue to be
addressed. Our results suggest that the government
should encourage the farmers to adopt environment-
friendly approaches to treatment crop straws.
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